
Parallel
Algorithms

A. Legrand

Parallel Algorithms

Arnaud Legrand, CNRS, University of Grenoble

LIG laboratory, arnaud.legrand@imag.fr

November 1, 2009

1 / 272

arnaud.legrand@imag.fr

Parallel
Algorithms

A. Legrand

Outline

Part I Performance Evaluation

Part II Network Models

Part III Communications on a Ring

Part IV Algorithms on a Ring

Part V Algorithm on an Heterogeneous Ring

Part VI Algorithms on an Grid

2 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Part I

Performance Evaluation

3 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Code Performance

I We will mostly talk about how to make code go fast, hence the
“High Performance”.

I Performance conflicts with other concerns:

Correctness. You will see that when trying to make code go fast
one often breaks it

Readability. Fast code typically requires more lines! Modularity
can hurt performance (e.g., Too many classes)

Portability.
I Code that is fast on machine A can be slow on machine B
I At the extreme, highly optimized code is not portable at all,

and in fact is done in hardware!

4 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Why Performance?

I To do a time-consuming operation in less time
I I am an aircraft engineer
I I need to run a simulation to test the stability of the wings at high

speed
I I’d rather have the result in 5 minutes than in 5 hours so that I

can complete the aircraft final design sooner.

I To do an operation before a tighter deadline
I I am a weather prediction agency
I I am getting input from weather stations/sensors
I I’d like to make the forecast for tomorrow before tomorrow

I To do a high number of operations per seconds
I I am the CTO of Amazon.com
I My Web server gets 1, 000 hits per seconds
I I’d like my Web server and my databases to handle 1, 000 transac-

tions per seconds so that customers do not experience bad delays
(also called scalability)

I Amazon does “process” several GBytes of data per seconds

5 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Outline

1 Performance: Definition?
Time?
Rate?
Peak performance
Benchmarks

2 Speedup and Efficiency
Speedup
Amdahl’s Law

3 Performance Measures
Measuring Time

4 Performance Improvement
Finding Bottlenecks
Profiling Sequential Programs
Profiling Parallel Programs

6 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Outline

1 Performance: Definition?
Time?
Rate?
Peak performance
Benchmarks

2 Speedup and Efficiency
Speedup
Amdahl’s Law

3 Performance Measures
Measuring Time

4 Performance Improvement
Finding Bottlenecks
Profiling Sequential Programs
Profiling Parallel Programs

7 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Performance as Time

I Time between the start and the end of an operation
I Also called running time, elapsed time, wall-clock time, response

time, latency, execution time, ...
I Most straightforward measure: “my program takes 12.5s on a

Pentium 3.5GHz”
I Can be normalized to some reference time

I Must be measured on a “dedicated” machine

8 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Performance as Rate

Used often so that performance can be independent on the “size” of the
application (e.g., compressing a 1MB file takes 1 minute. compressing
a 2MB file takes 2 minutes ; the performance is the same).

MIPS Millions of instructions / sec = instruction count
execution time×106 = clock rate

CPI×106 .
But Instructions Set Architectures are not equivalent

I 1 CISC instruction = many RISC instructions
I Programs use different instruction mixes
I May be ok for same program on same architectures

MFlops Millions of floating point operations /sec
I Very popular, but often misleading
I e.g., A high MFlops rate in a stupid algorithm could have poor application perfor-

mance

Application-specific
I Millions of frames rendered per second
I Millions of amino-acid compared per second
I Millions of HTTP requests served per seconds

Application-specific metrics are often preferable and others may be
misleading

9 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

“Peak” Performance?

Resource vendors always talk about peak performance rate

I computed based on specifications of the machine

I For instance:
I I build a machine with 2 floating point units
I Each unit can do an operation in 2 cycles
I My CPU is at 1GHz
I Therefore I have a 1*2/2 =1GFlops Machine

I Problem:
I In real code you will never be able to use the two floating point

units constantly
I Data needs to come from memory and cause the floating point

units to be idle

Typically, real code achieves only an (often small) fraction of the peak
performance

10 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Benchmarks

I Since many performance metrics turn out to be misleading, people
have designed benchmarks

I Example: SPEC Benchmark
I Integer benchmark
I Floating point benchmark

I These benchmarks are typically a collection of several codes that
come from “real-world software”

I The question “what is a good benchmark” is difficult
I If the benchmarks do not correspond to what you’ll do with the

computer, then the benchmark results are not relevant to you

11 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

How About GHz?

I This is often the way in which people say that a computer is better
than another

I More instruction per seconds for higher clock rate

I Faces the same problems as MIPS
Processor Clock Rate SPEC FP2000 Benchmark
IBM Power3 450 MHz 434
Intel PIII 1.4 GHz 456
Intel P4 2.4GHz 833
Itanium-2 1.0GHz 1356

I But usable within a specific architecture

12 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Program Performance

I In this class we’re not really concerned with determining the per-
formance of a compute platform (whichever way it is defined)

I Instead we’re concerned with improving a program’s performance

I For a given platform, take a given program
I Run it an measure its wall-clock time
I Enhance it, run it an quantify the performance improvement (i.e.,

the reduction in wall-clock time)
I For each version compute its performance

I preferably as a relevant performance rate
I so that you can say: the best implementation we have so far goes

“this fast” (perhaps a % of the peak performance)

13 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Outline

1 Performance: Definition?
Time?
Rate?
Peak performance
Benchmarks

2 Speedup and Efficiency
Speedup
Amdahl’s Law

3 Performance Measures
Measuring Time

4 Performance Improvement
Finding Bottlenecks
Profiling Sequential Programs
Profiling Parallel Programs

14 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Speedup

I We need a metric to quantify the impact of your performance
enhancement

I Speedup: ratio of “old” time to “new” time
I new time = 1h
I speedup = 2h / 1h = 2

I Sometimes one talks about a “slowdown” in case the “enhance-
ment” is not beneficial

I Happens more often than one thinks

15 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Parallel Performance

I The notion of speedup is completely generic
I By using a rice cooker I’ve achieved a 1.20 speedup for rice cooking

I For parallel programs one defines the Parallel Speedup (we’ll just
say “speedup”):

I Parallel program takes time T1 on 1 processor
I Parallel program takes time Tp on p processors
I Parallel Speedup: S(p) = T1

Tp

I In the ideal case, if my sequential program takes 2 hours on 1
processor, it takes 1 hour on 2 processors: called linear speedup

16 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Speedup

sub-linear

linear

su
pe

rli
ne

ar
number of processors

sp
ee

du
p

Superlinear Speedup? There are several possible causes

Algorithm with optimization problems, throwing many processors at
it increases the chances that one will “get lucky” and find the
optimum fast

Hardware with many processors, it is possible that the entire applica-
tion data resides in cache (vs. RAM) or in RAM (vs. Disk)

17 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Speedup

sub-linear

linear

su
pe

rli
ne

ar
number of processors

sp
ee

du
p

Superlinear Speedup? There are several possible causes
Algorithm with optimization problems, throwing many processors at

it increases the chances that one will “get lucky” and find the
optimum fast

Hardware with many processors, it is possible that the entire applica-
tion data resides in cache (vs. RAM) or in RAM (vs. Disk)

17 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Speedup

sub-linear

linear

su
pe

rli
ne

ar
number of processors

sp
ee

du
p

Superlinear Speedup? There are several possible causes
Algorithm with optimization problems, throwing many processors at

it increases the chances that one will “get lucky” and find the
optimum fast

Hardware with many processors, it is possible that the entire applica-
tion data resides in cache (vs. RAM) or in RAM (vs. Disk)

17 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Bad News: Amdahl’s Law

Consider a program whose execution consists of two phases

1 One sequential phase : Tseq = (1− f)T1

2 One phase that can be perfectly parallelized (linear speedup)
Tpar = fT1

Therefore: Tp = Tseq + Tpar/p = (1− f)T1 + fT1/p.

Amdahl’s Law:

Sp =
1

1− f + f
p

f = 20%
f = 50%
f = 80%

f = 10%

0

1

2

3

4

5

10 20 30 40 50 60

S
p

ee
d

u
p

Number of processors

18 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Lessons from Amdahl’s Law

I It’s a law of diminishing return

I If a significant fraction of the code (in terms of time spent in it)
is not parallelizable, then parallelization is not going to be good

I It sounds obvious, but people new to high performance computing
often forget how bad Amdahl’s law can be

I Luckily, many applications can be almost entirely parallelized and
f is small

19 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Parallel Efficiency

I Efficiency is defined as Eff (p) = S(p)/p

I Typically < 1, unless linear or superlinear speedup

I Used to measure how well the processors are utilized
I If increasing the number of processors by a factor 10 increases the

speedup by a factor 2, perhaps it’s not worth it: efficiency drops
by a factor 5

I Important when purchasing a parallel machine for instance: if due
to the application’s behavior efficiency is low, forget buying a large
cluster

20 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Scalability

I Measure of the “effort” needed to maintain efficiency while adding
processors

I Efficiency also depends on the problem size: Eff (n, p)

I Isoefficiency: At which rate does the problem size need to be
increase to maintain efficiency

I nc(p) such that Eff (nc(p), p) = c
I By making a problem ridiculously large, on can typically achieve

good efficiency
I Problem: is it how the machine/code will be used?

21 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Outline

1 Performance: Definition?
Time?
Rate?
Peak performance
Benchmarks

2 Speedup and Efficiency
Speedup
Amdahl’s Law

3 Performance Measures
Measuring Time

4 Performance Improvement
Finding Bottlenecks
Profiling Sequential Programs
Profiling Parallel Programs

22 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Performance Measures

This is all well and good, but how does one measure the performance
of a program in practice?
Two issues:

1 Measuring wall-clock times (We’ll see how it can be done shortly)
2 Measuring performance rates

I Measure wall clock time (see above)
I “Count” number of “operations” (frames, flops, amino-acids: what-

ever makes sense for the application)
I Either by actively counting (count++)
I Or by looking at the code and figure out how many operations

are performed

I Divide the count by the wall-clock time

23 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Measuring time by hand?

I One possibility would be to do this by just “looking” at a clock,
launching the program, “looking” at the clock again when the
program terminates

I This of course has some drawbacks
I Poor resolution
I Requires the user’s attention

I Therefore operating systems provide ways to time programs au-
tomatically

I UNIX provide the time command

24 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

The UNIX time Command

I You can put time in front of any UNIX command you invoke

I When the invoked command completes, time prints out timing
(and other) information

surf:~$ /usr/bin/X11/time ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (0major+1344minor)pagefaults 0swaps

I 4.17 seconds of user time
I 4.34 seconds of system time
I 2 minutes and 55.85 seconds of wall-clock time
I 4% of CPU was used
I 0+0k memory used (text + data)
I 0 input, 0 output output (file system I/O)
I 1344 minor pagefaults and 0 swaps

25 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end

I Wall-Clock > User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

26 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end

I Wall-Clock > User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

26 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end

I Wall-Clock > User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

26 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end

I Wall-Clock > User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

26 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end

I Wall-Clock > User + System. Why?
I because the process can be suspended by the O/S due to con-

tention for the CPU by other processes

I because the process can be blocked waiting for I/O

26 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end

I Wall-Clock > User + System. Why?
I because the process can be suspended by the O/S due to con-

tention for the CPU by other processes
I because the process can be blocked waiting for I/O

26 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Using time

I It’s interesting to know what the user time and the system time
are

I for instance, if the system time is really high, it may be that the
code does to many calls to malloc(), for instance

I But one would really need more information to fix the code (not
always clear which system calls may be responsible for the high
system time)

I Wall-clock - system - user ' I/O + suspended
I If the system is dedicated, suspended ' 0
I Therefore one can estimate the ecost of I/O
I If I/O is really high, one may want to look at reducing I/O or

doing I/O better

I Therefore, time can give us insight into bottlenecks and gives us
wall-clock time

I Measurements should be done on dedicated systems

27 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Dedicated Systems

I Measuring the performance of a code must be done on a “quies-
cent”, “unloaded” machine (the machine only runs the standard
O/S processes)

I The machine must be dedicated
I No other user can start a process
I The user measuring the performance only runs the minimum amount

of processes (basically, a shell)

I Nevertheless, one should always present measurement results as
averages over several experiments (because the (small) load im-
posed by the O/S is not deterministic)

28 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Drawbacks of UNIX time

I The time command has poor resolution
I “Only” milliseconds
I Sometimes we want a higher precision, especially if our perfor-

mance improvements are in the 1-2% range

I time times the whole code
I Sometimes we’re only interested in timing some part of the code,

for instance the one that we are trying to optimize
I Sometimes we want to compare the execution time of different

sections of the code

29 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Timing with gettimeofday

I gettimeofday from the standard C library

I Measures the number of microseconds since midnight, Jan 1st
1970, expressed in seconds and microseconds

struct timeval start;
...
gettimeofday(&tv,NULL);
printf("%ld,%ld\n",start.tv sec, start.tv usec);

I Can be used to time sections of code
I Call gettimeofday at beginning of section
I Call gettimeofday at end of section
I Compute the time elapsed in microseconds:

(end.tv sec*1000000.0 + end.tv usec -

start.tv sec*1000000.0 - start.tv usec) / 1000000.0)

30 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Other Ways to Time Code

I ntp gettime() (Internet RFC 1589)
I Sort of like gettimeofday, but reports estimated error on time

measurement
I Not available for all systems
I Part of the GNU C Library

I Java: System.currentTimeMillis()
I Known to have resolution problems, with resolution higher than 1

millisecond!
I Solution: use a native interface to a better timer

I Java: System.nanoTime()
I Added in J2SE 5.0
I Probably not accurate at the nanosecond level

I Tons of “high precision timing in Java” on the Web

31 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Outline

1 Performance: Definition?
Time?
Rate?
Peak performance
Benchmarks

2 Speedup and Efficiency
Speedup
Amdahl’s Law

3 Performance Measures
Measuring Time

4 Performance Improvement
Finding Bottlenecks
Profiling Sequential Programs
Profiling Parallel Programs

32 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Why is Performance Poor?

Performance is poor because the code suffers from a performance bot-
tleneck
Definition:

I An application runs on a platform that has many components
(CPU, Memory, Operating System, Network, Hard Drive, Video
Card, etc.)

I Pick a component and make it faster

I If the application performance increases, that component was the
bottleneck!

33 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Removing a Bottleneck

There are two may approaches to remove a bottleneck:

Brute force Hardware Upgrade

I Is sometimes necessary
I But can only get you so far and may be very costly (e.g.,

memory technology)

Modify the code

I The bottleneck is there because the code uses a “resource”
heavily or in non-intelligent manner

I We will learn techniques to alleviate bottlenecks at the soft-
ware level

34 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Identifying a Bottleneck

I It can be difficult
I You’re not going to change the memory bus just to see what

happens to the application
I But you can run the code on a different machine and see what

happens

I One Approach
I Know/discover the characteristics of the machine
I Instrument the code with gettimeofdays everywhere
I Observe the application execution on the machine
I Tinker with the code
I Run the application again
I Repeat
I Reason about what the bottleneck is

35 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

A better approach: profiling

I A profiler is a tool that monitors the execution of a program and
that reports the amount of time spent in different functions

I Useful to identify the expensive functions

I Profiling cycle
I Compile the code with the profiler
I Run the code
I Identify the most expensive function
I Optimize that function (i.e. call it less often if possible or make

it faster)
I Repeat until you can’t think of any ways to further optimize the

most expensive function

36 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Using gprof

I Compile your code using gcc with the -pg option
I Run your code until completion
I Then run gprof with your program’s name as single command-line

argument
I Example: gcc -pg prog.c -o prog; ./prog gprof prog >

profile file
I The output file contains all profiling information (which fraction

of the code is spent in which function)

37 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Callgrind

I Callgrind is a tool that uses runtime code instrumentation frame-
work of Valgrind for call-graph generation

I Valgrind is a kind of emulator or virtual machine.
I It uses JIT (just-in-time) compilation techniques to translate x86

instructions to simpler form called ucode on which various tools
can be executed.

I The ucode processed by the tools is then translated back to the
x86 instructions and executed on the host CPU.

I This way even shared libraries and dynamically loaded plugins can
be analyzed but this kind of approach results with huge slow down
(about 50 times for callgrind tool) of analyzed application and big
memory consumption.

38 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

Callgrind/Kcachegrind

Data produced by callgrind can be loaded into KCacheGrind tool for
browsing the performance results.

39 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

mpiP

I mpiP is a link-time library (it gathers MPI information through
the MPI profiling layer)

I It only collects statistical information about MPI functions

I All the information captured by mpiP is task-local

sleeptime = 10;

MPI Init (&argc, &argv);

MPI Comm size (comm, &nprocs);

MPI Comm rank (comm, &rank);

MPI Barrier (comm);

if (rank == 0) sleep (sleeptime);

MPI Barrier (comm);

MPI Finalize ();

Task AppTime MPITime MPI%
0 10 0.000243 0.00
1 10 10 99.92
2 10 10 99.92
3 10 10 99.92
* 40 30 74.94

40 / 272

Parallel
Algorithms

A. Legrand

Performance:
Definition?

Time?

Rate?

Peak
performance

Benchmarks

Speedup and
Efficiency

Speedup

Amdahl’s Law

Performance
Measures

Measuring Time

Performance
Improvement

Finding
Bottlenecks

Profiling
Sequential
Programs

Profiling Parallel
Programs

vaMPIr

I generate traces (i.e. not just
collect statistics) of MPI calls

I These traces can then be vi-
sualized and used in different
ways.

41 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Part II

Network Models

42 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Motivation

I Scientific computing : large needs in computation or storage re-
sources.

I Need to use systems with “several processors”:

I Parallel computers with shared/dis-
tributed memory

I Clusters

I Heterogeneous clusters

I Clusters of clusters

I Network of workstations

I The Grid

I Desktop Grids

I When modeling platform, communications modeling seems to be
the most controversial part.

I Two kinds of people produce communication models: those who
are concerned with scheduling and those who are concerned with
performance evaluation.

I All these models are imperfect and intractable.

43 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Outline

5 Point to Point Communication Models
Hockney
LogP and Friends
TCP

6 Modeling Concurency
Multi-port
Single-port (Pure and Full Duplex)
Flows

7 Remind This is a Model, Hence Imperfect

8 Topology
A Few Examples
Virtual Topologies

44 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

UET-UCT

Hem. . . This one is mainly used by scheduling theoreticians to prove
that their problem is hard and to know whether there is some hope to
prove some clever result or not.

45 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

“Hockney” Model

Hockney [Hoc94] proposed the following model for performance eval-
uation of the Paragon. A message of size m from Pi to Pj requires:

ti,j(m) = Li,j + m/Bi,j

In scheduling, there are three types of “corresponding” models:

I Communications are not “splitable” and each communication k is
associated to a communication time tk (accounting for message
size, latency, bandwidth, middleware, . . .).

I Communications are “splitable” but latency is considered to be
negligible (linear divisible model):

ti,j(m) = m/Bi,j

I Communications are “splitable” and latency cannot be neglected
(linear divisible model):

ti,j(m) = Li,j + m/Bi,j

46 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

LogP

The LogP model [CKP+96] is defined by 4 parameters:
I L is the network latency
I o is the middleware overhead (message splitting and packing,

buffer management, connection, . . .) for a message of size w
I g is the gap (the minimum time between two packets communi-

cation) between two messages of size w
I P is the number of processors/modules

g gg g

o oo

o oo o

g gg g
L

o
Sender
Card

Receiver
Card

Network

I Sending m bytes with packets of size w :

2o + L +
⌈

m
w

⌉
·max(o, g)

I Occupation on the sender and on the receiver:

o + L +
(⌈

m
w

⌉
− 1
)
·max(o, g)

47 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

LogP

The LogP model [CKP+96] is defined by 4 parameters:
I L is the network latency
I o is the middleware overhead (message splitting and packing,

buffer management, connection, . . .) for a message of size w
I g is the gap (the minimum time between two packets communi-

cation) between two messages of size w
I P is the number of processors/modules

o

gg gg g

o oo

o oo o

g gg g
L

o
Sender
Card

Receiver
Card

Network

I Sending m bytes with packets of size w :

2o + L +
⌈

m
w

⌉
·max(o, g)

I Occupation on the sender and on the receiver:

o + L +
(⌈

m
w

⌉
− 1
)
·max(o, g)

47 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

LogGP & pLogP

The previous model works fine for short messages. However, many par-
allel machines have special support for long messages, hence a higher
bandwidth. LogGP [AISS97] is an extension of LogP:
G captures the bandwidth for long messages:

short messages 2o + L +
⌈

m
w

⌉
·max(o, g)

long messages 2o + L + (m − 1)G

There is no fundamental difference. . .

OK, it works for small and large messages. Does it work for average-
size messages ? pLogP [KBV00] is an extension of LogP when L, o
and g depends on the message size m. They also have introduced
a distinction between os and or . This is more and more precise but
concurency is still not taken into account.

48 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Bandwidth as a Function of Message Size

With the Hockney model: m
L+m/B .

 0

 200

 400

 600

 800

 1000

16Mo4Mo1Mo256Ko64Ko16Ko4Ko2Ko1Ko 256 128 64 32 16 8 4 2 1

B
a

n
d

e
 p

a
s
s
a

n
te

 [
M

b
it
s
/s

]

Taille des messages

Mpich 1.2.6 sans optimisation
Mpich 1.2.6 avec optimisation

MPICH, TCP with Gigabit Ethernet

49 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Bandwidth as a Function of Message Size

With the Hockney model: m
L+m/B .

 0

 200

 400

 600

 800

 1000

16Mo4Mo1Mo256Ko64Ko16Ko4Ko2Ko1Ko 256 128 64 32 16 8 4 2 1

B
a

n
d

e
 p

a
s
s
a

n
te

 [
M

b
it
s
/s

]

Taille des messages

Mpich 1.2.6 sans optimisation
Mpich 1.2.6 avec optimisation

MPICH, TCP with Gigabit Ethernet

49 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

What About TCP-based Networks?

The previous models work fine for parallel machines. Most networks
use TCP that has fancy flow-control mechanism and slow start. Is it
valid to use affine model for such networks?
The answer seems to be yes but latency and bandwidth parameters
have to be carefully measured [LQDB05].

I Probing for m = 1b and m = 1Mb leads to bad results.

I The whole middleware layers should be benchmarked (theoretical
latency is useless because of middleware, theoretical bandwidth is
useless because of middleware and latency).

The slow-start does not seem to be too harmful.
Most people forget that the round-trip time has a huge impact on the
bandwidth.

50 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Outline

5 Point to Point Communication Models
Hockney
LogP and Friends
TCP

6 Modeling Concurency
Multi-port
Single-port (Pure and Full Duplex)
Flows

7 Remind This is a Model, Hence Imperfect

8 Topology
A Few Examples
Virtual Topologies

51 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Multi-ports

I A given processor can communicate with as many other processors
as he wishes without any degradation.

I This model is widely used by scheduling theoreticians (think about
all DAG with commmunications scheduling problems) to prove
that their problem is hard and to know whether there is some
hope to prove some clever result or not.
This model is borderline, especially when allowing duplication,
when one communicates with everybody at the same time, or
when trying to design algorithms with super tight approximation
ratios.

Frankly, such a model is totally unrealistic.

I Using MPI and synchronous communica-
tions, it may not be an issue. However, with
multi-core, multi-processor machines, it can-
not be ignored. . .

Multi-port

1 1

1

A

CB

(numbers in s)
52 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Bounded Multi-port

I Assume now that we have threads or multi-core processors.

We can write that sum of the throughputs of all communications
(incomming and outgoing). Such a model is OK for wide-area
communications [HP04].

I Remember, the bounds due to the round-trip-time must not be
forgotten!

Multi-port (β)

β/2 β/2

β/2

A

CB

(numbers in Mb/s)

53 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Single-port (Pure)

I A process can communicate with only one other process at a time.
This constraint is generally written as a constraint on the sum of
communication times and is thus rather easy to use in a scheduling
context (even though it complexifies problems).

I This model makes sense when using non-threaded versions of com-
munication libraries (e.g., MPI). As soon as you’re allowed to
use threads, bounded-multiport seems a more reasonnable option
(both for performance and scheduling complexity).

1-port (pure)

1/3

1/3

1/3

A

CB

(numbers in s)
54 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Single-port (Full-Duplex)

At a given time, a process can be engaged in at most one emission and
one reception. This constraint is generally written as two constraints:
one on the sum of incomming communication times and one on the
sum of outgoing communication times.

1-port (full duplex)

1/2

1/2

1/2

A

CB

(numbers in Mb/s)

55 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Single-port (Full-Duplex)

This model somehow makes sense when using networks like Myrinet
that have few multiplexing units and with protocols without control
flow [Mar07].

Even if it does not model well complex situations, such a model is not
harmfull.

56 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Fluid Modeling

When using TCP-based networks, it is generally reasonnable to use
flows to model bandwidth sharing [MR99, Low03].

∀l ∈ L,∑
r∈R s.t. l∈r

%r 6 cl

Income Maximization maximize
∑
r∈R

%r

Max-Min Fairness maximize min
r∈R

%r

ATM

Proportional Fairness maximize
∑
r∈R

log(%r)

TCP Vegas

Potential Delay Minimization minimize
∑
r∈R

1

%r

Some weird function minimize
∑
r∈R

arctan(%r)

TCP Reno

57 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Fluid Modeling

When using TCP-based networks, it is generally reasonnable to use
flows to model bandwidth sharing [MR99, Low03].

∀l ∈ L,∑
r∈R s.t. l∈r

%r 6 cl

Income Maximization maximize
∑
r∈R

%r

Max-Min Fairness maximize min
r∈R

%r ATM

Proportional Fairness maximize
∑
r∈R

log(%r)

TCP Vegas

Potential Delay Minimization minimize
∑
r∈R

1

%r

Some weird function minimize
∑
r∈R

arctan(%r)

TCP Reno

57 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Flows Extensions

I Note that this model is a multi-port model with capacity-constraints
(like in the previous bounded multi-port).

I When latencies are large, using multiple connections enables to
get more bandwidth. As a matter of fact, there is very few to
loose in using multiple connections. . .

I Therefore many people enforce a sometimes artificial (but less
intrusive) bound on the maximum number of connections per
link [Wag05, MYCR06].

58 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Outline

5 Point to Point Communication Models
Hockney
LogP and Friends
TCP

6 Modeling Concurency
Multi-port
Single-port (Pure and Full Duplex)
Flows

7 Remind This is a Model, Hence Imperfect

8 Topology
A Few Examples
Virtual Topologies

59 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Remind This is a Model, Hence Imperfect

I The previous sharing models are nice but you generally do not
know other flows. . .

I Communications use the memory bus and hence interfere with
computations. Taking such interferences into account may be-
come more and more important with multi-core architectures.

I Interference between communications are sometimes. . . surprising.

Modeling is an art. You have to know your platform and your applica-
tion to know what is negligeable and what is important. Even if your
model is imperfect, you may still derive interesting results.

60 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Outline

5 Point to Point Communication Models
Hockney
LogP and Friends
TCP

6 Modeling Concurency
Multi-port
Single-port (Pure and Full Duplex)
Flows

7 Remind This is a Model, Hence Imperfect

8 Topology
A Few Examples
Virtual Topologies

61 / 272

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Various Topologies Used in the Litterature

62 / 272

Beyond MPI_Comm_rank()?

 So far, MPI gives us a unique number for each
processor

 With this one can do anything
 But it’s pretty inconvenient because one can do

anything with it
 Typically, one likes to impose constraints about

which processor/process can talk to which other
processor/process

 With this constraint, one can then think of the
algorithm in simpler terms
 There are fewer options for communications between

processors
 So there are fewer choices to implementing an

algorithm

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

63 / 272

Virtual Topologies?

 MPI provides an abstraction over physical computers
 Each host has an IP address
 MPI hides this address with a convenient numbers
 There could be multiple such numbers mapped to the same

IP address
 All “numbers” can talk to each other

 A Virtual Topology provides an abstraction over MPI
 Each process has a number, which may be different from

the MPI number
 There are rules about which “numbers” a “number” can talk

to
 A virtual topology is defined by specifying the

neighbors of each process

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

64 / 272

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

65 / 272

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

my_parent(i,j) = (i-1, floor(j/2))
my_left_child(i,j) = (i+1, j*2), if any
my_right_child(i,j) = (i+1, j*2+1), if any

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

66 / 272

Implementing a Virtual
Topology

0 1 2 3 4 5 6

0,0

1,0 1,1

2,0 2,1 2,2

3,0

(i,j) = (floor(log2(rank+1)), rank - 2max(i,0)+1)
rank = j -1 + 2max(i,0)

2,3

7

my_parent(i,j) = (i-1, floor(j/2))
my_left_child(i,j) = (i+1, j*2), if any
my_right_child(i,j) = (i+1, j*2+1), if any

MPI_Send(…, rank(my_parent(i,j)), …)

MPI_Recv(…, rank(my_left_child(i,j)), …)

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

67 / 272

Typical Topologies

 Common Topologies (see Section 3.1.2)
 Linear Array
 Ring
 2-D grid
 2-D torus
 One-level Tree
 Fully connected graph
 Arbitrary graph

 Two options for all topologies:
 Monodirectional links: more constrained but

simpler
 Bidirectional links: less constrained but

potential more complicated
 By “complicated” we typically mean more bug-prone

 We’ll look at Ring and Grid in detail

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

68 / 272

Main Assumption and Big
Question

 The main assumption is that once we’ve defined the virtual
topology we forget it’s virtual and write parallel algorithms
assuming it’s physical
 We assume communications on different (virtual) links do not

interfere with each other
 We assume that computations on different (virtual) processors

do not interfere with each other
 The big question: How well do these assumptions hold?

 The question being mostly about the network
 Two possible “bad” cases
 Case #1: the assumptions do not hold and there are

interferences
 We’ll most likely achieve bad performance
 Our performance models will be broken and reasoning about

performance improvements will be difficult
 Case #2: the assumptions do hold but we leave a lot of the

network resources unutilized
 We could perhaps do better with another virtual topology

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

69 / 272

Which Virtual Topology to
Pick

 We will see that some topologies are really well
suited to certain algorithms

 The question is whether they are well-suite to the
underlying architecture

 The goal is to strike a good compromise
 Not too bad given the algorithm
 Not too bad given the platform

 Fortunately, many platforms these days use
switches, which support naturally many virtual
topologies
 Because they support concurrent communications

between disjoint pairs of processors
 As part of a programming assignment, you will

explore whether some virtual topology makes
sense on our cluster

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

70 / 272

Topologies and Data
Distribution

 One of the common steps when writing a
parallel algorithm is to distribute some
data (array, data structure, etc.) among
the processors in the topology
 Typically, one does data distribution in a way

that matches the topology
 E.g., if the data is 3-D, then it’s nice to have a

3-D virtual topology
 One question that arises then is: how is

the data distributed across the topology?
 In the next set of slides we look at our first

topology: a ring

Parallel
Algorithms

A. Legrand

P2P
Communication

Hockney

LogP and
Friends

TCP

Modeling
Concurency

Multi-port

Single-port
(Pure and Full
Duplex)

Flows

Imperfection

Topology

A Few Examples

Virtual
Topologies

Courtesy of Henri Casanova

71 / 272

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Part III

Communications on a Ring

72 / 272

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Outline

9 Assumptions

10 Broadcast

11 Scatter

12 All-to-All

13 Broadcast: Going Faster

73 / 272

Ring Topology (Section 3.3)
 Each processor is identified by a

rank
 MY_NUM()

 There is a way to find the total
number of processors
 NUM_PROCS()

 Each processor can send a
message to its successor
 SEND(addr, L)

 And receive a message from its
predecessor
 RECV(addr, L)

 We’ll just use the above pseudo-
code rather than MPI

 Note that this is much simpler than
the example tree topology we saw
in the previous set of slides

P0

P1

P2

P3

Pp-1

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

74 / 272

Virtual vs. Physical Topology
 Now that we have chosen to consider a Ring

topology we “pretend” our physical topology is a
ring topology

 We can always implement a virtual ring topology
(see previous set of slides)
 And read Section 4.6

 So we can write many “ring algorithms”
 It may be that a better virtual topology is better

suited to our physical topology
 But the ring topology makes for very simple

programs and is known to be reasonably good in
practice

 So it’s a good candidate for our first look at
parallel algorithms

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

75 / 272

Cost of communication (Sect.
3.2.1)

 It is actually difficult to precisely model the cost
of communication
 E.g., MPI implementations do various optimizations

given the message sizes
 We will be using a simple model

Time = L + m/B
L: start-up cost or latency

 B: bandwidth (b = 1/B)
 m: message size

 We assume that if a message of length m is sent
from P0 to Pq, then the communication cost is q(L
+ m b)

 There are many assumptions in our model, some
not very realistic, but we’ll discuss them later

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

76 / 272

Assumptions about
Communications

 Several Options
 Both Send() and Recv() are blocking

 Called “rendez-vous”
 Very old-fashioned systems

 Recv() is blocking, but Send() is not
 Pretty standard
 MPI supports it

 Both Recv() and Send() are non-blocking
 Pretty standard as well
 MPI supports it

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

77 / 272

Assumptions about
Concurrency

 One question that’s important is: can the processor
do multiple things at the same time?

 Typically we will assume that the processor can
send, receive, and compute at the same time
 Call MPI_IRecv() Call MPI_ISend()
 Compute something

 This of course implies that the three operations are
independent
 E.g., you don’t want to send the result of the computation
 E.g., you don’t want to send what you’re receiving

(forwarding)
 When writing parallel algorithms (in pseudo-code),

we’ll simply indicate concurrent activities with a ||
sign

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

78 / 272

Collective Communications

 To write a parallel algorithm, we will need
collective operations
 Broadcasts, etc.

 Now MPI provide those, and they likely:
 Do not use the ring logical topology
 Utilize the physical resources well

 Let’s still go through the exercise of
writing some collective communication
algorithms

 We will see that for some algorithms we
really want to do these communications
“by hand” on our virtual topology rather
than using the MPI collective
communications!!

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

79 / 272

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Outline

9 Assumptions

10 Broadcast

11 Scatter

12 All-to-All

13 Broadcast: Going Faster

80 / 272

Broadcast (Section 3.3.1)

 We want to write a program that has Pk
send the same message of length m to all
other processors

Broadcast(k,addr,m)
 On the ring, we just send to the next

processor, and so on, with no parallel
communications whatsoever

 This is of course not the way one should
implement a broadcast in practice if the
physical topology is not merely a ring
 MPI uses some type of tree topology

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

81 / 272

Broadcast (Section 3.3.1)

Brodcast(k,addr,m)
 q = MY_NUM()
 p = NUM_PROCS()
 if (q == k)
 SEND(addr,m)
 else
 if (q == k1 mod p)
 RECV(addr,m)
 else
 RECV(addr,m)
 SEND(addr,m)
 endif
 endif

 Assumes a blocking
receive

 Sending may be
non-blocking

 The broadcast time
is

 (p-1)(L+m b)

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

82 / 272

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Outline

9 Assumptions

10 Broadcast

11 Scatter

12 All-to-All

13 Broadcast: Going Faster

83 / 272

Scatter (Section 3.2.2)

 Processor k sends a different message to
all other processors (and to itself)
 Pk stores the message destined to Pq at

address addr[q], including a message at
addr[k]

 At the end of the execution, each
processor holds the message it had
received in msg

 The principle is just to pipeline
communication by starting to send the
message destined to Pk-1, the most distant
processor

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

84 / 272

Scatter (Section 3.3.2)

Scatter(k,msg,addr,m)

 q = MY_NUM()

 p = NUM_PROCS()

 if (q == k)

 for i = 0 to p2

 SEND(addr[k+p1i mod p],m)

 msg ← addr[k]

 else

 RECV(tempR,L)

 for i = 1 to k1q mod p

 tempS ↔ tempR

 SEND(tempS,m) || RECV(tempR,m)

 msg ← tempR

Swapping of send buffer
and receive buffer (pointer)

Sending and
Receiving
in Parallel, with a
non blocking Send

Same execution time as the broadcast

(p-1)(L + m b)

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

85 / 272

Scatter (Section 3.3.2)
Scatter(k,msg,addr,m)

 q = MY_NUM()

 p = NUM_PROCS()

 if (q == k)

 for i = 0 to p2

 SEND(addr[k+p1i mod p],m)

 msg ← addr[k]

 else

 RECV(tempR,L)

 for i = 1 to k1q mod p

 tempS ↔ tempR

 SEND(tempS,m) || RECV(tempR,m)

 msg ← tempR

k = 2, p = 4

Proc q=2
send addr[2+4-1-0 % 4 = 1]
send addr[2+4-1-1 % 4 = 0]
send addr[2+4-1-2 % 4 = 3]
msg = addr[2]

Proc q=3
recv (addr[1])
// loop 2-1-3 % 4 = 2 times
send (addr[1]) || recv (addr[0])
send (addr[0]) || recv (addr[3])

msg = addr[3]

Proc q=0
recv (addr[1])
 // loop 2-1-2 % 4 = 1 time
send (addr[1]) || recv (addr[0])

msg = addr[0]

Proc q=1
 // loop 2-1-1 % 4 = 0 time
recv (addr[1])

msg = addr[1]

0
1

2

3

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

86 / 272

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Outline

9 Assumptions

10 Broadcast

11 Scatter

12 All-to-All

13 Broadcast: Going Faster

87 / 272

All-to-all (Section 3.3.3)
All2All(my_addr, addr, m)
 q = MY_NUM()
 p = NUM_PROCS()
 addr[q] ← my_addr
 for i = 1 to p1
 SEND(addr[qi+1 mod p],m)
 || RECV(addr[qi mod p],m)

Same execution time as the scatter

(p-1)(L + m b)

0
1

2 2

1
0

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

88 / 272

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Outline

9 Assumptions

10 Broadcast

11 Scatter

12 All-to-All

13 Broadcast: Going Faster

89 / 272

A faster broadcast?
 How can we improve performance?
 One can cut the message in many small

pieces, say in r pieces where m is divisible by
r.

 The root processor just sends r messages
 The performance is as follows

 Consider the last processor to get the last piece of the
message

 There need to be p-1 steps for the first piece to arrive,
which takes (p-1)(L + m b / r)

 Then the remaining r-1 pieces arrive one after another,
which takes (r-1)(L + m b / r)

 For a total of: (p - 2 + r) (L + mb / r)

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

90 / 272

A faster broadcast?

 The question is, what is the value of r that minimizes
 (p - 2 + r) (L + m b / r) ?

 One can view the above expression as (c+ar)(d+b/r),
with four constants a, b, c, d

 The non-constant part of the expression is then ad.r +
cb/r, which must be minimized

 It is known that this value is minimized for
 sqrt(cb / ad)

and we have

ropt = sqrt(m(p-2) b / L)
 with the optimal time
 (sqrt((p-2) L) + sqrt(m b))2

 which tends to mb when m is large, which is independent
of p!

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

91 / 272

Well-known Network Principle

 We have seen that if we cut a (large) message in
many (small) messages, then we can send the
message over multiple hops (in our case p-1)
almost as fast as we can send it over a single hop

 This is a fundamental principle of IP networks
 We cut messages into IP frames
 Send them over many routers
 But really go as fast as the slowest router

Parallel
Algorithms

A. Legrand

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going
Faster

Courtesy of Henri Casanova

92 / 272

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU

Part IV

Algorithms on a Ring

93 / 272

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU

Outline

14 Matrix Vector Product
Open MP Version
First MPI Version
Distributing Matrices
Second MPI Version
Third MPI Version
Mixed Parallelism Version

15 Matrix Multiplication

16 Stencil Application
Principle
Greedy Version
Reducing the Granularity

17 LU Factorization
Gaussian Elimination
LU

94 / 272

Parallel Matrix-Vector product

 y = A x
 Let n be the size of the matrix

 int a[n][n];
 int x[n];

 for i = 0 to n1 {
 y[i] = 0;
 for j = 0 to n1
 y[i] = y[i] + a[i,j] * x[j];
 }

a[N][N]

x[N]

y[N]

 How do we do this in
parallel?

Section 4.1 in the book

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

95 / 272

Parallel Matrix-Vector product

a[N][N]

x[N]

y[N]

 How do we do this in parallel?
 For example:

 Computations of elements of
vector y are independent

 Each of these computations
requires one row of matrix a and
vector x

 In shared-memory:

#pragma omp parallel for private(i,j)
for i = 0 to n1 {

 y[i] = 0;
 for j = 0 to n1

 y[i] = y[i] + a[i,j] * x[j];
 }

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

96 / 272

Parallel Matrix-Vector product

a[N][N]

x[N]

y[N]

 How do we do this in parallel?
 For example:

 Computations of elements of
vector y are independent

 Each of these computations
requires one row of matrix a and
vector x

 In shared-memory:

#pragma omp parallel for private(i,j)
for i = 0 to n1 {

 y[i] = 0;
 for j = 0 to n1

 y[i] = y[i] + a[i,j] * x[j];
 }

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

97 / 272

Parallel Matrix-Vector Product

 In distributed memory, one possibility is that
each process has a full copy of matrix a and of
vector x

 Each processor declares a vector y of size n/p
 We assume that p divides n

 Therefore, the code can just be
 load(a); load(x)
 p = NUM_PROCS(); r = MY_RANK();
 for (i=r*n/p; i<(r+1)*n/p; i++) {
 for (j=0;j<n;j++)
 y[ir*n/p] = a[i][j] * x[j];
 }
 It’s embarrassingly parallel
 What about the result?

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

98 / 272

What about the result?

 After the processes complete the computation, each
process has a piece of the result

 One probably wants to, say, write the result to a file
 Requires synchronization so that the I/O is done correctly

 For example
. . .

if (r != 0) {

 recv(&token,1);

}

open(file, “append”);

for (j=0; j<n/p ; j++)

 write(file, y[j]);

send(&token,1);

close(file)

barrier(); // optional

 Could also use a “gather” so that the entire vector is
returned to processor 0
 vector y fits in the memory of a single node

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

99 / 272

What if matrix a is too big?

 Matrix a may not fit in memory
 Which is a motivation to use distributed memory

implementations
 In this case, each processor can store only a

piece of matrix a
 For the matrix-vector multiply, each processor

can just store n/p rows of the matrix
 Conceptually: A[n][n]
 But the program declares a[n/p][n]

 This raises the (annoying) issue of global indices
versus local indices

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

100 / 272

Global vs. Local indices

 When an array is split among processes
 global index (I,J) that references an element of the matrix
 local index (i,j) that references an element of the local array

that stores a piece of the matrix
 Translation between global and local indices

 think of the algorithm in terms of global indices
 implement it in terms of local indices

Global: A[5][3]
Local: a[1][3] on process P1

a[i,j] = A[(n/p)*rank + i][j]P1

P0

P2

N

n / p

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

101 / 272

Global Index Computation

 Real-world parallel code often implements actual
translation functions
 GlobalToLocal()
 LocalToGlobal()

 This may be a good idea in your code, although
for the ring topology the computation is pretty
easy, and writing functions may be overkill

 We’ll see more complex topologies with more
complex associated data distributions and then
it’s probably better to implement such functions

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

102 / 272

Distributions of arrays

 At this point we have
 2-D array a distributed
 1-D array y distributed
 1-D array x replicated

 Having distributed arrays makes it possible to
partition work among processes
 But it makes the code more complex due to

global/local indices translations
 It may require synchronization to load/save the

array elements to file

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

103 / 272

All vector distributed?

 So far we have array x replicated
 It is usual to try to have all arrays involved in the

same computation be distributed in the same
way
 makes it easier to read the code without constantly

keeping track of what’s distributed and what’s not
 e.g., “local indices for array y are different from the global

ones, but local indices for array x are the same as the
global ones” will lead to bugs

 What one would like it for each process to have
 N/n rows of matrix A in an array a[n/p][n]
 N/n components of vector x in an array x[n/p]
 N/n components of vector y in an array y[n/p]

 Turns out there is an elegant solution to do this

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

104 / 272

Principle of the Algorithm

A00 A01 A02 A03 A04 A05 A06 A07

A10 A11 A12 A13 A14 A15 A16 A17
P0

x0

x1

A20 A21 A22 A23 A24 A25 A26 A27

A30 A31 A32 A33 A34 A35 A36 A37
P1

x2

x3

A40 A41 A42 A43 A44 A45 A46 A47

A50 A51 A52 A53 A54 A55 A56 A57
P2

x4

x5

A60 A61 A62 A63 A64 A65 A66 A67

A70 A71 A72 A73 A74 A75 A76 A77
P3

x6

x7

Initial data distribution
for:
 n = 8
 p = 4
 n/p = 2

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

105 / 272

Principle of the Algorithm

A00 A01 ● ● ● ● ● ●
A10 A11 ● ● ● ● ● ●P0

x0

x1

● ● A22 A23 ● ● ● ●
● ● A32 A33 ● ● ● ● P1

x2

x3

● ● ● ● A44 A45 ● ●
● ● ● ● A54 A55 ● ● P2

x4

x5

● ● ● ● ● ● A66 A67

● ● ● ● ● ● A76 A77
P3

x6

x7

Step 0

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

106 / 272

Principle of the Algorithm

● ● ● ● ● ● A06 A07

● ● ● ● ● ● A16 A17
P0

x6

x7

A20 A21 ● ● ● ● ● ●
A30 A31 ● ● ● ● ● ● P1

x0

x1

P2

x2

x3

P3

x4

x5

Step 1

● ● A42 A43 ● ● ● ●
● ● A52 A53 ● ● ● ●

● ● ● ● A64 A65 ● ●
● ● ● ● A74 A75 ● ●

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

107 / 272

Principle of the Algorithm

● ● ● ● ● ● A26 A27

● ● ● ● ● ● A36 A37

P0

x4

x5

A40 A41 ● ● ● ● ● ●
A50 A51 ● ● ● ● ● ●

P1

x6

x7

P2

x0

x1

P3

x2

x3

Step 2

● ● A62 A63 ● ● ● ●
● ● A72 A73 ● ● ● ●

● ● ● ● A04 A05 ● ●
● ● ● ● A14 A15 ● ●

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

108 / 272

Principle of the Algorithm

● ● ● ● ● ● A46 A47

● ● ● ● ● ● A56 A57

P0

x2

x3

A60 A61 ● ● ● ● ● ●
A70 A71 ● ● ● ● ● ●

P1

x4

x5

P2

x6

x7

P3

x0

x1

Step 3

● ● A02 A03 ● ● ● ●
● ● A12 A13 ● ● ● ●

● ● ● ● A24 A25 ● ●
● ● ● ● A34 A35 ● ●

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

109 / 272

Principle of the Algorithm

● ● ● ● ● ● A66 A67

● ● ● ● ● ● A76 A77

P0

x0

x1

A00 A01 ● ● ● ● ● ●
A10 A11 ● ● ● ● ● ●

P1

x2

x3

P2

x4

x5

P3

x6

x7

Final state

● ● A22 A23 ● ● ● ●
● ● A32 A33 ● ● ● ●

● ● ● ● A44 A45 ● ●
● ● ● ● A54 A55 ● ●

The final exchange of
vector x is not strictly
necessary, but one may
want to have it
distributed as the end of
the computation like it
was distributed at the
beginning.

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

110 / 272

Algorithm

float A[n/p][n], x[n/p], y[n/p];

r ← n/p
tempS ← x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */
 SEND(tempS,r)
 RECV(tempR,r)
 for (i=0; i<n/p; i++)
 for (j=0; j <n/p; j++)
 y[i] ← y[i] + a[i,(rank step mod p) * n/p + j] * tempS[j]
 tempS ↔ tempR
}

 Uses two buffers
 tempS for sending and tempR to receiving

 In our example, process of rank 2 at step 3 would work with
the 2x2 matrix block starting at column ((2 - 3) mod 4)*8/4
= 3 * 8 / 4 = 6;

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

111 / 272

A few General Principles
 Large data needs to be distributed among

processes (running on different nodes of a cluster
for instance)
 causes many arithmetic expressions for index

computation
 People who do this for a leaving always end up writing

local_to_global() and global_to_local() functions
 Data may need to be loaded/written before/after

the computation
 requires some type of synchronization among processes

 Typically a good idea to have all data structures
distributed similarly to avoid confusion about
which indices are global and which ones are local
 In our case, all indices are local

 In the end the code looks much more complex
than the equivalent OpenMP implementation

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

112 / 272

Performance

 There are p identical steps
 During each step each processor performs

three activities: computation, receive, and
sending
 Computation: r2 w

 w: time to perform one += * operation
 Receiving: L + r b
 Sending: L + r b

T(p) = p (r2w + 2L + 2rb)

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

113 / 272

Asymptotic Performance

 T(p) = p(r2w + 2L + 2rb)
 Speedup(p) = n2w / p (r2w + 2L + 2rb)

 = n2w / (n2w/p + 2pL + 2nb)
 Eff(p) = n2w / (n2w+ 2p2L + 2pnb)
 For p fixed, when n is large, Eff(p) ~ 1

 Conclusion: the algorithm is
asymptotically optimal

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

114 / 272

Performance (2)

 Note that an algorithm that initially broadcasts the
entire vector to all processors and then have every
processor compute independently would be in time

(p-1)(L + n b) + pr2 w
 Could use the pipelined broadcast

 which:
 has the same asymptotic performance
 is a simpler algorithm
 wastes only a tiny little bit of memory
 is arguably much less elegant

 It is important to think of simple solutions and see
what works best given expected matrix size, etc.

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

115 / 272

Back to the Algorithm

float A[n/p][n], x[n/p], y[n/p];
r ← n/p
tempS ← x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */
 SEND(tempS,r)
 RECV(tempR,r)
 for (i=0; i<n/p; i++)
 for (j=0; j <n/p; j++)
 y[i] ← y[i] + a[i,(rank step mod p) * n/p + j] * tempS[j]
 tempS ↔ tempR
}
 In the above code, at each iteration, the SEND, the RECV,

and the computation can all be done in parallel
 Therefore, one can overlap communication and

computation by using non-blocking SEND and RECV if
available

 MPI provides MPI_ISend() and MPI_IRecv() for this purpose

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

116 / 272

Nore Concurrent Algorithm

 Notation for concurrent activities:

float A[n/p][n], x[n/p], y[n/p];
tempS ← x /* My piece of the vector (n/p elements) */
r ← n/p
for (step=0; step<p; step++) { /* p steps */
 SEND(tempS,r)
 || RECV(tempR,r)
 || for (i=0; i<n/p; i++)
 for (j=0; j <n/p; j++)
 y[i] ← y[i]+a[i,(rankstep mod p)*n/p+j]*tempS[j]
 tempS ↔ tempR
}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

117 / 272

Better Performance

 There are p identical steps
 During each step each processor performs

three activities: computation, receive, and
sending
 Computation: r2w
 Receiving: L + rb
 Sending: L + rb

T(p) = p max(r2w , L + rb)

Same asymptotic performance as above, but
better performance for smaller values of n

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

118 / 272

Hybrid parallelism

 We have said many times that multi-core
architectures are about to become the standard

 When building a cluster, the nodes you will buy will
be multi-core

 Question: how to exploit the multiple cores?
 Or in our case how to exploit the multiple

processors in each node
 Option #1: Run multiple processes per node

 Causes more overhead and more
communication

 In fact will cause network communication among
processes within a node!

 MPI will not know that processes are co-
located

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

119 / 272

OpenMP MPI Program

 Option #2: Run a single multi-threaded process
per node
 Much lower overhead, fast communication

within a node
 Done by combining MPI with OpenMP!

 Just write your MPI program
 Add OpenMP pragmas around loops
 Let’s look back at our Matrix-Vector multiplication

example

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

120 / 272

Hybrid Parallelism
float A[n/p][n], x[n/p], y[n/p];
tempS ← x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */
 SEND(tempS,r)
 || RECV(tempR,r)
 || #pragma omp parallel for private(i,j)
 for (i=0; i<n/p; i++)
 for (j=0; j <n/p; j++)
 y[i] ← y[i] + a[i,(rank step mod p)*n/p+j]*
 tempS[j]
 tempS ↔ tempR
}

 This is called Hybrid Parallelism
 Communication via the network among nodes
 Communication via the shared memory within nodes

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

121 / 272

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU

Outline

14 Matrix Vector Product
Open MP Version
First MPI Version
Distributing Matrices
Second MPI Version
Third MPI Version
Mixed Parallelism Version

15 Matrix Multiplication

16 Stencil Application
Principle
Greedy Version
Reducing the Granularity

17 LU Factorization
Gaussian Elimination
LU

122 / 272

Matrix Multiplication on the
Ring

 See Section 4.2
 Turns out one can do matrix multiplication in a

way very similar to matrix-vector multiplication
 A matrix multiplication is just the computation

of n2 scalar products, not just n
 We have three matrices, A, B, and C
 We want to compute C = A*B
 We distribute the matrices to that each processor

“owns” a block row of each matrix
 Easy to do if row-major is used because all

matrix elements owned by a processor are
contiguous in memory

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

123 / 272

Data Distribution

r

n

A C

B

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

124 / 272

First Step

r

n

A1,0
+=

A1,1xB1,0

B1,0

A1,1
+=

A1,1xB1,1

B1,1 B1,2 B1,3

+=
A1,1xB1,3

+=
A1,1xB1,2

A1,3A1,2

p=4

let’s look at
processor P1

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

125 / 272

Shifting of block rows of B

r

n

Aq,0 Aq,1 Aq,3Aq,2

p=4

let’s look at
processor Pq

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

126 / 272

Second step

r

n

A1,0

B0,0

A1,1

B0,1 B0,2 B0,3

A1,3A1,2

p=4

let’s look at
processor P1

+=
A1,0xB0,0

+=
A1,0xB0,1

+=
A1,0xB0,3

+=
A1,0xB0,2

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

127 / 272

Algorithm

 In the end, every Ci,j block has the correct value: Ai,0B0,j + Ai,1B1,j +
...

 Basically, this is the same algorithm as for matrix-vector
multiplication, replacing the partial scalar products by submatrix
products (gets tricky with loops and indices)

float A[N/p][N], B[N/p][N], C[N/p][N];

r ← N/p

tempS ← B

q ← MY_RANK()

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,l*r+j] ← C[i,l*r+j] + A[i,r((q step)%p)+k] * tempS[k,l*r+j]

 tempS ↔ tempR

}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

128 / 272

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=0
l=0
i=0
j=0

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

129 / 272

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=0
l=0
i=0
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

130 / 272

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=0
l=0
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

131 / 272

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=0
l=1
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

132 / 272

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=0
l=*
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

133 / 272

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=1
l=*
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

134 / 272

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=2
l=*
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

135 / 272

Algorithm

for (step=0; step<p; step++) { /* p steps */

 SEND(tempS,r*N)

 || RECV(tempR,r*N)

 || for (l=0; l<p; l++)

 for (i=0; i<N/p; i++)

 for (j=0; j<N/p; j++)

 for (k=0; k<N/p; k++)

 C[i,lr+j] ← C[i,lr+j] + A[i,r((rank step)%p)+k] * tempS[k,lr+j]

 tempS ↔ tempR

} step=3
l=*
i=*
j=*

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

136 / 272

Performance

 Performance Analysis is straightforward
 p steps and each step takes time:

max (nr2 w, L + nrb)
 p rxr matrix products = pr3 = nr2 operations

 Hence, the running time is:
T(p) = p max (nr2 w , L + nrb)

 Note that a naive algorithm computing n
Matrix-vector products in sequence using
our previous algorithm would take time
T(p) = p max(nr2 w , nL + nrb)

 We just saved network latencies!

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

137 / 272

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU

Outline

14 Matrix Vector Product
Open MP Version
First MPI Version
Distributing Matrices
Second MPI Version
Third MPI Version
Mixed Parallelism Version

15 Matrix Multiplication

16 Stencil Application
Principle
Greedy Version
Reducing the Granularity

17 LU Factorization
Gaussian Elimination
LU

138 / 272

Stencil Application (Section
4.3)

 We’ve talked about stencil applications in the
context of shared-memory programs

 We found that we had to cut the matrix in “small”
blocks
 On a ring the same basic idea applies, but let’s do it step-

by-step

0 1

1 2

2 3

3 4

4 5

5 6

2 3

3 4

4 5

5 6

6 7

7 8

4 5

5 6

6 7

7 8

8 9

9 10

6

7

8

9

10

11

6 7 8 9 10 11 12

t+1

t+1 t

new = update(old,W,N)

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

139 / 272

Stencil Application

 Let us, for now, consider that the domain is of size nxn and
that we have p=n processors
 Classic way to first approach a problem

 Each processor is responsible for computing one row of the
domain (at each iteration)

 Each processor holds one row of the domain and has the
following declaration:

var A: array[0..n-1] of real
 One first simple idea is to have each processor send each

cell value to its neighbor as soon as that cell value is
computed

 Basic principle: do communication as early as possible to
get your “neighbors” started as early as possible
 Remember that one of the goals of a parallel program is to

reduce idle time on the processors
 We call this algorithm the Greedy algorithm, and seek an

evaluation of its performance

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

140 / 272

The Greedy Algorithm
q = MY_NUM()
p = NUM_PROCS
if (q == 0) then
 A[0] = Update(A[0],nil,nil)

Send(A[0],1)
else

Recv(v,1)
A[0] = Update(A[0],nil,v)

endif
for j = 1 to n-1

if (q == 0) then
A[j] = Update(A[j], A[j-1], nil)
Send(A[j],1)

elsif (q == p-1) then
Recv(v,1)
A[j] = Update(A[j], A[j-1], v)

else
Send(A[j-1], 1) || Recv(v,1)
A[j] = Update(A[j], A[j-1], v)

endif
endfor

First element of the row

Other elements

note the use of “nil”
for borders and corners

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

141 / 272

Greedy Algorithm

 This is all well and good, but typically we have n > p
 Assuming that p divides n, each processor will hold n/p

rows
 Good for load balancing

 The goal of a greedy algorithm is always to allow
processors to start computing as early as possible

 This suggests a cyclic allocation of rows among processors

 P1 can start computing after P0 has computed its first cell

P0
P1
P2
P0
P1
P2
P0
P1
P2

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

142 / 272

Greedy Algorithm

 Each processor holds n/p rows of the domain
 Thus it declares:

var A[0..n/p-1,n] of real
 Which is a contiguous array of rows, with these

rows not contiguous in the domain
 Therefore we have a non-trivial mapping

between global indices and local indices, but
we’ll see that they don’t appear in the code

 Let us rewrite the algorithm

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

143 / 272

The Greedy Algorithm
p = MY_NUM()
q = NUM_PROCS
For i = 0 to n/p -1

if (q == 0) and (i == 0) then
 A[0,0] = Update(A[0,0],nil,nil)

Send(A[0],1)
else

Recv(v,1)
A[i,0] = Update(A[i,0],nil,v)

endif
for j = 1 to n-1

if (q == 0) and (i == 0) then
A[i,j] = Update(A[i,j], A[i,j-1], nil)
Send(A[i,j],1)

elsif (q == p-1) and (i = n/p-1) then
Recv(v,1)
A[i,j] = Update(A[i,j], A[i-1,j], v)

else
Send(A[i,j-1], 1) || Recv(v,1)
A[i,j] = Update(A[i,j], A[i-1,j-1], v)

endif
endfor

endfor

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

144 / 272

Performance Analysis

 Let T(n,p) denote the computation time of the algorithm for
a nxn domain and with p processors

 A each step a processor does at most three things
 Receive a cell
 Send a cell
 Update a cell

 The algorithm is “clever” because at each step k, the
sending of messages from step k is overlapped with the
receiving of messages at step k+1

 Therefore, the time needed to compute one algorithm step
is the sum of
 Time to send/receive a cell: L + b
 Time to perform a cell update: w

 So, if we can count the number of steps, we can simply
multiply and get the overall execution time

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

145 / 272

Performance Analysis
 It takes p-1 steps before processor Pp-1 can start computing

its first cell
 Thereafter, this processor can compute one cell at every step
 The processor holds n*n/p cells
 Therefore, the whole program takes: p-1+n*n/p steps
 And the overall execution time:

T(n,p) = (p - 1 + n2/p) (w + L + b)
 The sequential time is: n2w
 The Speedup, S(n,p) = n2w / T(n,p)
 When n gets large, T(n,p) ~ n2/p (w + L + b)
 Therefore, Eff(n,p) ~ w / (w + L + b)
 This could be WAY below one

 In practice, and often, L + b >> w
 Therefore, this greedy algorithm is probably not a good idea

at all!

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

146 / 272

Granularity

 How do we improve on performance?
 What really kills performance is that we have to

do so much communication
 Many bytes of data
 Many individual messages

 So we we want is to augment the granularity of
the algorithm
 Our “tasks” are not going to be “update one

cell” but instead “update multiple cells”
 This will allow us to reduce both the amount of

data communicated and the number of messages
exchanged

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

147 / 272

Reducing the Granularity

 A simple approach: have a processor compute k
cells in sequence before sending them

 This is in conflict with the “get processors to
compute as early as possible” principle we based
our initial greedy algorithm on
 So we will reduce communication cost, but will

increase idle time
 Let use assume that k divides n
 Each row now consists of n/k segments

 If k does not divide n we have left over cells
and it complicates the program and the
performance analysis and as usual doesn’t
change the asymptotic performance analysis

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

148 / 272

Reducing the Granularity

0 1 2 3P0

1 2 3 4P1

2 3 4 5P2

3 4 5 6P3

k

 The algorithm computes segment after segment
 The time before P1 can start computing is the

time for P0 to compute a whole segment
 Therefore, it will take longer until Pp-1 can start

computing

4 5 6P0

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

149 / 272

Reducing the Granularity
More

 So far, we’ve allocated non-contiguous rows of
the domain to each processor

 But we can reduce communication by allocating
processors groups of contiguous rows
 If two contiguous rows are on the same

processors, there is no communication
involved to update the cells of the second row

 Let us use say that we allocate blocks of rows of
size r to each processor
 We assume that r*p divides n

 Processor Pi holds rows j such that
i = floor(j/r) mod p

 This is really a “block cyclic” allocation

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

150 / 272

Reducing the Granularity

0 1 2 3P0

1 2 3 4P1

2 3 4 5P2

3 4 5 6P3

k

r

4 5 6 7P0

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

151 / 272

Idle Time?

 One question is: does any processor stay idle?
 Processor P0 computes all values in its first block

of rows in n/k algorithm steps
 After that, processor P0 must wait for cell values

from processor Pp-1

 But Pp-1 cannot start computing before p steps
 Therefore:

 If p >= n/k, P0 is idle

 If p < n/k, P1 is not idle

 If p < n/k, then processors had better be able to
buffer received cells while they are still
computing
 Possible increase in memory consumption

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

152 / 272

Performance Analysis

 It is actually very simple
 At each step a processor is involved at most in

 Receiving k cells from its predecessor
 Sending k cells to its successor
 Updating k*r cells

 Since sending and receiving are overlapped, the
time to perform a step is L + k b + k r w

 Question: How many steps?
 Answer: It takes p-1 steps before Pp-1 can start

doing any thing. Pp-1 holds n2/(pkr) blocks
 Execution time:

T(n,p,r,k) = (p-1 + n2/(pkr)) (L + kb + k r w)

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

153 / 272

Performance Analysis

 Our naïve greedy algorithm had asymptotic efficiency equal
to w / (w + L + b)

 This algorithm does better: Assympt. Eff = w / (w + L/rk +
b/r)
 Divide n2w by p T(n,p,r,k)
 And make n large

 In the formula for the efficiency we clearly see the effect of
the granularity increase

 Asymptotic efficiency is higher
 But not equal to 1
 Therefore, this is a “difficult” application to parallelize

 We can try to do the best we can by increasing r and k, but it’s
never going to be perfect

 One can compute the optimal values of r and k using
numerical solving
 See the book for details

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

154 / 272

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU

Outline

14 Matrix Vector Product
Open MP Version
First MPI Version
Distributing Matrices
Second MPI Version
Third MPI Version
Mixed Parallelism Version

15 Matrix Multiplication

16 Stencil Application
Principle
Greedy Version
Reducing the Granularity

17 LU Factorization
Gaussian Elimination
LU

155 / 272

Solving Linear Systems of Eq.

 Method for solving Linear Systems
 The need to solve linear systems arises in an estimated 75% of all scientific

computing problems [Dahlquist 1974]
 Gaussian Elimination is perhaps the most well-known

method
 based on the fact that the solution of a linear system is

invariant under scaling and under row additions
 One can multiply a row of the matrix by a constant as long as one

multiplies the corresponding element of the right-hand side by the
same constant

 One can add a row of the matrix to another one as long as one
adds the corresponding elements of the right-hand side

 Idea: scale and add equations so as to transform matrix A in
an upper triangular matrix:

?
?

?
?
?

x =

equation n-i has i unknowns, with

?

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

156 / 272

Gaussian Elimination

-121

2-21

111

2

4

0

x =

-210

1-30

111

2

4

0

x =

-500

1-30

111

1
0

4

0

x =

Subtract row 1 from rows 2 and 3

Multiple row 3 by 3 and add row 2

-5x3 = 10 x3 = -2
-3x2 + x3 = 4 x2 = -2
x1 + x2 + x3 = 0 x1 = 4

Solving equations in
reverse order (backsolving)

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

157 / 272

Gaussian Elimination

 The algorithm goes through the matrix from the
top-left corner to the bottom-right corner

 the ith step eliminates non-zero sub-diagonal
elements in column i, substracting the ith row
scaled by aji/aii from row j, for j=i+1,..,n.

i

0

values already computed

values yet to be
updated

pivot row i

to
 b

e
 z

e
ro

e
d

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

158 / 272

Sequential Gaussian
Elimination

Simple sequential algorithm

// for each column i
// zero it out below the diagonal by adding
// multiples of row i to later rows
for i = 1 to n1
 // for each row j below row i
 for j = i+1 to n
 // add a multiple of row i to row j
 for k = i to n
 A(j,k) = A(j,k) (A(j,i)/A(i,i)) * A(i,k)

 Several “tricks” that do not change the spirit of the
algorithm but make implementation easier and/or more
efficient
 Right-hand side is typically kept in column n+1 of the matrix

and one speaks of an augmented matrix
 Compute the A(i,j)/A(i,i) term outside of the loop

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

159 / 272

Pivoting: Motivation

 A few pathological cases

 Division by small numbers → round-off error in computer
arithmetic

 Consider the following system
0.0001x1 + x2 = 1.000

x1 + x2 = 2.000

 exact solution: x1=1.00010 and x2 = 0.99990

 say we round off after 3 digits after the decimal point
 Multiply the first equation by 104 and subtract it from the second

equation
 (1 - 1)x1 + (1 - 104)x2 = 2 - 104

 But, in finite precision with only 3 digits:
 1 - 104 = -0.9999 E+4 ~ -0.999 E+4
 2 - 104 = -0.9998 E+4 ~ -0.999 E+4

 Therefore, x2 = 1 and x1 = 0 (from the first equation)

 Very far from the real solution!

11

10

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

160 / 272

Partial Pivoting

 One can just swap rows
x1 + x2 = 2.000

0.0001x1 + x2 = 1.000
 Multiple the first equation my 0.0001 and subtract it from the second

equation gives:
(1 - 0.0001)x2 = 1 - 0.0001
0.9999 x2 = 0.9999 => x2 = 1

and then x1 = 1
 Final solution is closer to the real solution. (Magical?)
 Partial Pivoting

 For numerical stability, one doesn’t go in order, but pick the next row in rows i to
n that has the largest element in row i

 This row is swapped with row i (along with elements of the right hand side)
before the subtractions

 the swap is not done in memory but rather one keeps an indirection array
 Total Pivoting

 Look for the greatest element ANYWHERE in the matrix
 Swap columns
 Swap rows

 Numerical stability is really a difficult field

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

161 / 272

Parallel Gaussian
Elimination?

 Assume that we have one processor per matrix element

Reduction Broadcast Compute

Broadcasts Compute

to find the max aji

max aji needed to compute
the scaling factor Independent computation

of the scaling factor

Every update needs the
scaling factor and the
element from the pivot row

Independent
computations

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

162 / 272

Solving Linear Systems of Eq.

 Method for solving Linear Systems
 The need to solve linear systems arises in an estimated 75% of all scientific

computing problems [Dahlquist 1974]
 Gaussian Elimination is perhaps the most well-known

method
 based on the fact that the solution of a linear system is

invariant under scaling and under row additions
 One can multiply a row of the matrix by a constant as long as one

multiplies the corresponding element of the right-hand side by the
same constant

 One can add a row of the matrix to another one as long as one
adds the corresponding elements of the right-hand side

 Idea: scale and add equations so as to transform matrix A in
an upper triangular matrix:

?
?

?
?
?

x =

equation n-i has i unknowns, with

?

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

163 / 272

Gaussian Elimination

-121

2-21

111

2

4

0

x =

-210

1-30

111

2

4

0

x =

-500

1-30

111

1
0

4

0

x =

Subtract row 1 from rows 2 and 3

Multiple row 3 by 3 and add row 2

-5x3 = 10 x3 = -2
-3x2 + x3 = 4 x2 = -2
x1 + x2 + x3 = 0 x1 = 4

Solving equations in
reverse order (backsolving)

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

164 / 272

Gaussian Elimination

 The algorithm goes through the matrix from the
top-left corner to the bottom-right corner

 the ith step eliminates non-zero sub-diagonal
elements in column i, substracting the ith row
scaled by aji/aii from row j, for j=i+1,..,n.

i

0

values already computed

values yet to be
updated

pivot row i

to
 b

e
 z

e
ro

e
d

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

165 / 272

Sequential Gaussian
Elimination

Simple sequential algorithm

// for each column i
// zero it out below the diagonal by adding
// multiples of row i to later rows
for i = 1 to n1
 // for each row j below row i
 for j = i+1 to n
 // add a multiple of row i to row j
 for k = i to n
 A(j,k) = A(j,k) (A(j,i)/A(i,i)) * A(i,k)

 Several “tricks” that do not change the spirit of the
algorithm but make implementation easier and/or more
efficient
 Right-hand side is typically kept in column n+1 of the matrix

and one speaks of an augmented matrix
 Compute the A(i,j)/A(i,i) term outside of the loop

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

166 / 272

Pivoting: Motivation

 A few pathological cases

 Division by small numbers → round-off error in computer
arithmetic

 Consider the following system
0.0001x1 + x2 = 1.000

x1 + x2 = 2.000

 exact solution: x1=1.00010 and x2 = 0.99990

 say we round off after 3 digits after the decimal point
 Multiply the first equation by 104 and subtract it from the second

equation
 (1 - 1)x1 + (1 - 104)x2 = 2 - 104

 But, in finite precision with only 3 digits:
 1 - 104 = -0.9999 E+4 ~ -0.999 E+4
 2 - 104 = -0.9998 E+4 ~ -0.999 E+4

 Therefore, x2 = 1 and x1 = 0 (from the first equation)

 Very far from the real solution!

11

10

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

167 / 272

Partial Pivoting

 One can just swap rows
x1 + x2 = 2.000

0.0001x1 + x2 = 1.000
 Multiple the first equation my 0.0001 and subtract it from the second

equation gives:
(1 - 0.0001)x2 = 1 - 0.0001
0.9999 x2 = 0.9999 => x2 = 1

and then x1 = 1
 Final solution is closer to the real solution. (Magical?)
 Partial Pivoting

 For numerical stability, one doesn’t go in order, but pick the next row in rows i to
n that has the largest element in row i

 This row is swapped with row i (along with elements of the right hand side)
before the subtractions

 the swap is not done in memory but rather one keeps an indirection array
 Total Pivoting

 Look for the greatest element ANYWHERE in the matrix
 Swap columns
 Swap rows

 Numerical stability is really a difficult field

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

168 / 272

Parallel Gaussian
Elimination?

 Assume that we have one processor per matrix element

Reduction Broadcast Compute

Broadcasts Compute

to find the max aji

max aji needed to compute
the scaling factor Independent computation

of the scaling factor

Every update needs the
scaling factor and the
element from the pivot row

Independent
computations

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

169 / 272

LU Factorization (Section 4.4)
 Gaussian Elimination is simple but

 What if we have to solve many Ax = b systems for different values of b?
 This happens a LOT in real applications

 Another method is the “LU Factorization”
 Ax = b
 Say we could rewrite A = L U, where L is a lower triangular matrix, and U is

an upper triangular matrix O(n3)
 Then Ax = b is written L U x = b
 Solve L y = b O(n2)
 Solve U x = y O(n2)

?
?
?
?
?
?

x =
?
?
?
?
?
?

x =

equation i has i unknowns equation n-i has i unknowns

triangular system solves are easy

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

170 / 272

LU Factorization: Principle
 It works just like the Gaussian Elimination, but instead of zeroing

out elements, one “saves” scaling coefficients.

 Magically, A = L x U !
 Should be done with pivoting as well

322

134

-
1

21

322

5-
5

0

-
1

21
gaussian

elimination

save the
scaling
factor

322

5-
5

4

-
1

21 gaussian
elimination

+
save the
scaling
factor

5-
2

2

5-
5

4

-
1

21

gaussian
elimination

+
save the
scaling
factor

32/52

5-54

-121

12/52

014

001

L =
300

5-50

-121

U =

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

171 / 272

LU Factorization

 We’re going to look at the simplest possible version
 No pivoting:just creates a bunch of indirections that are easy but make

the code look complicated without changing the overall principle

stores the scaling factors

k

k

LUsequential(A,n) {
 for k = 0 to n2 {
 // preparing column k
 for i = k+1 to n1
 aik ← aik / akk

 for j = k+1 to n1
 // Task Tkj: update of column j
 for i=k+1 to n1
 aij ← aij + aik * akj

 }
}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

172 / 272

LU Factorization

 We’re going to look at the simplest possible version
 No pivoting:just creates a bunch of indirections that are easy

but make the code look complicated without changing the
overall principle

LUsequential(A,n) {
 for k = 0 to n2 {
 // preparing column k
 for i = k+1 to n1
 aik ← aik / akk

 for j = k+1 to n1
 // Task Tkj: update of column j
 for i=k+1 to n1
 aij ← aij + aik * akj

 }
}

k

i
j

k

update

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

173 / 272

Parallel LU on a ring

 Since the algorithm operates by columns from left to right,
we should distribute columns to processors

 Principle of the algorithm
 At each step, the processor that owns column k does the

“prepare” task and then broadcasts the bottom part of column
k to all others

 Annoying if the matrix is stored in row-major fashion
 Remember that one is free to store the matrix in anyway one

wants, as long as it’s coherent and that the right output is
generated

 After the broadcast, the other processors can then update
their data.

 Assume there is a function alloc(k) that returns the rank of
the processor that owns column k
 Basically so that we don’t clutter our program with too many

global-to-local index translations
 In fact, we will first write everything in terms of global

indices, as to avoid all annoying index arithmetic

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

174 / 272

LU-broadcast algorithm

LUbroadcast(A,n) {
 q ← MY_NUM()
 p ← NUM_PROCS()
 for k = 0 to n2 {
 if (alloc(k) == q)
 // preparing column k
 for i = k+1 to n1
 buffer[ik1] ← aik ← aik / akk

 broadcast(alloc(k),buffer,nk1)
 for j = k+1 to n1
 if (alloc(j) == q)
 // update of column j
 for i=k+1 to n1
 aij ← aij + buffer[ik1] * akj

 }
}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

175 / 272

Dealing with local indices

 Assume that p divides n
 Each processor needs to store r=n/p columns and

its local indices go from 0 to r-1
 After step k, only columns with indices greater

than k will be used
 Simple idea: use a local index, l, that everyone

initializes to 0
 At step k, processor alloc(k) increases its local

index so that next time it will point to its next
local column

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

176 / 272

LU-broadcast algorithm

...
 double a[n1][r1];

 q ← MY_NUM()
 p ← NUM_PROCS()
 l ← 0
 for k = 0 to n2 {
 if (alloc(k) == q)
 for i = k+1 to n1
 buffer[ik1] ← a[i,k] ← a[i,l] / a[k,l]
 l ← l+1
 broadcast(alloc(k),buffer,nk1)
 for j = l to r1
 for i=k+1 to n1
 a[i,j] ← a[i,j] + buffer[ik1] * a[k,j]
 }
}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

177 / 272

What about the Alloc
function?

 One thing we have left completely unspecified is
how to write the alloc function: how are columns
distributed among processors

 There are two complications:
 The amount of data to process varies throughout the

algorithm’s execution
 At step k, columns k+1 to n-1 are updated
 Fewer and fewer columns to update

 The amount of computation varies among columns
 e.g., column n-1 is updated more often than column 2
 Holding columns on the right of the matrix leads to much

more work
 There is a strong need for load balancing

 All processes should do the same amount of work

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

178 / 272

Bad load balancing
P1 P2 P3 P4

already
done

already
done working

on it

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

179 / 272

Good Load Balancing?

working
on it

already
done

already
done

Cyclic distribution

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

180 / 272

Proof that load balancing is
good

 The computation consists of two types of operations
 column preparations
 matrix element updates

 There are many more updates than preparations, so we really
care about good balancing of the preparations

 Consider column j
 Let’s count the number of updates performed by the processor

holding column j
 Column j is updated at steps k=0, ..., j-1
 At step k, elements i=k+1, ..., n-1 are updates

 indices start at 0
 Therefore, at step k, the update of column j entails n-k-1 updates
 The total number of updates for column j in the execution is:

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

181 / 272

Proof that load balancing is
good

 Consider processor Pi, which holds columns lp+i for l=0, ... , n/p -1
 Processor Pi needs to perform this many updates:

 Turns out this can be computed
 separate terms
 use formulas for sums of integers and sums of squares

 What it all boils down to is:

 This does not depend on i !!
 Therefore it is (asymptotically) the same for all Pi processors
 Therefore we have (asymptotically) perfect load balancing!

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

182 / 272

Load-balanced program

...
 double a[n1][r1];

 q ← MY_NUM()
 p ← NUM_PROCS()
 l ← 0
 for k = 0 to n2 {
 if (k mod p == q)
 for i = k+1 to n1
 buffer[ik1] ← a[i,k] ← a[i,l] / a[k,l]
 l ← l+1
 broadcast(alloc(k),buffer,nk1)
 for j = l to r1
 for i=k+1 to n1
 a[i,j] ← a[i,j] + buffer[ik1] * a[k,j]
 }
}

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

183 / 272

Performance Analysis

 How long does this code take to run?
 This is not an easy question because there are

many tasks and many communications
 A little bit of analysis shows that the execution

time is the sum of three terms
 n-1 communications: n L + (n2/2) b + O(1)
 n-1 column preparations: (n2/2) w’ + O(1)
 column updates: (n3/3p) w + O(n2)

 Therefore, the execution time is ~ (n3/3p) w
 Note that the sequential time is: (n3 /3) w
 Therefore, we have perfect asymptotic efficiency!
 This is good, but isn’t always the best in practice
 How can we improve this algorithm?

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

184 / 272

Pipelining on the Ring

 So far, the algorithm we’ve used a simple
broadcast

 Nothing was specific to being on a ring of
processors and it’s portable
 in fact you could just write raw MPI that just looks like

our pseudo-code and have a very limited, inefficient for
small n, LU factorization that works only for some
number of processors

 But it’s not efficient
 The n-1 communication steps are not overlapped with

computations
 Therefore Amdahl’s law, etc.

 Turns out that on a ring, with a cyclic distribution
of the columns, one can interleave pieces of the
broadcast with the computation
 It almost looks like inserting the source code from the

broadcast code we saw at the very beginning
throughout the LU code

Parallel
Algorithms

A. Legrand

Matrix Vector
Product

Open MP
Version

First MPI
Version

Distributing
Matrices

Second MPI
Version

Third MPI
Version

Mixed
Parallelism
Version

Matrix
Multiplication

Stencil
Application

Principle

Greedy Version

Reducing the
Granularity

LU Factorization

Gaussian
Elimination

LU
Courtesy of Henri Casanova

185 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Part V

A Complete Example on an Heterogeneous Ring

186 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

The Context: Distributed Heterogeneous Platforms

How to embed a ring in a complex network [LRRV04].
Sources of problems

I Heterogeneity of processors (computational power, memory, etc.)

I Heterogeneity of communications links.

I Irregularity of interconnection network.

187 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Targeted Applications: Iterative Algorithms

I A set of data (typically, a matrix)

I Structure of the algorithms:
1 Each processor performs a computation on its chunk of data
2 Each processor exchange the “border” of its chunk of data with

its neighbor processors
3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

188 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Targeted Applications: Iterative Algorithms

I A set of data (typically, a matrix)

I Structure of the algorithms:
1 Each processor performs a computation on its chunk of data
2 Each processor exchange the “border” of its chunk of data with

its neighbor processors
3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

188 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

The Questions

I Which processors should be used ?

I What amount of data should we give them ?

I How do we cut the set of data ?

189 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:

1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

190 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:

1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

190 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:

1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

190 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:
1 Borders and neighbors are easily defined

2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

190 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:
1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

190 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

I Unidimensional cutting into vertical slices

I Consequences:
1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

190 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Notations

I Processors: P1, ..., Pp

I Processor Pi executes a unit task in a time wi

I Overall amount of work Dw ;
Share of Pi : αi .Dw processed in a time αi .Dw .wi

(αi > 0,
∑

j αj = 1)

I Cost of a unit-size communication from Pi to Pj : ci,j

I Cost of a sending from Pi to its successor in the ring: Dc .ci,succ(i)

191 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Communications: 1-Port Model (Full-Duplex)

A processor can:

I send at most one message at any time;

I receive at most one message at any time;

I send and receive a message simultaneously.

192 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
16i6p

I{i}[αi .Dw .wi + Dc .(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0 other-
wise

193 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
16i6p

I{i}[αi .Dw .wi + Dc .(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0 other-
wise

193 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
16i6p

I{i}[αi .Dw .wi + Dc .(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0 other-
wise

193 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
16i6p

I{i}[αi .Dw .wi + Dc .(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0 other-
wise

193 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Special Hypotheses

1 There exists a communication link between any two processors

2 All links have the same capacity
(∃c ,∀i , j ci,j = c)

194 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Consequences

I Either the most powerful processor performs all the work, or all
the processors participate

I If all processors participate, all end their share of work simultane-
ously

(∃τ, αi .Dw .wi = τ , so 1 =
∑

i
τ

Dw .wi
)

I Time of the optimal solution:

Tstep = min

{
Dw .wmin,Dw .

1∑
i

1
wi

+ 2.Dc .c

}

195 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Consequences

I Either the most powerful processor performs all the work, or all
the processors participate

I If all processors participate, all end their share of work simultane-
ously

(∃τ, αi .Dw .wi = τ , so 1 =
∑

i
τ

Dw .wi
)

I Time of the optimal solution:

Tstep = min

{
Dw .wmin,Dw .

1∑
i

1
wi

+ 2.Dc .c

}

195 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Consequences

I Either the most powerful processor performs all the work, or all
the processors participate

I If all processors participate, all end their share of work simultane-
ously(∃τ, αi .Dw .wi = τ , so 1 =

∑
i

τ
Dw .wi

)

I Time of the optimal solution:

Tstep = min

{
Dw .wmin,Dw .

1∑
i

1
wi

+ 2.Dc .c

}

195 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Consequences

I Either the most powerful processor performs all the work, or all
the processors participate

I If all processors participate, all end their share of work simultane-
ously(∃τ, αi .Dw .wi = τ , so 1 =

∑
i

τ
Dw .wi

)

I Time of the optimal solution:

Tstep = min

{
Dw .wmin,Dw .

1∑
i

1
wi

+ 2.Dc .c

}

195 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Special hypothesis

1 There exists a communication link between any two processors

196 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Study (1)

time

Dc .c1,5

Dc .c1,2

Dc .c2,1

Dc .c2,3

Dc .c3,2

Dc .c4,3

Dc .c4,5

Dc .c5,4

Dc .c5,1

α5.Dw .w5

P1 P2 P3 P4 P5

α4.Dw .w4
Dc .c3,4

α3.Dw .w3

α2.Dw .w2

α1.Dw .w1

processors

All processors end simultaneously

197 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Study (2)

I All processors end simultaneously

Tstep = αi .Dw .wi + Dc .(ci,succ(i) + ci,pred(i))

I

p∑
i=1

αi = 1 ⇒
p∑

i=1

Tstep − Dc .(ci,succ(i) + ci,pred(i))

Dw .wi
= 1. Thus

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

where wcumul = 1P
i

1
wi

198 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Study (2)

I All processors end simultaneously

Tstep = αi .Dw .wi + Dc .(ci,succ(i) + ci,pred(i))

I

p∑
i=1

αi = 1 ⇒
p∑

i=1

Tstep − Dc .(ci,succ(i) + ci,pred(i))

Dw .wi
= 1. Thus

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

where wcumul = 1P
i

1
wi

198 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Interpretation

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)

wi
is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the
edge from Pi to Pj has a weight of di,j =

ci,j

wi
+

cj,i

wj

NP-complete problem

199 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Interpretation

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)

wi
is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the
edge from Pi to Pj has a weight of di,j =

ci,j

wi
+

cj,i

wj

NP-complete problem

199 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Interpretation

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)

wi
is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the
edge from Pi to Pj has a weight of di,j =

ci,j

wi
+

cj,i

wj

NP-complete problem

199 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Interpretation

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)

wi
is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the
edge from Pi to Pj has a weight of di,j =

ci,j

wi
+

cj,i

wj

NP-complete problem

199 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

All the Processors Participate: Linear Program

Minimize
∑p

i=1

∑p
j=1 di,j .xi,j ,

satisfying the (in)equations
(1)

∑p
j=1 xi,j = 1 1 6 i 6 p

(2)
∑p

i=1 xi,j = 1 1 6 j 6 p
(3) xi,j ∈ {0, 1} 1 6 i , j 6 p
(4) ui − uj + p.xi,j 6 p − 1 2 6 i , j 6 p, i 6= j
(5) ui integer, ui > 0 2 6 i 6 p

xi,j = 1 if, and only if, the edge from Pi to Pj is used

200 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

General Case: Linear program

Best ring made of q processors

Minimize T satisfying the (in)equations8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

(1) xi,j ∈ {0, 1} 1 6 i , j 6 p
(2)

Pp
i=1 xi,j 6 1 1 6 j 6 p

(3)
Pp

i=1

Pp
j=1 xi,j = q

(4)
Pp

i=1 xi,j =
Pp

i=1 xj,i 1 6 j 6 p

(5)
Pp

i=1 αi = 1
(6) αi 6

Pp
j=1 xi,j 1 6 i 6 p

(7) αi .wi + Dc
Dw

Pp
j=1(xi,jci,j + xj,icj,i) 6 T 1 6 i 6 p

(8)
Pp

i=1 yi = 1
(9) − p.yi − p.yj + ui − uj + q.xi,j 6 q − 1 1 6 i , j 6 p, i 6= j
(10) yi ∈ {0, 1} 1 6 i 6 p
(11) ui integer, ui > 0 1 6 i 6 p

201 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Linear Programming

I Problems with rational variables: can be solved in polynomial time
(in the size of the problem).

I Problems with integer variables: solved in exponential time in the
worst case.

I No relaxation in rationals seems possible here. . .

202 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

And, in Practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)

No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors. . .

2 Greedy heuristic: initially we take the best pair of processors; for
a given ring we try to insert any unused processor in between any
pair of neighbor processors in the ring. . .

203 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

And, in Practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)
No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors. . .

2 Greedy heuristic: initially we take the best pair of processors; for
a given ring we try to insert any unused processor in between any
pair of neighbor processors in the ring. . .

203 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

And, in Practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)
No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors. . .

2 Greedy heuristic: initially we take the best pair of processors; for
a given ring we try to insert any unused processor in between any
pair of neighbor processors in the ring. . .

203 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

New Difficulty: Communication Links Sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

204 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

New Difficulty: Communication Links Sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

204 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

New Difficulty: Communication Links Sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

204 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

New Difficulty: Communication Links Sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

204 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

New Notations

I A set of communications links: e1, ..., en

I Bandwidth of link em: bem

I There is a path Si from Pi to Psucc(i) in the network

I Si uses a fraction si,m of the bandwidth bem of link em

I Pi needs a time Dc .
1

minem∈Si si,m
to send to its successor a mes-

sage of size Dc

I Constraints on the bandwidth of em:
X

16i6p

si,m 6 bem

I Symmetrically, there is a path Pi from Pi to Ppred(i) in the network,
which uses a fraction pi,m of the bandwidth bem of link em

205 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Ring

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

I 7 processors and 8 bidirectional communications links

I We choose a ring of 5 processors:
P1 → P2 → P3 → P4 → P5 (we use neither Q, nor R)

206 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Ring

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

I 7 processors and 8 bidirectional communications links

I We choose a ring of 5 processors:
P1 → P2 → P3 → P4 → P5 (we use neither Q, nor R)

206 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.
From P2 to P1, we use the links b, g and h: P2 = {b, g , h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}

From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}

From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f }

From P4: to P5, S4 = {f , b, g} and to P3, P4 = {e, d}

From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f }

207 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.

From P2 to P1, we use the links b, g and h: P2 = {b, g , h}.
From P1: to P2, S1 = {a, b} and to P5, P1 = {h}

From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}

From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f }

From P4: to P5, S4 = {f , b, g} and to P3, P4 = {e, d}

From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f }

207 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.
From P2 to P1, we use the links b, g and h: P2 = {b, g , h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}

From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}

From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f }

From P4: to P5, S4 = {f , b, g} and to P3, P4 = {e, d}

From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f }

207 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Choosing the Paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.
From P2 to P1, we use the links b, g and h: P2 = {b, g , h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}

From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}

From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f }

From P4: to P5, S4 = {f , b, g} and to P3, P4 = {e, d}

From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f }

207 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Bandwidth Sharing

From P1 to P2 we use links a and b: c1,2 = 1
min(s1,a,s1,b) .

From P1 to P5 we use the link h: c1,5 = 1
p1,h

.

Set of all sharing constraints:
Lien a: s1,a 6 ba

Lien b: s1,b + s4,b + p2,b + p5,b 6 bb

Lien c: s2,c 6 bc

Lien d : s2,d + s3,d + p3,d + p4,d 6 bd

Lien e: s3,e + p3,e + p4,e 6 be

Lien f : s4,f + p3,f + p5,f 6 bf

Lien g : s4,g + p2,g + p5,g 6 bg

Lien h: s5,h + p1,h + p2,h 6 bh

208 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Bandwidth Sharing

From P1 to P2 we use links a and b: c1,2 = 1
min(s1,a,s1,b) .

From P1 to P5 we use the link h: c1,5 = 1
p1,h

.

Set of all sharing constraints:
Lien a: s1,a 6 ba

Lien b: s1,b + s4,b + p2,b + p5,b 6 bb

Lien c: s2,c 6 bc

Lien d : s2,d + s3,d + p3,d + p4,d 6 bd

Lien e: s3,e + p3,e + p4,e 6 be

Lien f : s4,f + p3,f + p5,f 6 bf

Lien g : s4,g + p2,g + p5,g 6 bg

Lien h: s5,h + p1,h + p2,h 6 bh

208 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Final Quadratic System

Minimize max16i65 (αi .Dw .wi + Dc .(ci,i−1 + ci,i+1)) under the constraints8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

P5
i=1 αi = 1

s1,a 6 ba s1,b + s4,b + p2,b + p5,b 6 bb s2,c 6 bc

s2,d + s3,d + p3,d + p4,d 6 bd s3,e + p3,e + p4,e 6 be s4,f + p3,f + p5,f 6 bf

s4,g + p2,g + p5,g 6 bg s5,h + p1,h + p2,h 6 bh

s1,a.c1,2 > 1 s1,b.c1,2 > 1 p1,h.c1,5 > 1
s2,c .c2,3 > 1 s2,d .c2,3 > 1 p2,b.c2,1 > 1
p2,g .c2,1 > 1 p2,h.c2,1 > 1 s3,d .c3,4 > 1
s3,e .c3,4 > 1 p3,d .c3,2 > 1 p3,e .c3,2 > 1
p3,f .c3,2 > 1 s4,f .c4,5 > 1 s4,b.c4,5 > 1
s4,g .c4,5 > 1 p4,e .c4,3 > 1 p4,d .c4,3 > 1
s5,h.c5,1 > 1 p5,g .c5,4 > 1 p5,b.c5,4 > 1
p5,f .c5,4 > 1

209 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Conclusion

The problem sums up to a quadratic system if

1 The processors are selected;

2 The processors are ordered into a ring;

3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

I Complete graph: closed-form expression;

I General graph: quadratic system.

210 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Toy Example: Conclusion

The problem sums up to a quadratic system if

1 The processors are selected;

2 The processors are ordered into a ring;

3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

I Complete graph: closed-form expression;

I General graph: quadratic system.

210 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

And, in Practice ?

We adapt our greedy heuristic:

1 Initially: best pair of processors
2 For each processor Pk (not already included in the ring)

I For each pair (Pi , Pj) of neighbors in the ring
1 We build the graph of the unused bandwidths

(Without considering the paths between Pi and Pj)
2 We compute the shortest paths (in terms of bandwidth) between

Pk and Pi and Pj

3 We evaluate the solution

3 We keep the best solution found at step 2 and we start again

+ refinements (max-min fairness, quadratic solving).

211 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Is This Meaningful ?

I No guarantee, neither theoretical, nor practical

I Simple solution:
1 we build the complete graph whose edges are labeled with the

bandwidths of the best communication paths
2 we apply the heuristic for complete graphs
3 we allocate the bandwidths

212 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Example: an Actual Platform (Lyon)

moby canaria

mryi0 popc0 sci0

Hub

Switch

sci3

sci2

sci4

sci5
sci6

sci1
myri1

myri2

Hub

router backbone
routlhpc

Topology

P0 P1 P2 P3 P4 P5 P6 P7 P8

0.0206 0.0206 0.0206 0.0206 0.0291 0.0206 0.0087 0.0206 0.0206

P9 P10 P11 P12 P13 P14 P15 P16

0.0206 0.0206 0.0206 0.0291 0.0451 0 0 0

Processors processing times (in seconds par megaflop)

213 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Results

First heuristic building the ring without taking link sharing into ac-
count

Second heuristic taking into account link sharing (and with quadratic
programing)

Ratio Dc/Dw H1 H2 Gain

0.64 0.008738 (1) 0.008738 (1) 0%
0.064 0.018837 (13) 0.006639 (14) 64.75%

0.0064 0.003819 (13) 0.001975 (14) 48.28%

Ratio Dc/Dw H1 H2 Gain

0.64 0.005825 (1) 0.005825 (1) 0 %
0.064 0.027919 (8) 0.004865 (6) 82.57%

0.0064 0.007218 (13) 0.001608 (8) 77.72%

Table: Tstep/Dw for each heuristic on Lyon’s and Strasbourg’s platforms (the
numbers in parentheses show the size of the rings built).

214 / 272

Parallel
Algorithms

A. Legrand

The Problem

Fully
Homogeneous
Network

Heterogeneous
Network
(Complete)

Heterogeneous
Network
(General Case)

Conclusion

Even though this is a very basic application, it illustrates many diffi-
culties encountered when:

I Processors have different characteristics

I Communications links have different characteristics

I There is an irregular interconnection network with complex band-
width sharing issues.

We need to use a realistic model of networks... Even though a more
realistic model leads to a much more complicated problem, this is worth
the effort as derived solutions are more efficient in practice.

215 / 272

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Part VI

Algorithms on a Grid

216 / 272

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Outline

18 Communications

19 Matrix Multiplication
Outer Product
Grid Rocks!
Cannon
Fox
Snyder
Data Distribution

217 / 272

2-D Grid (Chapter 5)

 Consider p=q2 processors
 We can think of them arranged in a square grid

 A rectangular grid is also possible, but we’ll
stick to square grids for most of our algorithms

 Each processor is identified as Pi,j

 i: processor row
 J: processor column

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

218 / 272

2-D Torus

 Wrap-around links from edge to edge
 Each processor belongs to 2 different rings

 Will make it possible to reuse algorithms we develop for
the ring topology

 Mono-directional links OR Bi-directional links
 Depending on what we need the algorithm to do and on

what makes sense for the physical platform

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

219 / 272

Concurrency of Comm. and
Comp.

 When developing performance models we will
assume that a processor can do all three activities in
parallel
 Compute
 Send
 Receive

 What about the bi-directional assumption?
 Two models

 Half-duplex: two messages on the same link
going in opposite directions contend for the
link’s bandwidth

 Full-duplex: it’s as if we had two links in
between each neighbor processors

 The validity of the assumption depends on the
platform

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

220 / 272

Multiple concurrent
communications?

 Now that we have 4 (logical) links at each
processor, we need to decide how many
concurrent communications can happen at the
same time
 There could be 4 sends and 4 receives in the

bi-directional link model
 If we assume that 4 sends and 4 receives can

happened concurrently without loss of
performance, we have a multi-port model

 If we only allow 1 send and 1 receive to occur
concurrently we have a single-port model

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

221 / 272

So what?

 We have many options:
 Grid or torus
 Mono- or bi-directional
 Single-or multi-port
 Half- or full-duplex

 We’ll mostly use the torus, bi-directional, full-
duplex assumption

 We’ll discuss the multi-port and the single-port
assumptions

 As usual, it’s straightforward to modify the
performance analyses to match with whichever
assumption makes sense for the physical
platform

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

222 / 272

How realistic is a grid
topology?

 Some parallel computers are built as
physical grids (2-D or 3-D)
 Example: IBM’s Blue Gene/L

 If the platform uses a switch with all-to-all
communication links, then a grid is
actually not a bad assumption
 Although the full-duplex or multi-port

assumptions may not hold
 We will see that even if the physical

platform is a shared single medium (e.g.,
a non-switched Ethernet), it’s sometimes
preferable to think of it as a grid when
developing algorithms!

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

223 / 272

Communication on a Grid

 As usual we won’t write MPI here, but
some pseudo code

 A processor can call two functions to
known where it is in the grid:
 My_Proc_Row()
 My_Proc_Col()

 A processor can find out how many
processors there are in total by:
 Num_Procs()
 Recall that here we assume we have a square

grid
 In programming assignment we may need to

use a rectangular grid

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

224 / 272

Communication on the Grid

 We have two point-to-point functions
 Send(dest, addr, L)
 Recv(src, addr, L)

 We will see that it’s convenient to have
broadcast algorithms within processor
rows or processor columns
 BroadcastRow(i, j, srcaddr, dstaddr, L)
 BroadcastCol(i, j, srcaddr, dstaddr, L)

 We assume that a a call to these functions by
a processor not on the relevant processor row
or column simply returns immediately

 How do we implement these broadcasts?

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

225 / 272

Row and Col Broadcasts?

 If we have a torus
 If we have mono-directional links, then we can reuse the

broadcast that we developed on a ring of processors
 Either pipelined or not

 It we have bi-directional links AND a multi-port model,
we can improved performance by going both-ways
simultaneously on the ring

 We’ll see that the asymptotic performance is not changed
 If we have a grid

 If links are bi-directional then messages can be sent
both ways from the source processor

 Either concurrently or not depending on whether we have a
one-port or multi-port model

 If links are mono-directional, then we can’t implement
the broadcasts at all

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

226 / 272

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Outline

18 Communications

19 Matrix Multiplication
Outer Product
Grid Rocks!
Cannon
Fox
Snyder
Data Distribution

227 / 272

Matrix Multiplication on a
Grid

 Matrix multiplication on a Grid has been studied a
lot because
 Multiplying huge matrices fast is always

important in many, many fields
 Each year there is at least a new paper on

the topic
 It’s a really good way to look at and learn

many different issues with a grid topology
 Let’s look at the natural matrix distribution

scheme induced by a grid/torus

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

228 / 272

2-D Matrix Distribution

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

P0,2

P1,2

P2,2

P2,0 P2,1 P2,2 P2,2

 We denote by ai,j an

element of the matrix
 We denote by Ai,j (or Aij)

the block of the matrix
allocated to Pi,j

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

229 / 272

How do Matrices Get Distributed? (Sec.
4.7)

 Data distribution can be completely ad-hoc
 But what about when developing a library that will be used by others?
 There are two main options:
 Centralized

 when calling a function (e.g., matrix multiplication)
 the input data is available on a single “master” machine (perhaps in a file)
 the input data must then be distributed among workers
 the output data must be undistributed and returned to the “master” machine (perhaps in a file)

 More natural/easy for the user
 Allows for the library to make data distribution decisions transparently to the user
 Prohibitively expensive if one does sequences of operations

 and one almost always does so
 Distributed

 when calling a function (e.g., matrix multiplication)
 Assume that the input is already distributed
 Leave the output distributed

 May lead to having to “redistribute” data in between calls so that distributions match,
which is harder for the user and may be costly as well

 For instance one may want to change the block size between calls, or go from a non-cyclic to a
cyclic distribution

 Most current software adopt the distributed approach
 more work for the user
 more flexibility and control

 We’ll always assume that the data is magically already distributed by the user

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

230 / 272

Four Matrix Multiplication
Algorithms

 We’ll look at four algorithms
 Outer-Product
 Cannon
 Fox
 Snyder

 The first one is used in practice
 The other three are more “historical” but are

really interesting to discuss
 We’ll have a somewhat hand-wavy discussion

here, rather than look at very detailed code

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

231 / 272

The Outer-Product Algorithm

 Consider the “natural” sequential matrix multiplication
algorithm

for i=0 to n-1
for j=0 to n-1

for k=0 to n-1
ci,j += ai,k * bk,j

 This algorithm is a sequence of inner-products (also called
scalar products)

 We have seen that we can switch loops around
 Let’s consider this version

for k=0 to n-1
for i=0 to n-1

for j=0 to n-1
ci,j += ai,k * bk,j

 This algorithm is a sequence of outer-products!

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

232 / 272

The Outer-Product Algorithm

for k=0 to n-1
 for i=0 to n-1
 for j=0 to n-1
 ci,j += ai,k * bk,j

C += x

K=0 B

A C += x

K=1 B

A

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

233 / 272

The outer-product algorithm
 Why do we care about switching the loops around to view the matrix

multiplication as a sequence of outer products?
 Because it makes it possible to design a very simple parallel algorithm on

a grid of processors!
 First step: view the algorithm in terms of the blocks assigned to the

processors

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

for k=0 to q-1
 for i=0 to q-1
 for j=0 to q-1
 Ci,j += Ai,k * Bk,j

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

234 / 272

The Outer-Product Algorithm

 At step k, processor Pi,j needs Ai,k and Bk,j

 If k = j, then the processor already has the
needed block of A

 Otherwise, it needs to get it from Pi,k

 If k = I, then the processor already has the
needed block of B

 Otherwise, it needs to get it from Pk,j

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B3

3

B3

2

B3

1

B3

0

B2

3

B2

2

B2

1

B2

0

B1

3

B1

2

B1

1

B1

0

B0

3

B0

2

B0

1

B0

0

for k=0 to q-1
 for i=0 to q-1
 for j=0 to q-1
 Ci,j += Ai,k * Bk,j

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

235 / 272

The Outer-Product Algorithm

 Based on the previous statements, we can now
see how the algorithm works

 At step k
 Processor Pi,k broadcasts its block of matrix A

to all processors in processor row i
 True for all i

 Processor Pk,j broadcasts its block of matrix B
to all processor in processor column j

 True for all j
 There are q-1 steps

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

236 / 272

The Outer Product Algorithm

P33P32A31P30

P23P22A21P20

P13P12A11P10

P03P02A01P00

P33P32P31P30

P23P22P21P20

B13B12B11B10

P03P02P01P00

Step k=1 of the algorithm

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

237 / 272

The Outer-Product Algorithm
// m = n/q
var A, B, C: array[0..m-1, 0..m-1] of real
var bufferA, bufferB: array[0..m-1, 0..m-1] of real
var myrow, mycol
myrow = My_Proc_Row()
mycol = My_Proc_Col()
for k = 0 to q-1

// Broadcast A along rows
for i = 0 to q-1

BroadcastRow(i,k,A,bufferA,m*m)
// Broadcast B along columns
for j=0 to q-1

BroadcastCol(k,j,B,bufferB,m*m)
// Multiply Matrix blocks (assuming a convenient MatrixMultiplyAdd()
function)
if (myrow == k) and (mycol == k)

MatrixMultiplyAdd(C,A,B,m)
else if (myrow == k)

MatrixMultiplyAdd(C,bufferA,B,m)
else if (mycol == k)

MatrixMultiplyAdd(C, A, bufferB, m)
else

MatrixMultiplyAdd(C, bufferA, bufferB, m)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

238 / 272

Performance Analysis

 The performance analysis is straightforward
 With a one-port model:

 The matrix multiplication at step k can occur in parallel with
the broadcasts at step k+1

 Both broadcasts happen in sequence
 Therefore, the execution time is equal to:

T(m,q) = 2 Tbcast + (q-1) max (2 Tbcast, m3 w) + m3 w
 w: elementary += * operation
 Tbcast: time necessary for the broadcast

 With a multi-port model:
 Both broadcasts can happen at the same time

T(m,q) = Tbcast + (q-1) max (Tbcast, m3 w) + m3 w
 The time for a broadcast, using the pipelined broadcast:

Tbcast = (sqrt((q-2)L) + sqrt(m2 b))2

 When n gets large: T(m,q) ~ q m3 = n3 / q2
 Thus, asymptotic parallel efficiency is 1!

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

239 / 272

So what?

 On a ring platform we had already given an
asymptotically optimal matrix multiplication
algorithm on a ring in an earlier set of slides

 So what’s the big deal about another
asymptotically optimal algorithm?

 Once again, when n is huge, indeed we don’t
care

 But communication costs are often non-negligible
and do matter
 When n is “moderate”
 When w/b is low

 It turns out, that the grid topology is
advantageous for reducing communication costs!

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

240 / 272

Ring vs. Grid

 When we discussed the ring, we found that the
communication cost of the matrix multiplication algorithm
was: n2 b
 A each step, the algorithm sends n2/p matrix elements among

neighboring processors
 There are p steps

 For the algorithm on a grid:
 Each step involves 2 broadcasts of n2/p matrix elements

 Assuming a one-port model, not to give an “unfair” advantage to
the grid topology

 Using a pipelined broadcast, this can be done in approximately
the same time as sending n2/p matrix elements between
neighboring processors on each ring (unless n is really small)

 Therefore, at each step, the algorithm on a grid spends twice
as much time communicating as the algorithm on a ring

 But it does sqrt(p) fewer steps!
 Conclusion: the algorithm on a grid spends at least sqrt(p)

less time in communication than the algorithm on a ring

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

241 / 272

Grid vs. Ring

 Why was the algorithm on a Grid much better?
 Reason: More communication links can be used

in parallel
 Point-to-point communication replaced by broadcasts
 Horizontal and vertical communications may be

concurrent
 More network links used at each step

 Of course, this advantage isn’t really an
advantage if the underlying physical platform
does not really look like a grid

 But, it turns out that the 2-D distribution is
inherently superior to the 1-D distribution, no
matter what the underlying platform is!

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

242 / 272

Grid vs. Ring
 On a ring

 The algorithm communicates p matrix block rows that each
contain n2/p elements, p times

 Total number of elements communicated: pn2

 On a grid
 Each step, 2sqrt(p) blocks of n2/p elements are sent, each to

sqrt(p)-1 processors, sqrt(p) times
 Total number of elements communicated: 2sqrt(p)n2

 Conclusion: the algorithm with a grid in mind
inherently sends less data around than the algorithm
on a ring

 Using a 2-D data distribution would be better than
using a 1-D data distribution even if the underlying
platform were a non-switched Ethernet for instance!
 Which is really 1 network link, and one may argue is closer to

a ring (p comm links) than a grid (p2 comm links)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

243 / 272

Conclusion

 Writing algorithms on a grid topology is a little bit
more complicated than in a ring topology

 But there is often a payoff in practice and grid
topologies are very popular

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

244 / 272

2-D Matrix Distribution

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

P0,2

P1,2

P2,2

P2,0 P2,1 P2,2 P2,2

 We denote by ai,j an

element of the matrix
 We denote by Ai,j (or Aij)

the block of the matrix
allocated to Pi,j

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

245 / 272

The Cannon Algorithm

 This is a very old algorithm
 From the time of systolic arrays
 Adapted to a 2-D grid

 The algorithm starts with a
redistribution of matrices A and B
 Called “preskewing”

 Then the matrices are multiplied
 Then the matrices are re-

redistributed to match the initial
distribution
 Called “postskewing”

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

246 / 272

Cannon’s Preskewing

 Matrix A: each block row of matrix A is
shifted so that each processor in the first
processor column holds a diagonal block
of the matrix

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A32A31A30A33

A21A20A23A22

A14A13A12A11

A03A02A01A00

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

247 / 272

Cannon’s Preskewing

 Matrix B: each block column of matrix B is
shifted so that each processor in the first
processor row holds a diagonal block of
the matrix

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

B33B22B11B00

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

248 / 272

Cannon’s Computation

 The algorithm proceeds in q steps
 At each step each processor

performs the multiplication of its
block of A and B and adds the result
to its block of C

 Then blocks of A are shifted to the
left and blocks of B are shifted
upward
 Blocks of C never move

 Let’s see it on a picture

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

249 / 272

Cannon’s Steps

A32A31A30A33

A21A20A23A22

A10A13A12A11

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B23B12B01B30

B13B02B31B20

B03B32B21B10

B33B22B11B00

local
computation
on proc (0,0)

A33A32A31A30

A22A21A20A23

A11A10A13A12

A00A03A02A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B22B11B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

Shifts

A33A32A31A30

A22A21A20A23

A11A10A13A12

A00A03A02A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B22B11B00

B23B12B01B30

B13B02B31B20

B03B32B21B10

local
computation
on proc (0,0)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

250 / 272

The Algorithm

Participate in preskewing of A
Partitipate in preskweing of B
For k = 1 to q
 Local C = C + A*B
 Vertical shift of B
 Horizontal shift of A
Participate in postskewing of A
Partitipate in postskewing of B

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

251 / 272

Performance Analysis

 Let’s do a simple performance analysis
with a 4-port model
 The 1-port model is typically more complicated

 Symbols
 n: size of the matrix
 qxq: size of the processor grid
 m = n / q
 L: communication start-up cost
 w: time to do a basic computation (+= . * .)
 b: time to communicate a matrix element

 T(m,q) = Tpreskew + Tcompute +
Tpostskew

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

252 / 272

Pre/Post-skewing times

 Let’s consider the horizontal shift
 Each row must be shifted so that the diagonal block ends

up on the first column
 On a mono-directional ring:

 The last row needs to be shifted (q-1) times
 All rows can be shifted in parallel
 Total time needed: (q-1) (L + m2 b)

 On a bi-directional ring, a row can be shifted left or right,
depending on which way is shortest!
 A row is shifted at most floor(q/2) times
 All rows can be shifted in parallel
 Total time needed: floor(q/2) (L + m2 b)

 Because of the 4-port assumption, preskewing of A and B
can occur in parallel (horizontal and vertical shifts do not
interfere)

 Therefore: Tpreskew = Tpostskew = floor(q/2) (L+m2b)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

253 / 272

Time for each step

 At each step, each processor computes an
mxm matrix multiplication
 Compute time: m3 w

 At each step, each processor
sends/receives a mxm block in its
processor row and its processor column
 Both can occur simultaneously with a 4-port

model
 Takes time L+ m2b

 Therefore, the total time for the q steps is:
Tcompute = q max (L + m2b, m3w)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

254 / 272

Cannon Performance Model

 T(m,n) =2* floor(q/2) (L + m2b) +
 q max(m3w, L + m2b)

 This performance model is easily
adapted
 If one assumes mono-directional links,

then the “floor(q/2)” above becomes
“(q-1)”

 If one assumes 1-port, there is a factor 2
added in front of communication terms

 If one assumes no overlap of
communication and computation at a
processor, the “max” above becomes a
sum

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

255 / 272

The Fox Algorithm

 This algorithm was originally developed to
run on a hypercube topology
 But in fact it uses a grid, embedded in the

hypercube
 This algorithm requires no pre- or post-

skewing
 It relies on horizontal broadcasts of the

diagonals of matrix A and on vertical shifts
of matrix B

 Sometimes called the “multiply-broadcast-
roll” algorithm

 Let’s see it on a picture
 Although it’s a bit awkward to draw because of

the broadcasts

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

256 / 272

Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

initial
state

A33A33A33A33

A22A22A22A22

A11A11A11A11

A00A00A00A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00
Broadcast of
A’s 1st diag.
(stored in a
Separate
 buffer)

Local
computation

A33A33A33A33

A22A22A22A22

A11A11A11A11

A00A00A00A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

257 / 272

Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

Shift of B

A30A30A30A30

A23A23A23A23

A12A12A12A12

A01A01A01A01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

Local
computation

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

A30A30A30A30

A23A23A23A23

A12A12A12A12

A01A01A01A01

B03B02B01B00

B33B32B31B30

B23B22B21B20

B13B12B11B10

Broadcast of
A’s 2nd diag.
(stored in a
Separate
 buffer)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

258 / 272

Fox’s Algorithm

// No initial data movement
for k = 1 to q in parallel
 Broadcast A’s kth diagonal
 Local C = C + A*B
 Vertical shift of B
// No final data movement

 Again note that there is an additional array to
store incoming diagonal block

 This is the array we use in the A*B multiplication

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

259 / 272

Performance Analysis

 You’ll have to do it in a homework
assignment
 Write pseudo-code of the algorithm in

more details
 Write the performance analysis

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

260 / 272

Snyder’s Algorithm (1992)

 More complex than Cannon’s or

Fox’s

 First transposes matrix B

 Uses reduction operations (sums) on

the rows of matrix C

 Shifts matrix B

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

261 / 272

Execution Steps...

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B32B31B30

B23B22B21B20

B13B12B11B10

B03B02B01B00

initial
state

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

Transpose B

Local
computation

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B33B23B13B03

B32B22B12B02

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

B31B21B11B01

B30B20B10B00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

262 / 272

Execution Steps...

Shift B

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

Global
sum
on the rows
of C

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

B30B20B10B00

B32B23B13B03

B32B22B12B02

B31B21B11B01

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Local
computation

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

263 / 272

Execution Steps...

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

Shift B

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02
Global
sum
on the rows
of C

C33C32C31C30

C23C22C21C20

C13C12C11C10

C03C02C01C00

A33A32A31A30

A23A22A21A20

A13A12A11A10

A03A02A01A00

B31B21B11B01

B30B20B10B00

B33B23B13B03

B32B22B12B02

Local
computation

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

264 / 272

The Algorithm

var A,B,C: array[0..m-1][0..m-1] of real
var bufferC: array[0..m-1][0..m-1] of real
Transpose B
MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shifts of B
For k = 1 to q-1

Global sum of bufferC on proc rows into Ci,(i+k-1)%q

MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shift of B

Global sum of bufferC on proc rows into Ci,(i+k-1)%q

Transpose B

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

265 / 272

Performance Analysis

 The performance analysis isn’t
fundamentally different than what
we’ve done so far

 But it’s a bit cumbersome
 See the textbook

 in particular the description of the
matrix transposition (see also Exercise
5.1)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

266 / 272

Which Data Distribution?

 So far we’ve seen:
 Block Distributions
 1-D Distributions
 2-D Distributions
 Cyclic Distributions

 One may wonder what a good choice
is for a data distribution?

 Many people argue that a good
“Swiss Army knife” is the “2-D block
cyclic distribution

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

267 / 272

The 2-D block cyclic
distribution

 Goal: try to have all the advantages
of both the horizontal and the
vertical 1-D block cyclic distribution
 Works whichever way the computation

“progresses”
 left-to-right, top-to-bottom, wavefront, etc.

 Consider a number of processors p =
r * c
 arranged in a rxc matrix

 Consider a 2-D matrix of size NxN
 Consider a block size b (which

divides N)

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

268 / 272

The 2-D block cyclic
distribution

b

b

N

P0 P1 P2

P5P4P3

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

269 / 272

The 2-D block cyclic
distribution

P2

P5

P1

P4

P0

P3

b

b

N

P0 P1 P2

P5P4P3

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

270 / 272

The 2-D block cyclic
distribution

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

b

b

N

P0 P1 P2

P5P4P3

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

P2 P0 P1 P2 P0 P1

P5 P3 P4 P5 P3 P4

P1

P4

P0

P3

P2 P0 P1 P2 P0 P1P1P0

 Slight load imbalance
 Becomes negligible with

many blocks
 Index computations had

better be implemented in
separate functions

 Also: functions that tell a
process who its neighbors
are

 Overall, requires a whole
infrastructure, but many
think you can’t go wrong
with this distribution

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

271 / 272

Conclusion

 All the algorithms we have seen in the
semester can be implemented on a 2-D
block cyclic distribution

 The code ends up much more complicated
 But one may expect several benefits “for

free”
 The ScaLAPAK library recommends to use

the 2-D block cyclic distribution
 Although its routines support all other

distributions

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Courtesy of Henri Casanova

272 / 272

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman.
LogGP: Incorporating long messages into the LogP model for par-
allel computation.
Journal of Parallel and Distributed Computing, 44(1):71–79, 1997.

D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,
K. Schauser, R. Subramonian, and T. von Eicken.
LogP: a practical model of parallel computation.
Communication of the ACM, 39(11):78–85, 1996.

R. W. Hockney.
The communication challenge for mpp : Intel paragon and meiko
cs-2.
Parallel Computing, 20:389–398, 1994.

B. Hong and V.K. Prasanna.
Distributed adaptive task allocation in heterogeneous computing
environments to maximize throughput.

272 / 272

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

In International Parallel and Distributed Processing Symposium
IPDPS’2004. IEEE Computer Society Press, 2004.

T. Kielmann, H. E. Bal, and K. Verstoep.
Fast measurement of LogP parameters for message passing plat-
forms.
In Proceedings of the 15th IPDPS. Workshops on Parallel and
Distributed Processing, 2000.

Steven H. Low.
A duality model of TCP and queue management algorithms.
IEEE/ACM Transactions on Networking, 2003.

Dong Lu, Yi Qiao, Peter A. Dinda, and Fabián E. Bustamante.
Characterizing and predicting tcp throughput on the wide area
network.
In Proceedings of the 25th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’05), 2005.

272 / 272

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Arnaud Legrand, Hélène Renard, Yves Robert, and Frédéric
Vivien.
Mapping and load-balancing iterative computations on heteroge-
neous clusters with shared links.
IEEE Trans. Parallel Distributed Systems, 15(6):546–558, 2004.

Maxime Martinasso.
Analyse et modélisation des communications concurrentes dans
les réseaux haute performance.
PhD thesis, Université Joseph Fourier de Grenoble, 2007.

Laurent Massoulié and James Roberts.
Bandwidth sharing: Objectives and algorithms.
In INFOCOM (3), pages 1395–1403, 1999.

Loris Marchal, Yang Yang, Henri Casanova, and Yves Robert.
Steady-state scheduling of multiple divisible load applications on
wide-area distributed computing platforms.

272 / 272

Parallel
Algorithms

A. Legrand

Communications

Matrix
Multiplication

Outer Product

Grid Rocks!

Cannon

Fox

Snyder

Data
Distribution

Int. Journal of High Performance Computing Applications, (3),
2006.

Frédéric Wagner.
Redistribution de données à travers un réseau haut débit.
PhD thesis, Université Henri Poincaré Nancy 1, 2005.

272 / 272

	Performance Evaluation
	Performance: Definition?
	Time?
	Rate?
	Peak performance
	Benchmarks

	Speedup and Efficiency
	Speedup
	Amdahl's Law

	Performance Measures
	Measuring Time

	Performance Improvement
	Finding Bottlenecks
	Profiling Sequential Programs
	Profiling Parallel Programs

	Network Models
	Point to Point Communication Models
	Hockney
	LogP and Friends
	TCP

	Modeling Concurency
	Multi-port
	Single-port (Pure and Full Duplex)
	Flows

	Remind This is a Model, Hence Imperfect
	Topology
	A Few Examples
	Virtual Topologies

	Communications on a Ring
	Assumptions
	Broadcast
	Scatter
	All-to-All
	Broadcast: Going Faster

	Algorithms on a Ring
	Matrix Vector Product
	Open MP Version
	First MPI Version
	Distributing Matrices
	Second MPI Version
	Third MPI Version
	Mixed Parallelism Version

	Matrix Multiplication
	Stencil Application
	Principle
	Greedy Version
	Reducing the Granularity

	LU Factorization
	Gaussian Elimination
	LU

	A Complete Example on an Heterogeneous Ring
	The Problem
	Fully Homogeneous Network
	Heterogeneous Network (Complete)
	Heterogeneous Network (General Case)

	Algorithms on a Grid
	Communications
	Matrix Multiplication
	Outer Product
	Grid Rocks!
	Cannon
	Fox
	Snyder
	Data Distribution

