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Stencil Application (Section 
4.3)

 We’ve talked about stencil applications in the 
context of shared-memory programs

 We found that we had to cut the matrix in “small” 
blocks
 On a ring the same basic idea applies, but let’s do it step-

by-step
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Stencil Application

 Let us, for now, consider that the domain is of size nxn and 
that we have p=n processors
 Classic way to first approach a problem

 Each processor is responsible for computing one row of the 
domain (at each iteration)

 Each processor holds one row of the domain and has the 
following declaration:

var   A: array[0..n-1] of real
 One first simple idea is to have each processor send each 

cell value to its neighbor as soon as that cell value is 
computed

 Basic principle: do communication as early as possible to 
get your “neighbors” started as early as possible
 Remember that one of the goals of a parallel program is to 

reduce idle time on the processors 
 We call this algorithm the Greedy algorithm, and seek an 

evaluation of its performance



The Greedy Algorithm
q = MY_NUM()
p = NUM_PROCS
if (q == 0) then
    A[0] = Update(A[0],nil,nil)

Send(A[0],1)
else

Recv(v,1)
A[0] = Update(A[0],nil,v)

endif
for j = 1 to n-1

if (q == 0) then
A[j] = Update(A[j], A[j-1], nil)
Send(A[j],1)

elsif (q == p-1) then
Recv(v,1)
A[j] = Update(A[j], A[j-1], v)

else
Send(A[j-1], 1)   ||   Recv(v,1)
A[j] = Update(A[j], A[j-1], v)

endif
endfor

First element of the row

Other elements

note the use of “nil”
for borders and corners



Greedy Algorithm

 This is all well and good, but typically we have n > p
 Assuming that p divides n, each processor will hold n/p 

rows
 Good for load balancing

 The goal of a greedy algorithm is always to allow 
processors to start computing as early as possible

 This suggests a cyclic allocation of rows among processors

 P1 can start computing after P0 has computed its first cell

P0
P1
P2
P0
P1
P2
P0
P1
P2



Greedy Algorithm

 Each processor holds n/p rows of the domain
 Thus it declares:

var A[0..n/p-1,n] of real
 Which is a contiguous array of rows, with these 

rows not contiguous in the domain
 Therefore we have a non-trivial mapping 

between global indices and local indices, but 
we’ll see that they don’t appear in the code

 Let us rewrite the algorithm



The Greedy Algorithm
p = MY_NUM()
q = NUM_PROCS
For i = 0 to n/p -1

if (q == 0) and (i == 0) then
    A[0,0] = Update(A[0,0],nil,nil)

Send(A[0],1)
else

Recv(v,1)
A[i,0] = Update(A[i,0],nil,v)

endif
for j = 1 to n-1

if (q == 0) and (i == 0) then
A[i,j] = Update(A[i,j], A[i,j-1], nil)
Send(A[i,j],1)

elsif (q == p-1) and (i = n/p-1) then
Recv(v,1)
A[i,j] = Update(A[i,j], A[i-1,j], v)

else
Send(A[i,j-1], 1)   ||   Recv(v,1)
A[i,j] = Update(A[i,j], A[i-1,j-1], v)

endif
endfor

endfor



Performance Analysis

 Let T(n,p) denote the computation time of the algorithm for 
a nxn domain and with p processors

 A each step a processor does at most three things
 Receive a cell
 Send a cell
 Update a cell

 The algorithm is “clever” because at each step k, the 
sending of messages from step k is overlapped with the 
receiving of messages at step k+1

 Therefore, the time needed to compute one algorithm step 
is the sum of
 Time to send/receive a cell:      L + b  
 Time to perform a cell update:   w

 So, if we can count the number of steps, we can simply 
multiply and get the overall execution time



Performance Analysis
 It takes p-1 steps before processor Pp-1 can start computing 

its first cell
 Thereafter, this processor can compute one cell at every step
 The processor holds n*n/p cells
 Therefore, the whole program takes: p-1+n*n/p steps
 And the overall execution time:

T(n,p) = (p - 1 + n2/p ) (w + L + b)
 The sequential time is: n2w
 The Speedup, S(n,p) = n2w / T(n,p)
 When n gets large, T(n,p) ~ n2/p (w + L + b) 
 Therefore, Eff(n,p) ~ w / (w + L + b)
 This could be WAY below one

 In practice, and often, L + b >> w
 Therefore, this greedy algorithm is probably not a good idea 

at all!



Granularity

 How do we improve on performance?
 What really kills performance is that we have to 

do so much communication
 Many bytes of data
 Many individual messages

 So we we want is to augment the granularity of 
the algorithm
 Our “tasks” are not going to be “update one 

cell” but instead “update multiple cells”
 This will allow us to reduce both the amount of 

data communicated and the number of messages 
exchanged



Reducing the Granularity

 A simple approach: have a processor compute k 
cells in sequence before sending them

 This is in conflict with the “get processors to 
compute as early as possible” principle we based 
our initial greedy algorithm on
 So we will reduce communication cost, but will 

increase idle time
 Let use assume that k divides n
 Each row now consists of n/k segments

 If k does not divide n we have left over cells 
and it complicates the program and the 
performance analysis and as usual doesn’t 
change the asymptotic performance analysis



Reducing the Granularity
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k

 The algorithm computes segment after segment
 The time before P1 can start computing is the 

time for P0 to compute a whole segment
 Therefore, it will take longer until Pp-1 can start 

computing

4 5 6P0



Reducing the Granularity 
More

 So far, we’ve allocated non-contiguous rows of 
the domain to each processor

 But we can reduce communication by allocating 
processors groups of contiguous rows
 If two contiguous rows are on the same 

processors, there is no communication 
involved to update the cells of the second row

 Let us use say that we allocate blocks of rows of 
size r to each processor
 We assume that r*p divides n

 Processor Pi holds rows j such that 
i = floor(j/r) mod p

 This is really a “block cyclic” allocation



Reducing the Granularity
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Idle Time?

 One question is: does any processor stay idle? 
 Processor P0 computes all values in its first block 

of rows in n/k algorithm steps
 After that, processor P0 must wait for cell values 

from processor Pp-1

 But Pp-1 cannot start computing before p steps
 Therefore:

 If p >= n/k, P0 is idle

 If p < n/k, P1 is not idle

 If p < n/k, then processors had better be able to 
buffer received cells while they are still 
computing
 Possible increase in memory consumption



Performance Analysis

 It is actually very simple
 At each step a processor is involved at most in

 Receiving k cells from its predecessor
 Sending k cells to its successor
 Updating k*r cells

 Since sending and receiving are overlapped, the 
time to perform a step is L + k b + k r w

 Question: How many steps?
 Answer: It takes p-1 steps before Pp-1 can start 

doing any thing. Pp-1 holds n2/(pkr) blocks
 Execution time: 

T(n,p,r,k) = (p-1 + n2/(pkr)) (L + kb + k r w)



Performance Analysis

 Our naïve greedy algorithm had asymptotic efficiency equal 
to w / (w + L + b)

 This algorithm does better: Assympt. Eff = w / (w + L/rk + 
b/r)
 Divide n2w by p T(n,p,r,k)
 And make n large

 In the formula for the efficiency we clearly see the effect of 
the granularity increase

 Asymptotic efficiency is higher
 But not equal to 1
 Therefore, this is a “difficult” application to parallelize

 We can try to do the best we can by increasing r and k, but it’s 
never going to be perfect

 One can compute the optimal values of r and k using 
numerical solving
 See the book for details



Solving Linear Systems of Eq.

 Method for solving Linear Systems
 The need to solve linear systems arises in an estimated 75% of all scientific 

computing problems [Dahlquist 1974]
 Gaussian Elimination is perhaps the most well-known 

method
 based on the fact that the solution of a linear system is 

invariant under scaling and under row additions
 One can multiply a row of the matrix by a constant as long as one 

multiplies the corresponding element of the right-hand side by the 
same constant

 One can add a row of the matrix to another one as long as one 
adds the corresponding elements of the right-hand side

 Idea: scale and add equations so as to transform matrix A in 
an upper triangular matrix:

?
?

?
?
?

x =

equation n-i has i unknowns, with 

?



Gaussian Elimination
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Gaussian Elimination

 The algorithm goes through the matrix from the 
top-left corner to the bottom-right corner

 the ith step eliminates non-zero sub-diagonal 
elements in column i, substracting the ith row 
scaled by aji/aii from row j, for j=i+1,..,n.

i
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values already computed

values yet to be
updated

pivot row i

to
 b

e
 z

e
ro

e
d



Sequential Gaussian 
Elimination

Simple sequential algorithm

// for each column i
// zero it out below the diagonal by adding
// multiples of row i to later rows
for i = 1 to n­1
    // for each row j below row i
    for j = i+1 to n
         // add a multiple of row i to row j
         for k = i to n
               A(j,k) = A(j,k) ­ (A(j,i)/A(i,i)) * A(i,k)

 Several “tricks” that do not change the spirit of the 
algorithm but make implementation easier and/or more 
efficient
 Right-hand side is typically kept in column n+1 of the matrix 

and one speaks of an augmented matrix
 Compute the A(i,j)/A(i,i) term outside of the loop 



Pivoting: Motivation

 A few pathological cases

 Division by small numbers → round-off error in computer 
arithmetic

 Consider the following system
0.0001x1 + x2 = 1.000

x1           + x2 = 2.000

 exact solution:  x1=1.00010  and  x2 = 0.99990

 say we round off after 3 digits after the decimal point
 Multiply the first equation by 104 and subtract it from the second 

equation 
 (1 - 1)x1 + (1 - 104)x2 = 2 - 104

 But, in finite precision with only 3 digits:
 1 - 104   = -0.9999 E+4 ~ -0.999 E+4
 2 - 104 = -0.9998 E+4 ~ -0.999 E+4

 Therefore, x2 = 1 and x1 = 0 (from the first equation)

 Very far from the real solution!

11

10



Partial Pivoting

 One can just swap rows
x1          + x2 = 2.000

0.0001x1 + x2 = 1.000
 Multiple the first equation my 0.0001 and subtract it from the second 

equation gives:
(1 - 0.0001)x2 = 1 - 0.0001
0.9999 x2 = 0.9999  => x2 = 1

and then x1 = 1
 Final solution is closer to the real solution. (Magical?)
 Partial Pivoting

 For numerical stability, one doesn’t go in order, but pick the next row in rows i to 
n that has the largest element in row i

 This row is swapped with row i (along with elements of the right hand side) 
before the subtractions

 the swap is not done in memory but rather one keeps an indirection array
 Total Pivoting

 Look for the greatest element ANYWHERE in the matrix
 Swap columns
 Swap rows

 Numerical stability is really a difficult field



Parallel Gaussian 
Elimination?

 Assume that we have one processor per matrix element

Reduction Broadcast Compute

Broadcasts Compute

to find the max aji

max aji needed to compute
the scaling factor Independent computation

of the scaling factor

Every update needs the
scaling factor and the 
element from the pivot row

Independent
computations



LU Factorization (Section 4.4)
 Gaussian Elimination is simple but

 What if we have to solve many Ax = b systems for different values of b?
 This happens a LOT in real applications

 Another method is the “LU Factorization”
 Ax = b
 Say we could rewrite A = L U, where L is a lower triangular matrix, and U is 

an upper triangular matrix    O(n3)
 Then Ax = b  is written   L U x = b
 Solve L y = b O(n2)   
 Solve U x = y      O(n2) 

?
?
?
?
?
?

x =
?
?
?
?
?
?

x =

equation i has i unknowns equation n-i has i unknowns

triangular system solves are easy



LU Factorization: Principle
 It works just like the Gaussian Elimination, but instead of zeroing 

out elements, one “saves” scaling coefficients.

 Magically,   A = L x U !
 Should be done with pivoting as well
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LU Factorization

 We’re going to look at the simplest possible version
 No pivoting:just creates a bunch of indirections that are easy but make 

the code look complicated without changing the overall principle

stores the scaling factors

k

k

LU­sequential(A,n) {
  for k = 0 to n­2 {
     // preparing column k
     for i = k+1 to n­1 
        aik ← ­aik / akk

     for j = k+1 to n­1
        // Task Tkj: update of column j
        for i=k+1 to n­1 
           aij ← aij + aik * akj

  }
}



LU Factorization

 We’re going to look at the simplest possible version
 No pivoting:just creates a bunch of indirections that are easy 

but make the code look complicated without changing the 
overall principle

LU­sequential(A,n) {
  for k = 0 to n­2 {
     // preparing column k
     for i = k+1 to n­1 
        aik ← ­aik / akk

     for j = k+1 to n­1
        // Task Tkj: update of column j
        for i=k+1 to n­1 
           aij ← aij + aik * akj

  }
}

k

i
j

k

update



Parallel LU on a ring

 Since the algorithm operates by columns from left to right, 
we should distribute columns to processors

 Principle of the algorithm
 At each step, the processor that owns column k does the 

“prepare” task and then broadcasts the bottom part of column 
k to all others

 Annoying if the matrix is stored in row-major fashion
 Remember that one is free to store the matrix in anyway one 

wants, as long as it’s coherent and that the right output is 
generated 

 After the broadcast, the other processors can then update 
their data.

 Assume there is a function alloc(k) that returns the rank of 
the processor that owns column k
 Basically so that we don’t clutter our program with too many 

global-to-local index translations
 In fact, we will first write everything in terms of global 

indices, as to avoid all annoying index arithmetic



LU-broadcast algorithm

LU­broadcast(A,n) {
  q ← MY_NUM()
  p ← NUM_PROCS()
  for k = 0 to n­2 {
    if (alloc(k) == q)
       // preparing column k
       for i = k+1 to n­1   
          buffer[i­k­1] ← aik ← ­aik / akk

    broadcast(alloc(k),buffer,n­k­1)
    for j = k+1 to n­1
      if (alloc(j) == q)
         // update of column j
         for i=k+1 to n­1 
            aij ← aij + buffer[i­k­1] * akj

  }
}



Dealing with local indices

 Assume that p divides n
 Each processor needs to store r=n/p columns and 

its local indices go from 0 to r-1
 After step k, only columns with indices greater 

than k will be used
 Simple idea: use a local index, l, that everyone 

initializes to 0
 At step k, processor alloc(k) increases its local 

index so that next time it will point to its next 
local column



LU-broadcast algorithm

...
  double a[n­1][r­1];

  q ← MY_NUM()
  p ← NUM_PROCS()
  l ← 0
  for k = 0 to n­2 {
    if (alloc(k) == q)
        for i = k+1 to n­1    
          buffer[i­k­1] ← a[i,k] ← ­a[i,l] / a[k,l]
        l ← l+1
    broadcast(alloc(k),buffer,n­k­1)
    for j = l to r­1
        for i=k+1 to n­1
          a[i,j] ← a[i,j] + buffer[i­k­1] * a[k,j]
  }
}



What about the Alloc 
function?

 One thing we have left completely unspecified is 
how to write the alloc function: how are columns 
distributed among processors

 There are two complications:
 The amount of data to process varies throughout the 

algorithm’s execution
 At step k, columns k+1 to n-1 are updated
 Fewer and fewer columns to update

 The amount of computation varies among columns
 e.g., column n-1 is updated more often than column 2
 Holding columns on the right of the matrix leads to much 

more work
 There is a strong need for load balancing

 All processes should do the same amount of work



Bad load balancing
P1 P2 P3 P4

already
done

already
done working 

on it



Good Load Balancing?

working 
on it

already
done

already
done

Cyclic distribution



Proof that load balancing is 
good

 The computation consists of two types of operations
 column preparations
 matrix element updates

 There are many more updates than preparations, so we really 
care about good balancing of the preparations

 Consider column j
 Let’s count the number of updates performed by the processor 

holding column j
 Column j is updated at steps k=0, ..., j-1
 At step k, elements i=k+1, ..., n-1 are updates

 indices start at 0
 Therefore, at step k, the update of column j entails n-k-1 updates
 The total number of updates for column j in the execution is: 



Proof that load balancing is 
good

 Consider processor Pi, which holds columns lp+i for l=0, ... , n/p -1
 Processor Pi needs to perform this many updates:

 Turns out this can be computed
 separate terms
 use formulas for sums of integers and sums of squares

 What it all boils down to is:

 This does not depend on i !!
 Therefore it is (asymptotically) the same for all Pi processors
 Therefore we have (asymptotically) perfect load balancing!



Load-balanced program

...
  double a[n­1][r­1];

  q ← MY_NUM()
  p ← NUM_PROCS()
  l ← 0
  for k = 0 to n­2 {
    if (k mod p == q)
        for i = k+1 to n­1    
          buffer[i­k­1] ← a[i,k] ← ­a[i,l] / a[k,l]
        l ← l+1
    broadcast(alloc(k),buffer,n­k­1)
    for j = l to r­1
        for i=k+1 to n­1
          a[i,j] ← a[i,j] + buffer[i­k­1] * a[k,j]
  }
}



Performance Analysis

 How long does this code take to run?
 This is not an easy question because there are 

many tasks and many communications
 A little bit of analysis shows that the execution 

time is the sum of three terms
 n-1 communications: n L + (n2/2) b + O(1)
 n-1 column preparations: (n2/2) w’ + O(1)
 column updates: (n3/3p) w + O(n2)

 Therefore, the execution time is ~ (n3/3p) w
 Note that the sequential time is: (n3 /3) w
 Therefore, we have perfect asymptotic efficiency!
 This is good, but isn’t always the best in practice
 How can we improve this algorithm?



Pipelining on the Ring

 So far, the algorithm we’ve used a simple 
broadcast

 Nothing was specific to being on a ring of 
processors and it’s portable 
 in fact you could just write raw MPI that just looks like 

our pseudo-code and have a very limited, inefficient for 
small n, LU factorization that works only for some 
number of processors

 But it’s not efficient
 The n-1 communication steps are not overlapped with 

computations
 Therefore Amdahl’s law, etc.

 Turns out that on a ring, with a cyclic distribution 
of the columns, one can interleave pieces of the 
broadcast with the computation
 It almost looks like inserting the source code from the 

broadcast code we saw at the very beginning 
throughout the LU code



Previous program

...
  double a[n­1][r­1];

  q ← MY_NUM()
  p ← NUM_PROCS()
  l ← 0
  for k = 0 to n­2 {
    if (k == q  mod p)
        for i = k+1 to n­1    
          buffer[i­k­1] ← a[i,k] ← ­a[i,l] / a[k,l]
        l ← l+1
    broadcast(alloc(k),buffer,n­k­1)
    for j = l to r­1
        for i=k+1 to n­1
          a[i,j] ← a[i,j] + buffer[i­k­1] * a[k,j]
  }
}



LU-pipeline algorithm
  double a[n­1][r­1];

  q ← MY_NUM()
  p ← NUM_PROCS()
  l ← 0
  for k = 0 to n­2 {
    if (k == q mod p) 
       for i = k+1 to n­1    
          buffer[i­k­1] ← a[i,k] ← ­a[i,l] / a[k,l]
       l ← l+1
       send(buffer,n­k­1)
    else
       recv(buffer,n­k­1)
       if (q ≠ k­1 mod p) send(buffer, n­k­1)
    for j = l to r­1
       for i=k+1 to n­1
          a[i,j] ← a[i,j] + buffer[i­k­1] * a[k,j]
  }
}



Why is it better?

 During a broadcast the root’s successor just sits 
idle while the message goes along the ring

 This is because of the way we have implemented 
broadcast, partially
 With a better broadcast on a general topology the wait 

may be smaller
 But there is still a wait

 What we have done is allow each processor to 
move on to other business after receiving and 
forwarding the message

 Possible by writing the code with just sends and 
receive
 More complicated, more efficient: usual trade-off

 Let’s look at a (idealized) time-line
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First four
stages
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occurs in parallel 
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A processor sends out
data as soon as it 
receives it



Can we do better?
 In the previous algorithm, a processor does all its updates before 

doing a Prep() computation that then leads to a communication
 But in fact, some of these updates can be done later
 Idea: Send out pivot as soon as possible
 Example:

 In the previous algorithm
 P1: Receive(0), Send(0)
 P1: Update(0,1), Update(0,5), Update(0,9), Update(0,13)
 P1: Prep(1)
 P1: Send(1)
 ...

 In the new algorithm  (see page 130)
 P1: Receive(0), Send(0)
 P1: Update(0,1)
 P1: Prep(1)
 P1: Send(1)
 P1: Update(0,5), Update(0,9), Update(0,13)
 ...
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First four
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Many communications
occur in parallel 
with computation

A processor sends out
data as soon as it 
receives it



Further improving 
performance

 One can use local overlap of communication and 
computation
 multi-threading, good MPI non-blocking implementation, 

etc.
 There is much more to be said about parallel LU 

factorization
 Many research articles
 Many libraries available

 It’s a good example of an application for which 
one can think hard about operation orderings and 
try to find improved sequences
 The basic principle is always the same: sends things as 

early as possible



Another Stencil Application

 Let us consider a simple stencil:
 Cnew = Update(Cold,Wold,Eold,Nold,Sold)

 To implement this stencil (in sequential or in parallel), one 
need to keep two arrays around:
 The original one: A
 The new one: B

 To run multiple iterations on can just swap these pointers
 The simples way to partition the domain among processors 

on the ring is to give a block of r = n/p consecutive rows to 
each processor

 Declaration:   var A,B: array[0..r-1, 0..n-1] of real;
 Each processor can update rows 1..r-2 easily, but for its top 

row and its bottom row, it needs to receive elements from 
its neighbors

 For simplicity we assume that P0 and Pp-1 exchange rows
 We have a “wrap-around domain”



Another Stencil Application

P0

P1

P2

P3



Communication Pattern

 To “swap” rows with a neighbor is a bit 
complicated

 Sending to a Successor is easy
 Sending to a predecessor requires p-1 hops

 The structure of the algorithm is:
1. send/recv border rows || compute green cells
2. compute red cells 

 We assume that each processor declares 
two “buffer” arrays

var fromPred, fromSucc: array[0..n-1] of real
 Let us write the communication part

 See full algorithm on page 132



Communication Pattern

 Each processor does:

tempS = &(A[0,0])
for k = 1 to p-2:

Send(tempS, n) || Recv(tempR, n)
swap(tempS, tempR)

endfor
Send(tempS, n) || Recv(fromSucc, n)
Send(&(A[r-1,0]), n) || Recv(fromPred,n)

 At this point, every processor has the fromPred 
and fromSucc arrays filled with the needed cell 
values



Performance Analysis

 The communication phase consists in a sequence 
of p concurrent sends and receives of a row of n 
cells
 It takes time pL + pnb

 It occurs concurrently with a computation phase 
that computes r-2 rows
 It takes time (r-2)nw = (n/p - 2)nw

 Then, we have a computation phase that 
computes 2 rows:
 It takes time 2nw

 The overall execution time is:
T(n,p) = max{pL + pnb, (n/p - 2)nw} + 2nw

 When n becomes large: T(n,p) ~ n2w/p
 Therefore we have perfect asymptotic efficiency



Another virtual topology?

 The previous code is asymptotical optimal, so 
we’re essentially done
 There is not really way to reduce communication 

overhead when n isn’t very large
 But the communication phase is a bit 

cumbersome
 How about using a bidirectional ring? 
 Again, we can choose whatever we want really

 As long as the physical platform “supports” it
 With a bidirectional ring, the comunication phase 

is written as:
Send(pred, &(A[0,0],n) || Recv(succ, fromSucc,n)
Send(succ, &(A[r-1,0], n) || Recv(pred, fromPred, 
n)

 Much simpler, much more readable



Conclusion

 We can do a lot of things with a ring
 We saw our first example that a 

modification to the virtual topology can 
make the code much simpler (albeit in a 
trivial case)

 Next, we’ll look at a 2-D grid 
topology, which induces 2-D data 
distributions
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