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Threads and Processes
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thread
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Each computation has a 
(user-level) thread 
scheduler that maps its 
threads to its processes.

The kernel maps 
all processes to all 
processors.

A program partitions the work into (user-level) threads to expose 
all of the parallelism.  A computation may create millions of 
threads.  Threads are dynamically scheduled through two levels.
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Example: Cilk
Cilk programs spawn threads to express parallelism.

cilk int fib (int n) {
int x, y;
if (n < 2)
return n;

x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return x+y;

}
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Work Stealing
Each process maintains a “pool”
of ready threads organized as a 
deque (double-ended queue) 
with a top and a bottom.
A process obtains work by 
popping the bottom-most 
thread from its deque and 
executing that thread.
• If the thread blocks or terminates, then the process pops 

another thread.
• If the thread creates or enables another thread, then the 

process pushes one thread on the bottom of its deque and 
continues executing the other.

If a process finds that its deque is empty, then it becomes a 
thief and steals the top-most thread from the deque of a 
randomly chosen victim process.
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Our Results

• T1 is the work, the execution time with 1 processor.

• T ! is the critical-path length, the theoretical minimum 
execution time with infinitely many processors.

• This bound is optimal to within a constant factor.

• For any " #$0, we have T % O(T1&P ’ T ! ’ $lg(1& ")) with 
probability at least 1 ( " .

E[T] % O(T1&P ’ T ! ).

We show that for the case of a dedicated machine with P
processes executing on P processors, the execution time T of the 
work-stealing algorithm satisfies the following bound.

(Blumofe & Leiserson, FOCS 1994)
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Introduction to Dag Model
A multithreaded computation is modeled as a dag (directed 
acyclic graph).

• The dag models the execution
of a multithreaded program.

• The nodes represent executed 
instructions.

• The edges define a partial 
order on the instructions.
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Dag Model: Example I

spawn

spawn

sync

Cilk procedures spawn children 
and then sync, waiting for the 
children to terminate.
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Dag Model: Example II

sema.signal()
(semaphore V)

sema.wait()
(semaphore P)

Threads may use synchronization variables such as 
locks, condition variables, and semaphores.

• Each thread is a chain of nodes.
• Inter-thread edges arise from spawning and synchronizing.
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Dag Model
• Each node represents one unit 

of work and takes one time 
step to execute.

• We assume a single source 
node and out-degree at most 2.

• The work T1 is the number of 
nodes.  The critical-path length 
T ! is the length of a longest 
(directed) path.

• A node is ready if all of its 
ancestors have been executed.  
Only ready nodes can be executed.
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Simple Bounds

Lower bounds:

• TP ) T1&P.  Each processor can execute at 
most 1 node per time step.

• TP ) T ! .  A node cannot be executed until 
after all of its predecessors.

Let TP be the minimum possible execution time 
with P processors.

Upper bound:

• TP * T1&P ’ T ! .  “Brent schedules” and 
“greedy schedules” meet this bound.
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Scheduling Dags by Work Stealing
We ignore threads and view the algorithm as scheduling the 
nodes of the dag.

threads in 
deque

nodes in 
deque

assigned 
thread

assigned 
node

• We replace each ready 
thread with its unique 
ready node.

• For any process, the 
thread currently being 
executed is its 
assigned thread.

• The ready node of the 
assigned thread is the 
assigned node.
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Dag-Scheduling Loop

while (!computationDone) {
while (!assignedNode)

assignedNode = randomProcess().popTop();
numChild,child = execute (assignedNode);
if (numChild == 0)

assignedNode = popBottom();
else if (numChild == 1)

assignedNode = child[0];
else if (numChild == 2) {

pushBottom (child[0]);
assignedNode = child[1];

}
}
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Simplifying Assumptions

• Execution is step-by-step synchronous.

• At each step, each process executes one iteration 
of the scheduling loop.

• If multiple processes try to pop the same node from 
the same deque at the same step, then exactly one 
(arbitrarily chosen) succeeds and the others fail 
(returning 0).

To simplify this presentation, we make the following 
assumptions:
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Enabling Tree

• Edge (u,v) is an enabling 
edge.

• The enabling edges 
form an enabling tree.

• For any (non-root) node v, 
suppose node u is the last of 
v’s parents to be executed.

• Node u is the designated 
parent of v.

• The execution of node u
enables node v.v

u

t
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Structural Lemma
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Structural Lemma: For any deque, at all times during the execution 
of the work-stealing algorithm, the designated parents of the nodes 
in the deque lie on a root-to-leaf path in the enabling tree.

• For i % 0, 1, …, k, node ui is the designated 
parent of vi.

Consider any process at any time during the 
execution.
• v0 is its assigned node.
• v1, v2, …, vk are the ready nodes in its deque

ordered from bottom to top.

• For i % 1, 2, …, k, node ui is an ancestor of 
ui ( 1 in the enabling tree.

Then:

• For i % 2, …, k, we have ui + ui ( 1.
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Structural Lemma: Proof
Proof: By induction on the number of steals and assigned-node 
executions since the deque was last empty.

• Base case: If the deque is empty, then the lemma holds 
vacuously.

• Induction hypothesis: Consider a steal or an assigned-
node execution, and assume that the lemma holds 
beforehand.

• Induction step: Show that the lemma holds afterwards.
4 cases: (S) Top node is stolen.

(E0) Assigned node enables 0 children.
(E1) Assigned node enables 1 child.
(E2) Assigned node enables 2 children.
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Structural Lemma: Proof Case (S)
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The top node vk is stolen.
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Structural Lemma: Proof Case (E0)
Execution of assigned node v0 enables 0 children.

v0

v1

v2

v3

v4

u0

u1

u2

u3

u4

v1

v2

v3

v4

u1

u2

u3

u4

v1 is popped 
and assigned.
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Structural Lemma: Proof Case (E1)

v0

v1

v2

v3

v4

u0

u1

u2

u3

u4

Execution of assigned node v0 enables 1 child va.

va

v1

v2

v3

v4

u0

u1

u2

u3

u4

v0

va is assigned.

v0 is the 
designated 
parent of va.
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Structural Lemma: Proof Case (E2)
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Execution of assigned node v0 enables 2 children va and vb .

va

v1

v2

v3

v4

u0

u1

u2

u3

u4

vb

v0

va is pushed on 
bottom; vb is 
assigned.

v0 is the 
designated 
parent of both 
va and vb .
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Structural Corollary

v0

v1

v2

v3

v4

Each node u has weight w(u) % T ! ( d(u), where d(u) is the 
depth of u in the enabling tree.

Structural Corollary: For any deque, at all 
times during the execution of the work-
stealing algorithm, the weights of the nodes 
in the deque increase from bottom to top.

Consider any process at any time during the 
execution.
• v0 is its assigned node.
• v1, v2, …, vk are the ready nodes in its deque

ordered from bottom to top.

• w(v0) * w(v1) , $… , $w(vk ( 1) , $w(vk).
Then:
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Accounting I

• If the process makes a steal attempt, 
then it places a token in the steal bucket.  
Let S denote the number of tokens in the 
steal bucket when execution ends.

• If the process executes a node of the dag, 
then it places a token in the work bucket.  
Execution ends with T1 tokens in the work 
bucket.

T1

S

work 
bucket

steal 
bucket

To analyze the work-stealing algorithm we use an accounting 
argument.  At each time step, each process pays one token.

At each step, each process performs one (or both) of these actions.
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Accounting II
• At each step, at least P tokens are collected 

and each step takes constant time, so the 
execution time is T % O(T1&P ’ S&P).

• We will prove E[S] %$O(T ! P) by an amortization 
argument based on a potential function.

We will conclude E[T] %$O(T1&P ’ T ! ).
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Potential Function
We use a potential function to bound the number of steal attempts.
Each ready node u has potential -(u) % 3w(u).

• The initial potential is . 0 %$3T ! .

The potential . i at step i is the sum of all ready node potentials.

• The final potential is . T %$0.
• Execution of a node u causes 

potential decrease.

(Recall weight is w(u) % T ! ( d(u) where d(u) is depth of u in enabling tree.)

u

v1 v2

-(u) % 3w(u)

-(v1) * 3w(u) ( 1 -(v2) * 3w(u) ( 1

Execution of node u enables 
children that are deeper and 
have less weight.

-(u) ( -(v1) ( -(v2) ) -(u)(1 ( 1&3 ( 1&3) % (1&3)-(u).
Potential decrease:
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Top-Heavy Deques
At each step i, we think of the total potential . i as being 
partitioned among the P processes.
The potential . i(q) associated with process q is the sum of the 
potentials of all of the nodes in q’s deque and q’s assigned node.

Top-Heavy-Deques Lemma: For any 
process at any time step during the 
execution of the work-stealing algorithm, 
the potential of the topmost node in the 
deque contributes at least 1&2 of the 
potential associated with the process.

• -(u) ) (1&2) . i(q), where u is the 
topmost node in q’s deque at step i.

Proof: From structural corollary.  Potential 
of nodes below u decreases geometrically.

u 1

1&3

1&9

1&9
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Balls and Weighted Bins

W1%5 W2%9 W3%0 W4%1 W5%0 W6%7
X1%5 X2%0 X3%0 X4%1 X5%0 X6%0

W%22, X%6

Consider throwing P balls at random into P weighted bins.
• For each bin i % 1,2, …, P, bin i has weight Wi.  Let W % / $Wi.
• Random variable Xi is Wi if a ball lands in bin i and 0 otherwise.  

Let X % / $Xi.

Balls-and-Weighted-Bins Lemma: Pr{X ) 0W} # 1 ( 1&((1 ( 0)e).
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Analysis of Steal Attempts I
Steal-Attempts Lemma: P steal attempts cause the potential to 
decrease by a factor of at least 1&12 with probability at least 1&4.
Proof: Consider a step i and P subsequent steal attempts.  
Partition the potential as . i % Di ’ Ei, where Di is the potential 
associated with processes whose deque is non-empty and Ei is 
the potential associated with processes whose deque is empty.

• If q’s deque is empty, then execution of q’s assigned node u
causes potential decrease of at least  (1&3)-(u) % (1&3) . i(q).

• If q’s deque is not empty, then if a steal attempt chooses q
as the victim, the topmost node u will be stolen and 
executed, causing potential decrease of at least (1&3)-(u), 
which by the Top-Heavy-Deques Lemma is at least 
(1&3)(1&2) . i(q) % (1&6) . i(q).

• Thus, the potential decreases by at least (1&3)Ei.
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Analysis of Steal Attempts II
• Consider the P processes as bins and the P steal attempts 

as ball throws.  For each process q, if its deque is non-
empty, then it is given weight (1&6) . i(q), otherwise it is 
given weight 0.  The total weight is W % (1&6)Di.

• Thus, from the Balls-and-Weighted-Bins Lemma 
with 0%1&2, the potential decreases by at least 
0W % (1&2)(1&6)Di % (1&12)Di with probability at 
least 1 ( 1&((1 ( 0)e) # 1&4.

• Since . i % Di ’ Ei, the potential decreases by at 
least (1&12) . i with probability at least 1&4.
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Work-Stealing Theorem I
Work-Stealing Theorem: For any number P of (dedicated) 
processors and any multithreaded computation with work T1
and critical-path length T ! , the work-stealing algorithm runs 
in expected time E[T] %$O(T1&P ’ T ! ).

Proof: It remains only to show that the expected number of 
tokens in the steal bucket is E[S] %$O(T ! P).  We divide the 
execution into phases of P consecutive steal attempts, and we 
show that the expected number of phases is O(T ! ).

• A phase is successful if the potential decreases by a factor of 
at least 1&12.

• By the Steal-Attempts Lemma, a phase is successful with 
probability at least 1&4.
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Work-Stealing Theorem II
• After k successful phases, the potential is at 

most (11&12)k . 0 % (11&12)k3T ! .

• When the potential drops below 1, the execution is 
complete, so the number of successful phases is at 
most k % (log12&11 3)T ! .

• The expected number of phases before (log12&11 3)T !
successes, is 4(log12&11 3)T ! % O(T ! ).
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Summary of Results

Practice: T 2 T1&P ’ T ! .

Theory: E[T] % O(T1&P ’ T ! ).

With a “non-blocking” implementation of work stealing, this 
result can be generalized to the case when the number P of 
processes exceeds the number of processors or when the 
number of processors grows and shrinks over time. PA is the 
time-average number of processors.

Work stealing is a user-level thread-scheduling algorithm that 
is efficient in theory and in practice.

Theory: E[T] % O(T1&PA ’ T ! P&PA).

Practice: T 2 T1&PA ’ T ! P&PA.


