
6/3/2006UT Austin Robert Blumofe 1

Scheduling Multithreaded
Computations by Work Stealing

Robert D. Blumofe
The University of Texas at Austin

Work done in collaboration with
Nimar Arora, Charles Leiserson, and Greg Plaxton

Copyright © 1998, Robert Blumofe September 10, 1998
6/3/2006UT Austin Robert Blumofe 2

Threads and Processes

thread
scheduler

kernel

thread
scheduler

threads

processes

processors

Each computation has a
(user-level) thread
scheduler that maps its
threads to its processes.

The kernel maps
all processes to all
processors.

A program partitions the work into (user-level) threads to expose
all of the parallelism. A computation may create millions of
threads. Threads are dynamically scheduled through two levels.

6/3/2006UT Austin Robert Blumofe 3

Example: Cilk
Cilk programs spawn threads to express parallelism.

cilk int fib (int n) {
int x, y;
if (n < 2)
return n;

x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return x+y;

}

6/3/2006UT Austin Robert Blumofe 4

Work Stealing
Each process maintains a “pool”
of ready threads organized as a
deque (double-ended queue)
with a top and a bottom.
A process obtains work by
popping the bottom-most
thread from its deque and
executing that thread.
• If the thread blocks or terminates, then the process pops

another thread.
• If the thread creates or enables another thread, then the

process pushes one thread on the bottom of its deque and
continues executing the other.

If a process finds that its deque is empty, then it becomes a
thief and steals the top-most thread from the deque of a
randomly chosen victim process.

6/3/2006UT Austin Robert Blumofe 5

Our Results

• T1 is the work, the execution time with 1 processor.

• T ! is the critical-path length, the theoretical minimum
execution time with infinitely many processors.

• This bound is optimal to within a constant factor.

• For any " #$0, we have T % O(T1&P ’ T ! ’ $lg(1& ")) with
probability at least 1 (" .

E[T] % O(T1&P ’ T !).

We show that for the case of a dedicated machine with P
processes executing on P processors, the execution time T of the
work-stealing algorithm satisfies the following bound.

(Blumofe & Leiserson, FOCS 1994)

6/3/2006UT Austin Robert Blumofe 6

Outline

• The dag model

• The model

• Simple bounds

• Dag scheduling

• Structural Lemma

• Time analysis

• Conclusion

6/3/2006UT Austin Robert Blumofe 7

Introduction to Dag Model
A multithreaded computation is modeled as a dag (directed
acyclic graph).

• The dag models the execution
of a multithreaded program.

• The nodes represent executed
instructions.

• The edges define a partial
order on the instructions.

6/3/2006UT Austin Robert Blumofe 8

Dag Model: Example I

spawn

spawn

sync

Cilk procedures spawn children
and then sync, waiting for the
children to terminate.

6/3/2006UT Austin Robert Blumofe 9

Dag Model: Example II

sema.signal()
(semaphore V)

sema.wait()
(semaphore P)

Threads may use synchronization variables such as
locks, condition variables, and semaphores.

• Each thread is a chain of nodes.
• Inter-thread edges arise from spawning and synchronizing.

6/3/2006UT Austin Robert Blumofe 10

Dag Model
• Each node represents one unit

of work and takes one time
step to execute.

• We assume a single source
node and out-degree at most 2.

• The work T1 is the number of
nodes. The critical-path length
T ! is the length of a longest
(directed) path.

• A node is ready if all of its
ancestors have been executed.
Only ready nodes can be executed.

6/3/2006UT Austin Robert Blumofe 11

Simple Bounds

Lower bounds:

• TP) T1&P. Each processor can execute at
most 1 node per time step.

• TP) T ! . A node cannot be executed until
after all of its predecessors.

Let TP be the minimum possible execution time
with P processors.

Upper bound:

• TP * T1&P ’ T ! . “Brent schedules” and
“greedy schedules” meet this bound.

6/3/2006UT Austin Robert Blumofe 12

Scheduling Dags by Work Stealing
We ignore threads and view the algorithm as scheduling the
nodes of the dag.

threads in
deque

nodes in
deque

assigned
thread

assigned
node

• We replace each ready
thread with its unique
ready node.

• For any process, the
thread currently being
executed is its
assigned thread.

• The ready node of the
assigned thread is the
assigned node.

6/3/2006UT Austin Robert Blumofe 13

Dag-Scheduling Loop

while (!computationDone) {
while (!assignedNode)

assignedNode = randomProcess().popTop();
numChild,child = execute (assignedNode);
if (numChild == 0)

assignedNode = popBottom();
else if (numChild == 1)

assignedNode = child[0];
else if (numChild == 2) {

pushBottom (child[0]);
assignedNode = child[1];

}
}

6/3/2006UT Austin Robert Blumofe 14

Simplifying Assumptions

• Execution is step-by-step synchronous.

• At each step, each process executes one iteration
of the scheduling loop.

• If multiple processes try to pop the same node from
the same deque at the same step, then exactly one
(arbitrarily chosen) succeeds and the others fail
(returning 0).

To simplify this presentation, we make the following
assumptions:

6/3/2006UT Austin Robert Blumofe 15

Outline

• The dag model

• Structural Lemma

• Enabling tree

• Structural Lemma

• Structural Corollary

• Time analysis

• Conclusion

6/3/2006UT Austin Robert Blumofe 16

Enabling Tree

• Edge (u,v) is an enabling
edge.

• The enabling edges
form an enabling tree.

• For any (non-root) node v,
suppose node u is the last of
v’s parents to be executed.

• Node u is the designated
parent of v.

• The execution of node u
enables node v.v

u

t

6/3/2006UT Austin Robert Blumofe 17

Structural Lemma

v0

v1

v2

v3

v4

u0

u1

u2

u3

u4

Structural Lemma: For any deque, at all times during the execution
of the work-stealing algorithm, the designated parents of the nodes
in the deque lie on a root-to-leaf path in the enabling tree.

• For i % 0, 1, …, k, node ui is the designated
parent of vi.

Consider any process at any time during the
execution.
• v0 is its assigned node.
• v1, v2, …, vk are the ready nodes in its deque

ordered from bottom to top.

• For i % 1, 2, …, k, node ui is an ancestor of
ui (1 in the enabling tree.

Then:

• For i % 2, …, k, we have ui + ui (1.
6/3/2006UT Austin Robert Blumofe 18

Structural Lemma: Proof
Proof: By induction on the number of steals and assigned-node
executions since the deque was last empty.

• Base case: If the deque is empty, then the lemma holds
vacuously.

• Induction hypothesis: Consider a steal or an assigned-
node execution, and assume that the lemma holds
beforehand.

• Induction step: Show that the lemma holds afterwards.
4 cases: (S) Top node is stolen.

(E0) Assigned node enables 0 children.
(E1) Assigned node enables 1 child.
(E2) Assigned node enables 2 children.

6/3/2006UT Austin Robert Blumofe 19

Structural Lemma: Proof Case (S)

v0

v1

v2

v3

v4

u0

u1

u2

u3

u4

v0

v1

v2

v3

u0

u1

u2

u3

The top node vk is stolen.

6/3/2006UT Austin Robert Blumofe 20

Structural Lemma: Proof Case (E0)
Execution of assigned node v0 enables 0 children.

v0

v1

v2

v3

v4

u0

u1

u2

u3

u4

v1

v2

v3

v4

u1

u2

u3

u4

v1 is popped
and assigned.

6/3/2006UT Austin Robert Blumofe 21

Structural Lemma: Proof Case (E1)

v0

v1

v2

v3

v4

u0

u1

u2

u3

u4

Execution of assigned node v0 enables 1 child va.

va

v1

v2

v3

v4

u0

u1

u2

u3

u4

v0

va is assigned.

v0 is the
designated
parent of va.

6/3/2006UT Austin Robert Blumofe 22

Structural Lemma: Proof Case (E2)

v0

v1

v2

v3

v4

u0

u1

u2

u3

u4

Execution of assigned node v0 enables 2 children va and vb .

va

v1

v2

v3

v4

u0

u1

u2

u3

u4

vb

v0

va is pushed on
bottom; vb is
assigned.

v0 is the
designated
parent of both
va and vb .

6/3/2006UT Austin Robert Blumofe 23

Structural Corollary

v0

v1

v2

v3

v4

Each node u has weight w(u) % T ! (d(u), where d(u) is the
depth of u in the enabling tree.

Structural Corollary: For any deque, at all
times during the execution of the work-
stealing algorithm, the weights of the nodes
in the deque increase from bottom to top.

Consider any process at any time during the
execution.
• v0 is its assigned node.
• v1, v2, …, vk are the ready nodes in its deque

ordered from bottom to top.

• w(v0) * w(v1) , $… , $w(vk (1) , $w(vk).
Then:

6/3/2006UT Austin Robert Blumofe 24

Outline

• The dag model

• Structural Lemma

• Time analysis

• Accounting

• Analysis of steals

• Analysis of work stealing

• Conclusion

6/3/2006UT Austin Robert Blumofe 25

Accounting I

• If the process makes a steal attempt,
then it places a token in the steal bucket.
Let S denote the number of tokens in the
steal bucket when execution ends.

• If the process executes a node of the dag,
then it places a token in the work bucket.
Execution ends with T1 tokens in the work
bucket.

T1

S

work
bucket

steal
bucket

To analyze the work-stealing algorithm we use an accounting
argument. At each time step, each process pays one token.

At each step, each process performs one (or both) of these actions.

6/3/2006UT Austin Robert Blumofe 26

Accounting II
• At each step, at least P tokens are collected

and each step takes constant time, so the
execution time is T % O(T1&P ’ S&P).

• We will prove E[S] %$O(T ! P) by an amortization
argument based on a potential function.

We will conclude E[T] %$O(T1&P ’ T !).

6/3/2006UT Austin Robert Blumofe 27

Potential Function
We use a potential function to bound the number of steal attempts.
Each ready node u has potential -(u) % 3w(u).

• The initial potential is . 0 %$3T ! .

The potential . i at step i is the sum of all ready node potentials.

• The final potential is . T %$0.
• Execution of a node u causes

potential decrease.

(Recall weight is w(u) % T ! (d(u) where d(u) is depth of u in enabling tree.)

u

v1 v2

-(u) % 3w(u)

-(v1) * 3w(u) (1 -(v2) * 3w(u) (1

Execution of node u enables
children that are deeper and
have less weight.

-(u) (-(v1) (-(v2)) -(u)(1 (1&3 (1&3) % (1&3)-(u).
Potential decrease:

6/3/2006UT Austin Robert Blumofe 28

Top-Heavy Deques
At each step i, we think of the total potential . i as being
partitioned among the P processes.
The potential . i(q) associated with process q is the sum of the
potentials of all of the nodes in q’s deque and q’s assigned node.

Top-Heavy-Deques Lemma: For any
process at any time step during the
execution of the work-stealing algorithm,
the potential of the topmost node in the
deque contributes at least 1&2 of the
potential associated with the process.

• -(u)) (1&2) . i(q), where u is the
topmost node in q’s deque at step i.

Proof: From structural corollary. Potential
of nodes below u decreases geometrically.

u 1

1&3

1&9

1&9

6/3/2006UT Austin Robert Blumofe 29

Balls and Weighted Bins

W1%5 W2%9 W3%0 W4%1 W5%0 W6%7
X1%5 X2%0 X3%0 X4%1 X5%0 X6%0

W%22, X%6

Consider throwing P balls at random into P weighted bins.
• For each bin i % 1,2, …, P, bin i has weight Wi. Let W % / $Wi.
• Random variable Xi is Wi if a ball lands in bin i and 0 otherwise.

Let X % / $Xi.

Balls-and-Weighted-Bins Lemma: Pr{X) 0W} # 1 (1&((1 (0)e).

6/3/2006UT Austin Robert Blumofe 30

Analysis of Steal Attempts I
Steal-Attempts Lemma: P steal attempts cause the potential to
decrease by a factor of at least 1&12 with probability at least 1&4.
Proof: Consider a step i and P subsequent steal attempts.
Partition the potential as . i % Di ’ Ei, where Di is the potential
associated with processes whose deque is non-empty and Ei is
the potential associated with processes whose deque is empty.

• If q’s deque is empty, then execution of q’s assigned node u
causes potential decrease of at least (1&3)-(u) % (1&3) . i(q).

• If q’s deque is not empty, then if a steal attempt chooses q
as the victim, the topmost node u will be stolen and
executed, causing potential decrease of at least (1&3)-(u),
which by the Top-Heavy-Deques Lemma is at least
(1&3)(1&2) . i(q) % (1&6) . i(q).

• Thus, the potential decreases by at least (1&3)Ei.

6/3/2006UT Austin Robert Blumofe 31

Analysis of Steal Attempts II
• Consider the P processes as bins and the P steal attempts

as ball throws. For each process q, if its deque is non-
empty, then it is given weight (1&6) . i(q), otherwise it is
given weight 0. The total weight is W % (1&6)Di.

• Thus, from the Balls-and-Weighted-Bins Lemma
with 0%1&2, the potential decreases by at least
0W % (1&2)(1&6)Di % (1&12)Di with probability at
least 1 (1&((1 (0)e) # 1&4.

• Since . i % Di ’ Ei, the potential decreases by at
least (1&12) . i with probability at least 1&4.

6/3/2006UT Austin Robert Blumofe 32

Work-Stealing Theorem I
Work-Stealing Theorem: For any number P of (dedicated)
processors and any multithreaded computation with work T1
and critical-path length T ! , the work-stealing algorithm runs
in expected time E[T] %$O(T1&P ’ T !).

Proof: It remains only to show that the expected number of
tokens in the steal bucket is E[S] %$O(T ! P). We divide the
execution into phases of P consecutive steal attempts, and we
show that the expected number of phases is O(T !).

• A phase is successful if the potential decreases by a factor of
at least 1&12.

• By the Steal-Attempts Lemma, a phase is successful with
probability at least 1&4.

6/3/2006UT Austin Robert Blumofe 33

Work-Stealing Theorem II
• After k successful phases, the potential is at

most (11&12)k . 0 % (11&12)k3T ! .

• When the potential drops below 1, the execution is
complete, so the number of successful phases is at
most k % (log12&11 3)T ! .

• The expected number of phases before (log12&11 3)T !
successes, is 4(log12&11 3)T ! % O(T !).

6/3/2006UT Austin Robert Blumofe 34

Summary of Results

Practice: T 2 T1&P ’ T ! .

Theory: E[T] % O(T1&P ’ T !).

With a “non-blocking” implementation of work stealing, this
result can be generalized to the case when the number P of
processes exceeds the number of processors or when the
number of processors grows and shrinks over time. PA is the
time-average number of processors.

Work stealing is a user-level thread-scheduling algorithm that
is efficient in theory and in practice.

Theory: E[T] % O(T1&PA ’ T ! P&PA).

Practice: T 2 T1&PA ’ T ! P&PA.

