
Principles of High Performance Computing (ICS 632)

> Algorithms on a Grid of Processors (II)

2-D Matrix Distribution

We denote by a_{i,j} an element of the matrix
 We denote by A_{i,j} (or A_{ij}) the block of the matrix allocated to P_{i,i}

C ₀₀	C ₀₁	C ₀₂	C ₀₃
C ₁₀	C ₁₁	C ₁₂	C ₁₃
C ₂₀	C ₂₁	C ₂₂	C ₂₃
C ₃₀	C ₃₁	C ₃₂	C ₃₃

A ₀₀	A ₀₁	A ₀₂	A ₀₃
A ₁₀	A_{11}	A_{12}	A ₁₃
A ₂₀	A_{21}	A ₂₂	A ₂₃
A ₃₀	A ₃₁	A ₃₂	A ₃₃

B ₀₀	B ₀₁	B ₀₂	B ₀₃
B_{10}	B_{11}	B ₁₂	B ₁₃
B ₂₀	B ₂₁	B ₂₂	B ₂₃
B ₃₀	B ₃₁	B ₃₂	B ₃₃

The Cannon Algorithm

This is a very old algorithm

- From the time of systolic arrays
- Adapted to a 2-D grid
- The algorithm starts with a redistribution of matrices A and B
 - Called "preskewing"
- Then the matrices are multiplied
- Then the matrices are reredistributed to match the initial distribution
 - Called "postskewing"

Cannon's Preskewing

 Matrix A: each block row of matrix A is shifted so that each processor in the first processor column holds a diagonal block of the matrix

A ₀₀	A ₀₁	A ₀₂	A ₀₃
A ₁₀	A ₁₁	A_{12}	A ₁₃
A ₂₀	A ₂₁	A ₂₂	A ₂₃
A ₃₀	A ₃₁	A ₃₂	A ₃₃

A ₀₀	A ₀₁	A ₀₂	A ₀₃
A ₁₁	A_{12}	A ₁₃	A_{14}
A ₂₂	A ₂₃	A ₂₀	A ₂₁
A ₃₃	A ₃₀	A ₃₁	A ₃₂

Cannon's Preskewing

 Matrix B: each block column of matrix B is shifted so that each processor in the first processor row holds a diagonal block of the matrix

B ₀₀	B ₀₁	B ₀₂	B ₀₃
B ₁₀	B ₁₁	B ₁₂	B ₁₃
B ₂₀	B ₂₁	B ₂₂	B ₂₃
B ₃₀	B ₃₁	B ₃₂	B ₃₃

B ₀₀	B ₁₁	B ₂₂	B ₃₃
B ₁₀	B ₂₁	B ₃₂	B ₀₃
B ₂₀	B ₃₁	B ₀₂	B ₁₃
B ₃₀	B ₀₁	B ₁₂	B ₂₃

Cannon's Computation

- The algorithm proceeds in q steps
- At each step each processor performs the multiplication of its block of A and B and adds the result to its block of C
- Then blocks of A are shifted to the left and blocks of B are shifted upward
 - Blocks of C never move
- Let's see it on a picture

Cannon's Steps

C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₀	B ₁₁	B ₂₂	B ₃₃	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A ₁₁	A ₁₂	A ₁₃	A ₁₀	B_{10}	B ₂₁	B ₃₂	B ₀₃	local
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₂	A ₂₃	A ₂₀	A ₂₁	B ₂₀	B ₃₁	B ₀₂	B ₁₃	computation on proc (0,0)
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₃	A ₃₀	A ₃₁	A ₃₂	B ₃₀	B ₀₁	B ₁₂	B ₂₃	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₁	A ₀₂	A ₀₃	A ₀₀	B ₁₀	B ₂₁	B ₃₂	B ₀₃	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A ₁₂	A ₁₃			B ₂₀		B ₀₂		Shifts
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₃	A ₂₀	A .	A ₂₂	B ₃₀	B ₀₁	B ₁₂	B ₂₃	
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₀₀	B ₁₁	B ₂₂	B ₃₃	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₁	A ₀₂	A ₀₃	A ₀₀	B ₁₀	B ₂₁	B ₃₂	B ₀₃	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A ₁₂	A ₁₃	A ₁₀	A ₁₁	B ₂₀	B ₃₁	B ₀₂	B ₁₃	local
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₃	A ₂₀	A ₂₁	A ₂₂	B ₃₀	B ₀₁	B ₁₂	B ₂₃	computation on proc (0,0)
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₀₀	B ₁₁	B ₂₂	B ₃₃	

The Algorithm

Participate in preskewing of A Partitipate in preskweing of B For k = 1 to qLocal $C = C + A^*B$ Vertical shift of B Horizontal shift of A Participate in postskewing of A Partitipate in postskewing of B

Performance Analysis

- Let's do a simple performance analysis with a 4-port model
 - The 1-port model is typically more complicated

Symbols

- n: size of the matrix
- qxq: size of the processor grid
- m = n / q
- L: communication start-up cost
- w: time to do a basic computation (+= . * .)
- b: time to communicate a matrix element
- T(m,q) = Tpreskew + Tcompute + Tpostskew

Pre/Post-skewing times

- Let's consider the horizontal shift
- Each row must be shifted so that the diagonal block ends up on the first column
- On a mono-directional ring:
 - The last row needs to be shifted (q-1) times
 - All rows can be shifted in parallel
 - Total time needed: (q-1) (L + m² b)
- On a bi-directional ring, a row can be shifted left or right, depending on which way is shortest!
 - A row is shifted at most floor(q/2) times
 - All rows can be shifted in parallel
 - Total time needed: floor(q/2) (L + m² b)
- Because of the 4-port assumption, preskewing of A and B can occur in parallel (horizontal and vertical shifts do not interfere)
- Therefore: Tpreskew = Tpostskew = floor(q/2) (L+m²b)

Time for each step

- At each step, each processor computes an mxm matrix multiplication
 - Compute time: m³ w
- At each step, each processor sends/receives a mxm block in its processor row and its processor column
 - Both can occur simultaneously with a 4-port model
 - Takes time L+ m²b
- Therefore, the total time for the q steps is: Tcompute = q max (L + m²b, m³w)

Cannon Performance Model

- T(m,n) = 2* floor(q/2) (L + m²b) + q max(m³w, L + m²b)
- This performance model is easily adapted
 - If one assumes mono-directional links, then the "floor(q/2)" above becomes "(q-1)"
 - If one assumes 1-port, there is a factor 2 added in front of communication terms
 - If one assumes no overlap of communication and computation at a

The Fox Algorithm

- This algorithm was originally developed to run on a hypercube topology
 - But in fact it uses a grid, embedded in the hypercube
- This algorithm requires no pre- or postskewing
- It relies on horizontal broadcasts of the diagonals of matrix A and on vertical shifts of matrix B
- Sometimes called the "multiply-broadcastroll" algorithm
- Let's see it on a picture
 - Although it's a bit awkward to draw because of

C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₀	B ₀₁	B ₀₂	B ₀₃	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A ₁₀	A ₁₁	A ₁₂	A ₁₃	B ₁₀	B ₁₁	B ₁₂	B ₁₃	initial
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₂₂	A ₂₃	B ₂₀	B ₂₁	B ₂₂	B ₂₃	state
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₃₀	B ₃₁	B ₃₂	B ₃₃	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₀	A ₀₀	A ₀₀	B ₀₀	B ₀₁	B ₀₂	B ₀₃	Broadcast of
C ₁₀		C ₁₂	C ₁₃	A ₁₁			A ₁₁	B_{10}	B ₁₁	B ₁₂	B ₁₃	A's 1st diag. (stored in a
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₂	A ₂₂			B ₂₀	B ₂₁	B ₂₂	B ₂₃	Separate
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₃	A ₃₃	A ₃₃	A ₃₃	B ₃₀	B ₃₁	B ₃₂	B ₃₃	buffer)
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₀	A ₀₀	A ₀₀	B ₀₀	B ₀₁	B ₀₂	B ₀₃	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A ₁₁	A ₁₁	A ₁₁	A ₁₁	B_{10}	B ₁₁	B ₁₂	B ₁₃	Local
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₂	A ₂₂	A ₂₂	A ₂₂	B ₂₀	B ₂₁	B ₂₂	B ₂₃	computation
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₃	A ₃₃	A ₃₃	A ₃₃	B ₃₀	B ₃₁	B ₃₂	B ₃₃	

C ₀₀ C ₁₀	C ₀₁ C ₁₁	C ₀₂ C ₁₂	C ₀₃ C ₁₃	A ₀₀ A ₁₀	A ₀₁ A ₁₁	A ₀₂ A ₁₂		B ₁₀ B ₂₀		B ₁₂ B ₂₂	B ₁₃ B ₂₃	Shift of B
C ₂₀ C ₃₀	C ₂₁ C ₃₁	C ₂₂ C ₃₂	C ₂₃ C ₃₃			A ₂₂		B ₃₀ B ₀₀	B ₃₁ B ₀₁	B ₃₂ B ₀₂	B ₃₃ B ₀₃	
	C ₁₁ C ₂₁	C ₁₂ C ₂₂	C ₁₃ C ₂₃	A ₁₂ A ₂₃	A ₁₂ A ₂₃	A ₁₂ A ₂₃	A ₁₂ A ₂₃	B ₁₀ B ₂₀ B ₃₀	B ₁₁ B ₂₁ B ₃₁	B ₁₂ B ₂₂ B ₃₂	B ₁₃ B ₂₃ B ₃₃	Broadcast of A's 2nd diag. (stored in a Separate buffer)
C ₀₀ C ₁₀	C ₀₁ C ₁₁ C ₂₁	C ₁₂ C ₂₂	C ₁₃ C ₂₃	A_{30} A_{01} A_{12} A_{23} A_{30}	A_{30} A_{01} A_{12} A_{23} A_{30}			B_{00} B_{10} B_{20} B_{30} B_{00}	B_{01} B_{11} B_{21} B_{31} B_{01}	B_{02} B_{12} B_{22} B_{32} B_{02}	B ₀₃ B ₁₃ B ₂₃ B ₃₃ B ₀₃	Local computation

// No initial data movement
for k = 1 to q in parallel
Broadcast A's kth diagonal
Local C = C + A*B
Vertical shift of B
// No final data movement

- Again note that there is an additional array to store incoming diagonal block
- This is the array we use in the A*B multiplication

Performance Analysis

- You'll have to do it in a homework assignment
 - Write pseudo-code of the algorithm in more details
 - Write the performance analysis

Snyder's Algorithm (1992)

- More complex than Cannon's or Fox's
- First transposes matrix B
- Uses reduction operations (sums) on the rows of matrix C
- Shifts matrix B

C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₀	B ₀₁	B ₀₂	B ₀₃	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A ₁₀	A ₁₁	A ₁₂	A ₁₃	B ₁₀	B ₁₁	B ₁₂	B ₁₃	initial
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₂₂	A ₂₃	B ₂₀	B ₂₁	B ₂₂	B ₂₃	state
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₃₀	B ₃₁	B ₃₂	B ₃₃	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₀	B ₁₀	B ₂₀	B ₃₀	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A ₁₀	A ₁₁	A ₁₂	A ₁₃	B ₀₁	B ₁₁	B ₂₁	B ₃₁	Transnoso P
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₂₂	A ₂₃	B ₀₂	B ₁₂	B ₂₂	B ₃₂	Transpose B
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₀₃	B ₁₃	B ₂₃	B ₃₃	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₀	B ₁₀	B ₂₀	B ₃₀	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A ₁₀	A ₁₁	A ₁₂	A ₁₃	B ₀₁	B ₁₁	B ₂₁	B ₃₁	Local
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₂₂	A ₂₃	B ₀₂	B ₁₂	B ₂₂	B ₃₂	computation
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₀₃	B ₁₃	B ₂₃	B ₃₃	

C ₀₀	C ₀₁	C ₀₂	C ₀₃	A_{00}	A ₀₁	A ₀₂	A ₀₃	B ₀₁	B ₁₁	B ₂₁	B ₃₁	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A ₁₀	A ₁₁	A ₁₂	A ₁₃	B ₀₂	B ₁₂	B ₂₂	B ₃₂	Shift B
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₂₂	A ₂₃	B ₀₃	B ₁₃		B ₃₂	
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₀₀		B ₂₀	B ₃₀	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₁	B ₁₁	B ₂₁	B ₃₁	
C ₁₀	C ₁₁	C ₁₂	C ₁₃		A ₁₁	A ₁₂	A ₁₃	B ₀₂	B ₁₂	B ₂₂	B ₃₂	Global sum
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₂₂	A ₂₃	B ₀₃	B ₁₃	B ₂₃	B ₃₂	on the rows
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₀₀	B ₁₀	B ₂₀	B ₃₀	of C
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₁	B ₁₁	B ₂₁	B ₃₁	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A ₁₀	A ₁₁	A ₁₂	A ₁₃	B ₀₂	B ₁₂	B ₂₂	B ₃₂	Local
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₂₂	A ₂₃	B ₀₃	B ₁₃	B ₂₃	B ₃₂	computation
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₀₀	B ₁₀	B ₂₀	B ₃₀	

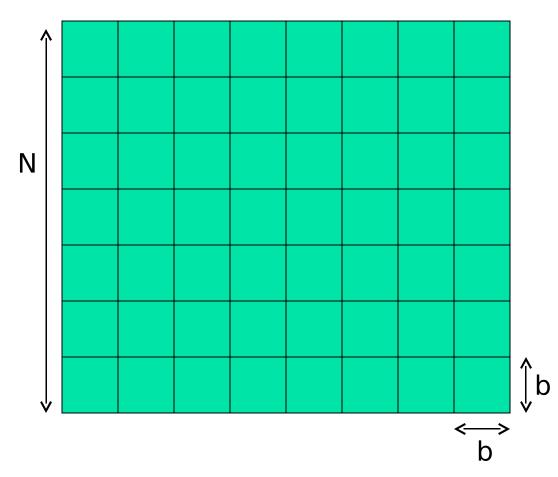
$ \begin{bmatrix} C_{00} \\ C_{10} \\ C_{20} \\ C_{30} \end{bmatrix} $	C ₀₁ C ₁₁ C ₂₁ C ₃₁	C ₀₂ C ₁₂ C ₂₂ C ₃₂		A_{00} A_{10} A_{20} A_{30}	A ₀₁ A ₁₁ A ₂₁ A ₃₁	A ₁₂	A ₀₃ A ₁₃ A ₂₃ A ₃₃	B ₀₀		B ₂₃ B ₂₀	B ₃₂ B ₃₃ B ₃₀ B ₃₁	Shift B
C ₀₀ C ₁₀ C ₂₀ C ₃₀	C ₂₁	C ₁₂ C ₂₂	C ₁₃ C ₂₃		A ₁₁ A ₂₁	A ₁₂ A ₂₂	A ₁₃ A ₂₃	B ₀₂ B ₀₃ B ₀₀ B ₀₁	B ₁₂ B ₁₃ B ₁₀ B ₁₁	B ₂₂ B ₂₃ B ₂₀ B ₂₁	B ₃₂ B ₃₃ B ₃₀ B ₃₁	Global sum on the rows of C
C ₀₀ C ₁₀ C ₂₀ C ₃₀		C ₂₂	C ₁₃ C ₂₃		A ₂₁	A ₁₂ A ₂₂	A ₁₃	B ₀₂ B ₀₃ B ₀₀ B ₀₁	B ₁₂ B ₁₃ B ₁₀ B ₁₁	B ₂₂ B ₂₃ B ₂₀ B ₂₁	B ₃₂ B ₃₃ B ₃₀ B ₃₁	Local computation

The Algorithm

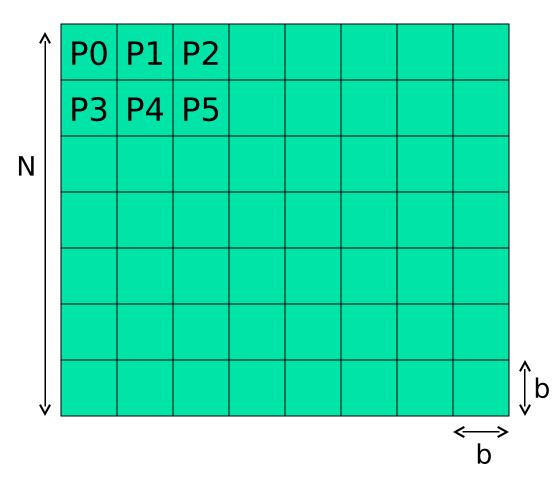
- var A,B,C: array[0..m-1][0..m-1] of real var bufferC: array[0..m-1][0..m-1] of real Transpose B MatrixMultiplyAdd(bufferC, A, B, m) Vertical shifts of B For k = 1 to q-1Global sum of bufferC on proc rows into $C_{i,(i+k-1)\%\alpha}$ MatrixMultiplyAdd(bufferC, A, B, m) Vertical shift of B Global sum of bufferC on proc rows into $C_{i,(i+k-1)\%q}$
- Transpose B

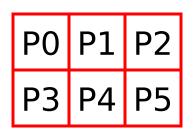
Performance Analysis

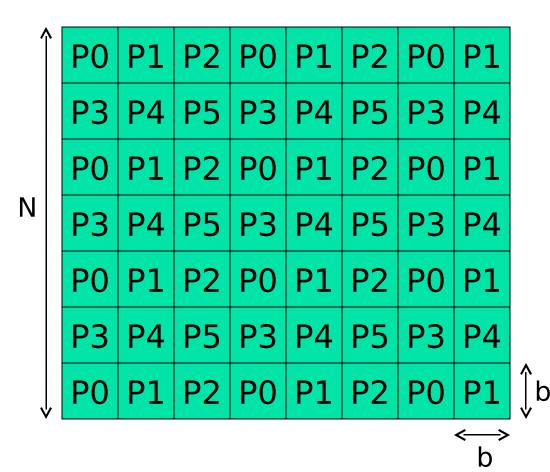
- The performance analysis isn't fundamentally different than what we've done so far
- But it's a bit cumbersome
- See the textbook
 - in particular the description of the matrix transposition (see also Exercise 5.1)

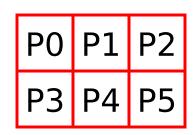

Which Data Distribution?

- So far we've seen:
 - Block Distributions
 - 1-D Distributions
 - 2-D Distributions
 - Cyclic Distributions
- One may wonder what a good choice is for a data distribution?
- Many people argue that a good "Swiss Army knife" is the "2-D block cyclic distribution


- Goal: try to have all the advantages of both the horizontal and the vertical 1-D block cyclic distribution
 - Works whichever way the computation "progresses"
 - Ieft-to-right, top-to-bottom, wavefront, etc.
- Consider a number of processors p = r * c


arranged in a rxc matrix


- Consider a 2-D matrix of size NxN
- Consider a block size b (which divides N)



P0 P1 P2 P3 P4 P5

- Slight load imbalance
 - Becomes negligible with many blocks
- Index computations had better be implemented in separate functions
- Also: functions that tell a process who its neighbors are
- Overall, requires a whole infrastructure, but many think you can't go wrong with this distribution

Conclusion

- All the algorithms we have seen in the semester can be implemented on a 2-D block cyclic distribution
- The code ends up much more complicated
- But one may expect several benefits "for free"
- The ScaLAPAK library recommends to use the 2-D block cyclic distribution
 - Although its routines support all other distributions