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2-D Matrix Distribution

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

P0,2

P1,2

P2,2

P2,0 P2,1 P2,2 P2,2

 We denote by ai,j an 

element of the matrix
 We denote by Ai,j  (or Aij) 

the block of the matrix 
allocated to Pi,j



The Cannon Algorithm

 This is a very old algorithm
 From the time of systolic arrays
 Adapted to a 2-D grid

 The algorithm starts with a 
redistribution of matrices A and B
 Called “preskewing”

 Then the matrices are multiplied
 Then the matrices are re-

redistributed to match the initial 
distribution
 Called “postskewing”



Cannon’s Preskewing

 Matrix A: each block row of matrix A is 
shifted so that each processor in the first 
processor column holds a diagonal block 
of the matrix

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A32A31A30A33

A21A20A23A22

A14A13A12A11

A03A02A01A00



Cannon’s Preskewing

 Matrix B: each block column of matrix B is 
shifted so that each processor in the first 
processor row holds a diagonal block of 
the matrix

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

B33B22B11B00



Cannon’s Computation

 The algorithm proceeds in q steps
 At each step each processor 

performs the multiplication of its 
block of A and B and adds the result 
to its block of C

 Then blocks of A are shifted to the 
left and blocks of B are shifted 
upward
 Blocks of C never move

 Let’s see it on a picture



Cannon’s Steps

A32A31A30A33

A21A20A23A22

A10A13A12A11

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B23B12B01B30

B13B02B31B20

B03B32B21B10

B33B22B11B00

local 
computation
on proc (0,0)

A33A32A31A30

A22A21A20A23

A11A10A13A12

A00A03A02A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B22B11B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

Shifts

A33A32A31A30

A22A21A20A23

A11A10A13A12

A00A03A02A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B22B11B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

local 
computation
on proc (0,0)



The Algorithm

Participate in preskewing of A
Partitipate in preskweing of B
For k = 1 to q
   Local C = C + A*B
   Vertical shift of B
   Horizontal shift of A
Participate in postskewing of A
Partitipate in postskewing of B



Performance Analysis

 Let’s do a simple performance analysis 
with a 4-port model
 The 1-port model is typically more complicated

 Symbols
 n: size of the matrix
 qxq: size of the processor grid
 m = n / q
 L: communication start-up cost
 w: time to do a basic computation (+= . * .) 
 b: time to communicate a matrix element

 T(m,q) = Tpreskew + Tcompute + 
Tpostskew



Pre/Post-skewing times

 Let’s consider the horizontal shift
 Each row must be shifted so that the diagonal block ends 

up on the first column
 On a mono-directional ring: 

 The last row needs to be shifted (q-1) times
 All rows can be shifted in parallel
 Total time needed: (q-1) (L + m2 b) 

 On a bi-directional ring, a row can be shifted left or right, 
depending on which way is shortest!
 A row is shifted at most floor(q/2) times
 All rows can be shifted in parallel
 Total time needed: floor(q/2) (L + m2 b)

 Because of the 4-port assumption, preskewing of A and B 
can occur in parallel (horizontal and vertical shifts do not 
interfere)

 Therefore: Tpreskew = Tpostskew = floor(q/2) (L+m2b)



Time for each step

 At each step, each processor computes an 
mxm matrix multiplication
 Compute time: m3 w

 At each step, each processor 
sends/receives a mxm block in its 
processor row and its processor column
 Both can occur simultaneously with a 4-port 

model
 Takes time  L+ m2b

 Therefore, the total time for the q steps is: 
Tcompute = q  max (L + m2b, m3w)



Cannon Performance Model

 T(m,n) =2* floor(q/2) (L + m2b) + 
         q max(m3w, L + m2b)

 This performance model is easily 
adapted
 If one assumes mono-directional links, 

then the “floor(q/2)” above becomes 
“(q-1)”

 If one assumes 1-port, there is a factor 2 
added in front of communication terms

 If one assumes no overlap of 
communication and computation at a 
processor, the “max” above becomes a 
sum



The Fox Algorithm

 This algorithm was originally developed to 
run on a hypercube topology
 But in fact it uses a grid, embedded in the 

hypercube
 This algorithm requires no pre- or post-

skewing
 It relies on horizontal broadcasts of the 

diagonals of matrix A and on vertical shifts 
of matrix B

 Sometimes called the “multiply-broadcast-
roll” algorithm

 Let’s see it on a picture
 Although it’s a bit awkward to draw because of 

the broadcasts



Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

initial
state

A33A33A33A33

A22A22A22A22

A11A11A11A11

A00A00A00A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00
Broadcast of 
A’s 1st diag.
(stored in a
Separate
 buffer)

Local
computation

A33A33A33A33

A22A22A22A22

A11A11A11A11

A00A00A00A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00



Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

Shift of B

A30A30A30A30

A23A23A23A23

A12A12A12A12

A01A01A01A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

Local
computation

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

A30A30A30A30

A23A23A23A23

A12A12A12A12

A01A01A01A01

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

Broadcast of 
A’s 2nd diag.
(stored in a
Separate
 buffer)



Fox’s Algorithm

// No initial data movement
for k = 1 to q  in parallel
  Broadcast A’s kth diagonal
  Local C = C + A*B
  Vertical shift of B
// No final data movement

 Again note that there is an additional array to 
store incoming diagonal block

 This is the array we use in the A*B multiplication



Performance Analysis

 You’ll have to do it in a homework 
assignment
 Write pseudo-code of the algorithm in 

more details
 Write the performance analysis



Snyder’s Algorithm (1992)

 More complex than Cannon’s or 

Fox’s 

 First transposes matrix B

 Uses reduction operations (sums) on 

the rows of matrix C

 Shifts matrix B



Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

initial
state

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

Transpose B

Local
computation

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B23B13B03

B32B22B12B02

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

B31B21B11B01

B30B20B10B00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00



Execution Steps...

Shift B

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

Global 
sum
on the rows
of C

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Local
computation



Execution Steps...

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Shift B

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02
Global 
sum
on the rows
of C

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

Local
computation



The Algorithm

var A,B,C: array[0..m-1][0..m-1] of real
var bufferC: array[0..m-1][0..m-1] of real
Transpose B
MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shifts of B
For k = 1 to q-1

Global sum of bufferC on proc rows into Ci,(i+k-1)%q

MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shift of B

Global sum of bufferC on proc rows into Ci,(i+k-1)%q

Transpose B



Performance Analysis

 The performance analysis isn’t 
fundamentally different than what 
we’ve done so far

 But it’s a bit cumbersome
 See the textbook

 in particular the description of the 
matrix transposition (see also Exercise 
5.1)



Which Data Distribution?

 So far we’ve seen:
 Block Distributions
 1-D Distributions
 2-D Distributions
 Cyclic Distributions

 One may wonder what a good choice 
is for a data distribution?

 Many people argue that a good 
“Swiss Army knife” is the “2-D block 
cyclic distribution



The 2-D block cyclic 
distribution

 Goal: try to have all the advantages 
of both the horizontal and the 
vertical 1-D block cyclic distribution
 Works whichever way the computation 

“progresses”
 left-to-right, top-to-bottom, wavefront, etc.

 Consider a number of processors p = 
r * c
 arranged in a rxc matrix

 Consider a 2-D matrix of size NxN
 Consider a block size b (which 

divides N)



The 2-D block cyclic 
distribution

b

b

N

P0 P1 P2

P5P4P3



The 2-D block cyclic 
distribution

P2

P5

P1

P4

P0

P3

b

b

N

P0 P1 P2

P5P4P3



The 2-D block cyclic 
distribution

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

b

b

N

P0 P1 P2

P5P4P3

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

P2 P0 P1 P2 P0 P1P1P0

 Slight load imbalance
 Becomes negligible with 

many blocks
 Index computations had 

better be implemented in 
separate functions

 Also: functions that tell a 
process who its neighbors 
are

 Overall, requires a whole 
infrastructure, but many 
think you can’t go wrong 
with this distribution



Conclusion

 All the algorithms we have seen in the 
semester can be implemented on a 2-D 
block cyclic distribution

 The code ends up much more complicated
 But one may expect several benefits “for 

free”
 The ScaLAPAK library recommends to use 

the 2-D block cyclic distribution
 Although its routines support all other 

distributions
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