Parallel Algorithms

A. Legrand

Parallel Algorithms

Arnaud Legrand, CNRS, University of Grenoble

LIG laboratory, arnaud.legrand@imag.fr

November 1, 2009

Outline

Parallel Algorithms

A. Legrand

Part I Performance Evaluation Part II Network Models Part III Communications on a Ring Part IV Algorithms on a Ring Part V Algorithm on an Heterogeneous Ring Part VI Algorithms on an Grid

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdahl's Lay

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Parall Programs

Part I

Performance Evaluation

Code Performance

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Parall Programs We will mostly talk about how to make code go fast, hence the "High Performance".

Performance conflicts with other concerns:

Correctness. You will see that when trying to make code go fast one often breaks it

Readability. Fast code typically requires more lines! Modularity can hurt performance (e.g., Too many classes) Portability.

- Code that is fast on machine A can be slow on machine B
- At the extreme, highly optimized code is not portable at all, and in fact is done in hardware!

Why Performance?

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Para

Programs

- To do a time-consuming operation in less time
 - I am an aircraft engineer
 - I need to run a simulation to test the stability of the wings at high speed
 - I'd rather have the result in 5 minutes than in 5 hours so that I can complete the aircraft final design sooner.
- To do an operation before a tighter deadline
 - I am a weather prediction agency
 - I am getting input from weather stations/sensors
 - I'd like to make the forecast for tomorrow before tomorrow
- To do a high number of operations per seconds
 - ► I am the CTO of Amazon.com
 - My Web server gets 1,000 hits per seconds
 - I'd like my Web server and my databases to handle 1,000 transactions per seconds so that customers do not experience bad delays (also called scalability)
 - ► Amazon does "process" several GBytes of data per seconds

Outline

Parallel Algorithms

A. Legrand

Performance: Definition?

- Time? Rate? Peak
- Benchmarks
- Speedup and Efficiency Speedup Amdahl's Law
- Performance Measures
- Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Para Programs

1 Performance: Definition?

- Time?
- Rate?
- Peak performance
- Benchmarks

2 Speedup and Efficiency

- Speedup
- Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

- Finding Bottlenecks
- Profiling Sequential Programs
- Profiling Parallel Programs

Outline

Parallel Algorithms

A. Legrand

Performance: Definition?

- Time? Rate? Peak performar
- Speedup and Efficiency Speedup Amdahl's Lay
- Performance Measures
- Measuring Time
- Performance Improvement
- Finding Bottlenecks Profiling Sequential Programs Profiling Para Programs

1 Performance: Definition?

- Time?
- Rate?
- Peak performance
- Benchmarks

Speedup and Efficiency

- Speedup
- Amdahl's Law

B) Performance Measures

Measuring Time

Performance Improvement

- Finding Bottlenecks
- Profiling Sequential Programs
- Profiling Parallel Programs

Performance as Time

Parallel Algorithms

A. Legrand

Performance: Definition?

Time?

- Rate? Peak performance Benchmarks
- Speedup and Efficiency Speedup Amdahl's Law
- Performance Measures
- Measuring Time

Performance Improvement

- Time between the start and the end of an operation
 - Also called running time, elapsed time, wall-clock time, response time, latency, execution time, ...
 - Most straightforward measure: "my program takes 12.5s on a Pentium 3.5GHz"
 - Can be normalized to some reference time
- Must be measured on a "dedicated" machine

Performance as Rate

Parallel Algorithms

A. Legrand

Performance: Definition?

Time?

Rate?

Peak performance Benchmarks

Speedup and Efficiency Speedup

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Para Used often so that performance can be independent on the "size" of the application (e.g., compressing a 1MB file takes 1 minute. compressing a 2MB file takes 2 minutes \sim the performance is the same).

 $\begin{array}{l} \mbox{MIPS} \mbox{ Millions of instructions } / \mbox{ sec} = \frac{\mbox{instruction count}}{\mbox{execution time} \times 10^6} = \frac{\mbox{clock rate}}{\mbox{CPI} \times 10^6}. \end{array}$

- 1 CISC instruction = many RISC instructions
- Programs use different instruction mixes
- May be ok for same program on same architectures

MFlops Millions of floating point operations /sec

- Very popular, but often misleading
- e.g., A high MFlops rate in a stupid algorithm could have poor application performance

Application-specific

- Millions of frames rendered per second
- Millions of amino-acid compared per second
- Millions of HTTP requests served per seconds

Application-specific metrics are often preferable and others may be misleading

"Peak" Performance?

Parallel Algorithms

A. Legrand

- Performance: Definition? Time? Rate? Peak performance Benchmarks
- Speedup and Efficiency Speedup Amdahl's Law
- Performance Measures
- Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Paralle Programs Resource vendors always talk about peak performance rate

- computed based on specifications of the machine
- ► For instance:
 - I build a machine with 2 floating point units
 - Each unit can do an operation in 2 cycles
 - My CPU is at 1GHz
 - ▶ Therefore I have a 1*2/2 =1GFlops Machine
- Problem:
 - In real code you will never be able to use the two floating point units constantly
 - Data needs to come from memory and cause the floating point units to be idle

Typically, real code achieves only an (often small) fraction of the peak performance

Benchmarks

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance **Benchmarks**

Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

- Since many performance metrics turn out to be misleading, people have designed benchmarks
- Example: SPEC Benchmark
 - Integer benchmark
 - Floating point benchmark
- These benchmarks are typically a collection of several codes that come from "real-world software"
- The question "what is a good benchmark" is difficult
 - If the benchmarks do not correspond to what you'll do with the computer, then the benchmark results are not relevant to you

How About GHz?

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance **Benchmarks**

Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Parall Programs

- This is often the way in which people say that a computer is better than another
 - More instruction per seconds for higher clock rate
- Faces the same problems as MIPS

Processor	Clock Rate	SPEC FP2000 Benchmark
IBM Power3	450 MHz	434
Intel PIII	1.4 GHz	456
Intel P4	2.4GHz	833
Itanium-2	1.0GHz	1356

But usable within a specific architecture

Program Performance

Parallel Algorithms

A. Legrand

- Performance: Definition? Time? Rate? Peak performance **Benchmarks**
- Speedup and Efficiency Speedup Amdahl's Law
- Performance Measures
- Measuring Time

Performance Improvement

- In this class we're not really concerned with determining the performance of a compute platform (whichever way it is defined)
- Instead we're concerned with improving a program's performance
 - ► For a given platform, take a given program
 - Run it an measure its wall-clock time
 - Enhance it, run it an quantify the performance improvement (i.e., the reduction in wall-clock time)
 - For each version compute its performance
 - preferably as a relevant performance rate
 - so that you can say: the best implementation we have so far goes "this fast" (perhaps a % of the peak performance)

Outline

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak

performance Benchmarks

Speedup and Efficiency

Speedup Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Para Programs

1 Performance: Definition

- Time?
- Rate?
- Peak performance
- Benchmarks

2 Speedup and Efficiency

- Speedup
- Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

- Finding Bottlenecks
- Profiling Sequential Programs
- Profiling Parallel Programs

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance

Speedup and Efficiency

Speedup

Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

- We need a metric to quantify the impact of your performance enhancement
- ▶ Speedup: ratio of "old" time to "new" time
 - new time = 1h
 - speedup = 2h / 1h = 2
- Sometimes one talks about a "slowdown" in case the "enhancement" is not beneficial
 - Happens more often than one thinks

Parallel Performance

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency

Speedup Amdahl's L

- Performance Measures
- Measuring Time

Performance Improvement

- ▶ The notion of speedup is completely generic
 - By using a rice cooker I've achieved a 1.20 speedup for rice cooking
- For parallel programs one defines the Parallel Speedup (we'll just say "speedup"):
 - Parallel program takes time T₁ on 1 processor
 - Parallel program takes time T_p on p processors
 - Parallel Speedup: $S(p) = \frac{T_1}{T_0}$
- In the ideal case, if my sequential program takes 2 hours on 1 processor, it takes 1 hour on 2 processors: called linear speedup

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency

Speedup

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Paral Programs

Superlinear Speedup? There are several possible causes

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency

Speedup

Performance Measures

Performance

Finding Bottlenecks Profiling Sequential Programs Profiling Paral Programs

Superlinear Speedup? There are several possible causes Algorithm with optimization problems, throwing many processors at it increases the chances that one will "get lucky" and find the optimum fast

Speedup

number of processors

Superlinear Speedup? There are several possible causes Algorithm with optimization problems, throwing many processors at it increases the chances that one will "get lucky" and find the optimum fast

Hardware with many processors, it is possible that the entire application data resides in cache (vs. RAM) or in RAM (vs. Disk)

Bad News: Amdahl's Law

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency

Amdahl's Law

Performance Measures Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Parall Programs Consider a program whose execution consists of two phases

• One sequential phase : $T_{seq} = (1 - f)T_1$

② One phase that can be perfectly parallelized (linear speedup) $T_{par} = fT_1$

Therefore: $T_{p} = T_{seq} + T_{par}/p = (1 - f)T_{1} + fT_{1}/p$.

Lessons from Amdahl's Law

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency

Speedup Amdahl's Law

Performance Measures

Performance Improvement

- It's a law of diminishing return
- If a significant fraction of the code (in terms of time spent in it) is not parallelizable, then parallelization is not going to be good
- It sounds obvious, but people new to high performance computing often forget how bad Amdahl's law can be
- Luckily, many applications can be almost entirely parallelized and f is small

Parallel Efficiency

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks
- Speedup and Efficiency
- Speedup Amdahl's Law
- Performance Measures
- Performance
- Finding Bottlenecks Profiling Sequential Programs Profiling Parall Programs

- Efficiency is defined as Eff(p) = S(p)/p
- ► Typically < 1, unless linear or superlinear speedup
- Used to measure how well the processors are utilized
 - If increasing the number of processors by a factor 10 increases the speedup by a factor 2, perhaps it's not worth it: efficiency drops by a factor 5
 - Important when purchasing a parallel machine for instance: if due to the application's behavior efficiency is low, forget buying a large cluster

Scalability

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks
- Speedup and Efficiency
- Speedup Amdahl's Law
- Performance Measures
- Measuring Time
- Performance Improvement
- Finding Bottlenecks Profiling Sequential Programs Profiling Parall Programs

- Measure of the "effort" needed to maintain efficiency while adding processors
- ▶ Efficiency also depends on the problem size: *Eff*(*n*, *p*)
- Isoefficiency: At which rate does the problem size need to be increase to maintain efficiency
 - $n_c(p)$ such that $Eff(n_c(p), p) = c$
 - By making a problem ridiculously large, on can typically achieve good efficiency
 - Problem: is it how the machine/code will be used?

Outline

Parallel Algorithms

A. Legrand

Performance: Definition? Time?

- Rate? Peak performar
- Benchmarks

Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Par Programs

Performance: Definition

- Time?
- Rate?
- Peak performance
- Benchmarks

2 Speedup and Efficiency

- Speedup
- Amdahl's Law

Performance MeasuresMeasuring Time

Performance Improvement

- Finding Bottlenecks
- Profiling Sequential Programs
- Profiling Parallel Programs

Performance Measures

Parallel Algorithms

A. Legrand

- Performance: Definition? Time? Rate? Peak performance Benchmarks
- Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Paral This is all well and good, but how does one measure the performance of a program in practice?

Two issues:

- Measuring wall-clock times (We'll see how it can be done shortly)
- Measuring performance rates
 - Measure wall clock time (see above)
 - "Count" number of "operations" (frames, flops, amino-acids: whatever makes sense for the application)
 - Either by actively counting (count++)
 - Or by looking at the code and figure out how many operations are performed
 - Divide the count by the wall-clock time

Measuring time by hand?

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks
- Speedup and Efficiency Speedup Amdahl's Law
- Performance Measures
- Measuring Time
- Performance Improvement
- Finding Bottlenecks Profiling Sequential Programs Profiling Parall Programs

- One possibility would be to do this by just "looking" at a clock, launching the program, "looking" at the clock again when the program terminates
- This of course has some drawbacks
 - Poor resolution
 - Requires the user's attention
- Therefore operating systems provide ways to time programs automatically
- UNIX provide the time command

The UNIX time Command

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Paral

- > You can put time in front of any UNIX command you invoke
- When the invoked command completes, time prints out timing (and other) information

surf: \$ /usr/bin/X11/time ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(0avgtext+0avgdata Omaxresident)k
Oinputs+0outputs (Omajor+1344minor)pagefaults Oswaps

- ▶ 4.17 seconds of user time
- 4.34 seconds of system time
- 2 minutes and 55.85 seconds of wall-clock time
- 4% of CPU was used
- 0+0k memory used (text + data)
- 0 input, 0 output output (file system I/O)
- 1344 minor pagefaults and 0 swaps

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup

Performance Measures

Measuring Time

Performance Improvement

- User Time: time that the code spends executing user code (i.e., non system calls)
- ▶ System Time: time that the code spends executing system calls

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup

Performance Measures

Measuring Time

Performance Improvement

- User Time: time that the code spends executing user code (i.e., non system calls)
- ▶ System Time: time that the code spends executing system calls
- ▶ Wall-Clock Time: time from start to end

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup

Performance Measures

Measuring Time

Performance Improvement

- User Time: time that the code spends executing user code (i.e., non system calls)
- ▶ System Time: time that the code spends executing system calls
- ▶ Wall-Clock Time: time from start to end
- Wall-Clock \geq User + System. Why?

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdahl's Lay

Performance Measures

Measuring Time

Performance Improvement

- User Time: time that the code spends executing user code (i.e., non system calls)
- ▶ System Time: time that the code spends executing system calls
- Wall-Clock Time: time from start to end
- Wall-Clock \geq User + System. Why?
 - because the process can be suspended by the O/S due to contention for the CPU by other processes

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdabl's Lay

Performance Measures

Measuring Time

Performance Improvement

- User Time: time that the code spends executing user code (i.e., non system calls)
- System Time: time that the code spends executing system calls
- Wall-Clock Time: time from start to end
- Wall-Clock \geq User + System. Why?
 - because the process can be suspended by the O/S due to contention for the CPU by other processes
 - because the process can be blocked waiting for I/O

Using time

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks
- Speedup and Efficiency Speedup
- Performance
- Measuring Time
- Performance Improvement
- Finding Bottlenecks Profiling Sequential Programs Profiling Parall Programs

- It's interesting to know what the user time and the system time are
 - for instance, if the system time is really high, it may be that the code does to many calls to malloc(), for instance
 - But one would really need more information to fix the code (not always clear which system calls may be responsible for the high system time)
- \blacktriangleright Wall-clock system user $\simeq I/O$ + suspended
 - If the system is dedicated, suspended $\simeq 0$
 - Therefore one can estimate the ecost of I/O
 - If I/O is really high, one may want to look at reducing I/O or doing I/O better
- Therefore, time can give us insight into bottlenecks and gives us wall-clock time
- Measurements should be done on dedicated systems

Dedicated Systems

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdabl's Law

Performance Measures

Measuring Time

Performance Improvement

- Measuring the performance of a code must be done on a "quiescent", "unloaded" machine (the machine only runs the standard O/S processes)
- The machine must be dedicated
 - No other user can start a process
 - The user measuring the performance only runs the minimum amount of processes (basically, a shell)
- Nevertheless, one should always present measurement results as averages over several experiments (because the (small) load imposed by the O/S is not deterministic)

Drawbacks of UNIX time

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks
- Speedup and Efficiency Speedup
- Performance Measures

Measuring Time

- Performance Improvement
- Finding Bottlenecks Profiling Sequential Programs Profiling Parall Programs

- The time command has poor resolution
 - "Only" milliseconds
 - ► Sometimes we want a higher precision, especially if our performance improvements are in the 1-2% range
- time times the whole code
 - Sometimes we're only interested in timing some part of the code, for instance the one that we are trying to optimize
 - Sometimes we want to compare the execution time of different sections of the code

Timing with gettimeofday

A. Legrand

```
Performance:
Definition?
Time?
Rate?
Peak
performance
Benchmarks
```

Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

```
Measuring Time
```

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Para

- gettimeofday from the standard C library
- Measures the number of microseconds since midnight, Jan 1st 1970, expressed in seconds and microseconds

```
struct timeval start;
```

```
gettimeofday(&tv,NULL);
printf("%ld,%ld\n",start.tv_sec, start.tv_usec);
```

- Can be used to time sections of code
 - Call gettimeofday at beginning of section
 - Call gettimeofday at end of section
 - Compute the time elapsed in microseconds:

```
(end.tv_sec*1000000.0 + end.tv_usec -
start.tv_sec*1000000.0 - start.tv_usec) / 1000000.0)
```

Other Ways to Time Code

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup

Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Para

htp_gettime() (Internet RFC 1589)

- Sort of like gettimeofday, but reports estimated error on time measurement
- Not available for all systems
- Part of the GNU C Library
- Java: System.currentTimeMillis()
 - Known to have resolution problems, with resolution higher than 1 millisecond!
 - Solution: use a native interface to a better timer
- Java: System.nanoTime()
 - Added in J2SE 5.0
 - Probably not accurate at the nanosecond level
- Tons of "high precision timing in Java" on the Web

Outline

Parallel Algorithms

A. Legrand

Performance: Definition? Time?

- Rate? Peak performar
- Benchmarks

Speedup and Efficiency Speedup

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Para Programs

Performance: Definition

- Time?
- Rate?
- Peak performance
- Benchmarks

2 Speedup and Efficiency

- Speedup
- Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

- Finding Bottlenecks
- Profiling Sequential Programs
- Profiling Parallel Programs

Why is Performance Poor?

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks

Profiling Sequential Programs Profiling Paralle Programs Performance is poor because the code suffers from a performance bottleneck

Definition:

- An application runs on a platform that has many components (CPU, Memory, Operating System, Network, Hard Drive, Video Card, etc.)
- Pick a component and make it faster
- If the application performance increases, that component was the bottleneck!

Removing a Bottleneck

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdahl's Lav

Performance Measures

Performance

Finding Bottlenecks

Profiling Sequential Programs Profiling Parallel Programs There are two may approaches to remove a bottleneck:

Brute force Hardware Upgrade

- Is sometimes necessary
- But can only get you so far and may be very costly (e.g., memory technology)

Modify the code

- The bottleneck is there because the code uses a "resource" heavily or in non-intelligent manner
- We will learn techniques to alleviate bottlenecks at the software level

Identifying a Bottleneck

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks

Profiling Sequential Programs Profiling Parallel Programs

It can be difficult

- You're not going to change the memory bus just to see what happens to the application
- But you can run the code on a different machine and see what happens
- One Approach
 - Know/discover the characteristics of the machine
 - Instrument the code with gettimeofdays everywhere
 - Observe the application execution on the machine
 - Tinker with the code
 - Run the application again
 - Repeat
 - Reason about what the bottleneck is

A better approach: profiling

Parallel Algorithms

A. Legrand

- Performance: Definition? Time? Rate? Peak performance Benchmarks
- Speedup and Efficiency Speedup Amdabl's Lay
- Performance Measures
- Measuring Time

Performance Improvement

Finding Bottlenecks

Profiling Sequential Programs Profiling Paral

- A profiler is a tool that monitors the execution of a program and that reports the amount of time spent in different functions
- Useful to identify the expensive functions
- Profiling cycle
 - Compile the code with the profiler
 - Run the code
 - Identify the most expensive function
 - Optimize that function (i.e. call it less often if possible or make it faster)
 - Repeat until you can't think of any ways to further optimize the most expensive function

Using gprof

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate?
- Peak performance Benchmarks
- Speedup and Efficiency Speedup
- Amdahl's Law
- Performance Measures
- Measuring Time
- Performance Improvement
- Finding Bottlenecks
- Profiling Sequential Programs Profiling Paral

- Compile your code using gcc with the -pg option
- Run your code until completion
- Then run gprof with your program's name as single command-line argument
- Example: gcc -pg prog.c -o prog; ./prog gprof prog >
 profile_file
- The output file contains all profiling information (which fraction of the code is spent in which function)

*			korof						0 =	ī,
ile Help										
Bat Profile	Herarchical Profile	Object Profile								
Function/Metho	d Γ		Q	Count	Total (s)	1%	Self (s)	Total markal	Self ms/call	Ū,
CProfileInfo	::CProfileInfo(void)			69	0.02	0	0	0	0	1
E CProfile View	Item::CProfileViewItem(G	UstView *, CProfileit	1fo *)	157	9.02	0	0	0.03	0	
- CProfileView	/Item::CProfileViewItem(G	ListViewItem*, CPro	fileInfo *;	224	20.0	0	0	0	0	
H KAboutDate	:~KAboutData(void)			1	20.0	0	0	0	0	1
	vel::KProfTopLevel(int, Q)	1	0.02	0	0	58.87	0	
	pLevel:setupActions(void			1	0.02	0	0	0	0	
B-KProfVi	ldget::KProfVildget(QVild	get ", char const ")		1	9.02	0	0	45.94	0	
-KPr	ofWidget::applySettings(v	roid)		2	20.0	0	0	7.18	0	
-KPr	ofWidget:loadSettings(w	oid)		1	20.0	0	0	4.31	0	J
	ofWidget_prepareProfile\		0	3	0.02		0	10.05	0	I.
	QString:~QString(void)		0	6965	0.01	50	0.01	1.44	1.44	
	- QShared::deref(void			28621	0.02	0	0	0	0	
				1	9.02	0	0	0	0	
	vel::setup:Actions(void)			1	20.0	0	0	0	0	
	vel::staticMetaObject(void			107	0.02	0	0	0	0	
H KProf Walge	t::KProf/Wolget(Q)Wolget *	, char const *)		1	0.02	0	0	45.94	0	
	t:applySettings(void)			2	0.02	0	0	7.18	0	
	t::filFlatProfileList(void)			1	9.02	0	0	1.89	0	
	t::fillHierProfileList(void)			1	20.0	0	0	1.89	0	Ē
E KProf/Widge	t::fillHierarchy(CProfileVie	witem *, CProfileInfo	°, 0.4r 🖓	69	9.02	0	0	0	0	Ē.
4					~~~	~	^	^	11	đ

Callgrind

Parallel Algorithms

A. Legrand

- Performance: Definition? Time? Rate? Peak performance Benchmarks
- Speedup and Efficiency Speedup Amdahl's Law
- Performance Measures
- Measuring Time

Performance Improvement

Finding Bottlenecks

Profiling Sequential Programs Profiling Para

- Callgrind is a tool that uses runtime code instrumentation framework of Valgrind for call-graph generation
- ► Valgrind is a kind of emulator or virtual machine.
 - It uses JIT (just-in-time) compilation techniques to translate x86 instructions to simpler form called ucode on which various tools can be executed.
 - The ucode processed by the tools is then translated back to the x86 instructions and executed on the host CPU.
- This way even shared libraries and dynamically loaded plugins can be analyzed but this kind of approach results with huge slow down (about 50 times for callgrind tool) of analyzed application and big memory consumption.

Callgrind/Kcachegrind

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdabl's Lay

Performance Measures

Measuring Time

Performance Improvement

Finding Bottlenecks

Profiling Sequential Programs Profiling Para Data produced by callgrind can be loaded into KCacheGrind tool for browsing the performance results.

mpiP

Parallel Algorithms

A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency Speedup Amdahl's Law

Performance Measures

Performance Improvement

Finding Bottlenecks Profiling Sequential Programs Profiling Parallel Programs

- mpiP is a link-time library (it gathers MPI information through the MPI profiling layer)
- It only collects statistical information about MPI functions
- All the information captured by mpiP is task-local

sleeptime = 10;									
MPI_Init (&argc, &argv);	Task	AppTime	MPITime	MPI%					
MPI_Comm_size (comm, &nprocs);	0	10	0.000243	0.00					
MPI_Comm_rank (comm, &rank);	1	10	10	99.92					
MPI_Barrier (comm);	2	10	10	99.92					
<pre>if (rank == 0) sleep (sleeptime);</pre>	3	10	10	99.92					
MPI_Barrier (comm);	*	40	30	74.94					
MPI_Finalize ();									

vaMPIr

Parallel Algorithms

- A. Legrand
- Performance: Definition? Time? Rate? Peak performance Benchmarks
- Speedup and Efficiency Speedup Amdahl's Lav
- Performance Measures
- Measuring Time
- Performance Improvement
- Finding Bottlenecks Profiling Sequential Programs Profiling Parallel Programs

- generate traces (i.e. not just collect statistics) of MPI calls
- These traces can then be visualized and used in different ways.

Parallel Algorithms

A. Legrand

P2P Communication

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex)

Imperfectio

Topology

A Few Example Virtual Topologies

Part II

Network Models

Motivation

Parallel Algorithms

A. Legrand

P2P Communication

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Ful Duplex)

Imperfection

Fopology A Few Examples Virtual Topologies

- Scientific computing : large needs in computation or storage resources.
- ▶ Need to use systems with "several processors":
 - Parallel computers with shared/distributed memory
 - Clusters
 - Heterogeneous clusters

- Clusters of clusters
- Network of workstations
- ► The Grid
- Desktop Grids
- ▶ When modeling platform, *communications modeling* seems to be the most controversial part.
- Two kinds of people produce communication models: those who are concerned with *scheduling* and those who are concerned with *performance evaluation*.
- ► All these models are *imperfect* and *intractable*.

Outline

Parallel Algorithms

A. Legrand

P2P Communication

- Hockney LogP and Friends TCP
- Modeling Concurency Multi-port Single-port
- (Pure and Duplex)
- Flows
- Imperfection
- Topology A Few Examples Virtual Topologies

5 Point to Point Communication Models

- Hockney
- LogP and Friends
- TCP

Modeling Concurency

- Multi-port
- Single-port (Pure and Full Duplex)
- Flows

Remind This is a Model, Hence Imperfect

Topology

- A Few Examples
- Virtual Topologies

UET-UCT

Parallel Algorithms

A. Legrand

P2P Communication

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex) Flows

Imperfection

Topology

A Few Exampl Virtual Topologies Hem...This one is mainly used by scheduling theoreticians to prove that their problem is hard and to know whether there is some hope to prove some clever result or not.

"Hockney" Model

Parallel Algorithms

A. Legrand

P2P Communication

Hockney

LogP an Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex)

Imperfectio

Topology A Few Examples Virtual Topologies Hockney [Hoc94] proposed the following model for performance evaluation of the Paragon. A message of size m from P_i to P_j requires:

$$t_{i,j}(m) = L_{i,j} + m/B_{i,j}$$

In scheduling, there are three types of "corresponding" models:

- Communications are not "splitable" and each communication k is associated to a communication time t_k (accounting for message size, latency, bandwidth, middleware, ...).
- Communications are "splitable" but latency is considered to be negligible (linear divisible model):

$$t_{i,j}(m) = m/B_{i,j}$$

Communications are "splitable" and latency cannot be neglected (linear divisible model):

$$t_{i,j}(m) = L_{i,j} + m/B_{i,j}$$

LogP

Parallel Algorithms

A. Legrand

P2P Communicatio

Hockney

LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fi Dunley)

Flows

Imperfection

Topology

A Few Example Virtual Topologies The LogP model [CKP⁺96] is defined by 4 parameters:

- L is the network latency
- ▶ o is the middleware overhead (message splitting and packing, buffer management, connection, ...) for a message of size w
- ▶ g is the gap (the minimum time between two packets communication) between two messages of size w
- P is the number of processors/modules

Sending *m* bytes with packets of size *w*:

 $2o + L + \left\lceil \frac{m}{w} \right\rceil \cdot \max(o,g)$

Occupation on the sender and on the receiver:

$$o + L + \left(\left\lceil \frac{m}{w} \right\rceil - 1 \right) \cdot \max(o, g)$$

LogP

Parallel Algorithms

A. Legrand

P2P Communicatio

Hockney

LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fi Dunley)

Flows

Imperfection

Topology

A Few Example Virtual Topologies The LogP model [CKP⁺96] is defined by 4 parameters:

- L is the network latency
- ▶ o is the middleware overhead (message splitting and packing, buffer management, connection, ...) for a message of size w
- ▶ g is the gap (the minimum time between two packets communication) between two messages of size w
- P is the number of processors/modules

Sending *m* bytes with packets of size *w*:

 $2o + L + \left\lceil \frac{m}{w} \right\rceil \cdot \max(o,g)$

Occupation on the sender and on the receiver:

$$o + L + \left(\left\lceil \frac{m}{w} \right\rceil - 1 \right) \cdot \max(o, g)$$

LogGP & pLogP

Parallel Algorithms

A. Legrand

P2P Communication

Hockney

LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex) Flows

Imperfection

Topology A Few Examples Virtual Topologies The previous model works fine for short messages. However, many parallel machines have special support for long messages, hence a higher bandwidth. LogGP [AISS97] is an extension of LogP: G captures the bandwidth for long messages:

short messages $2o + L + \left\lceil \frac{m}{w} \right\rceil \cdot \max(o, g)$ long messages 2o + L + (m - 1)G

There is no fundamental difference...

OK, it works for small and large messages. Does it work for averagesize messages ? pLogP [KBV00] is an extension of LogP when L, oand g depends on the message size m. They also have introduced a distinction between o_s and o_r . This is more and more precise but concurrency is still not taken into account.

Bandwidth as a Function of Message Size

Parallel Algorithms

A. Legrand

P2P Communication

Hockney

LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex) Flows

Imperfectior

Topology

A Few Example Virtual Topologies

MPICH, TCP with Gigabit Ethernet

Bandwidth as a Function of Message Size

Parallel Algorithms

A. Legrand

P2P Communication

Hockney

LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex) Flows

Imperfection

Topology

A Few Example Virtual Topologies

MPICH, TCP with Gigabit Ethernet

What About TCP-based Networks?

Parallel Algorithms

A. Legrand

P2P Communication Hockney

Friend TCP

Modeling Concurency Multi-port Single-port (Pure and Ful Duplex) Flows

Imperfection

Topology A Few Examples Virtual Topologies The previous models work fine for parallel machines. Most networks use TCP that has fancy *flow-control* mechanism and *slow start*. Is it valid to use affine model for such networks?

The answer seems to be yes but latency and bandwidth parameters have to be carefully measured [LQDB05].

- Probing for m = 1b and m = 1Mb leads to bad results.
- The whole middleware layers should be benchmarked (theoretical latency is useless because of middleware, theoretical bandwidth is useless because of middleware and latency).

The slow-start does not seem to be too harmful.

Most people forget that the round-trip time has a huge impact on the bandwidth.

Outline

Parallel Algorithms

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency

Multi-port

Single-port (Pure and Ful Duplex) Flows

Imperfection

Topology A Few Examples Virtual Topologies

Point to Point Communication Models

- Hockney
- LogP and Friends
- TCP

6 Modeling Concurency

- Multi-port
- Single-port (Pure and Full Duplex)
- Flows

Remind This is a Model, Hence Imperfect

Topology

- A Few Examples
- Virtual Topologies

Multi-ports

Parallel Algorithms

A. Legrand

P2P Communic

Hockney LogP and Friends TCP

Modeling Concurency

Multi-port

Single-port (Pure and Fu Duplex) Flows

Imperfection

Fopology A Few Examples Virtual Topologies

- A given processor can communicate with as many other processors as he wishes without any degradation.
- This model is widely used by scheduling theoreticians (think about all DAG with communications scheduling problems) to prove that their problem is hard and to know whether there is some hope to prove some clever result or not.

This model is borderline, especially when allowing duplication, when one communicates with everybody at the same time, or when trying to design algorithms with super tight approximation ratios.

Frankly, such a model is totally unrealistic.

Using MPI and synchronous communications, it may not be an issue. However, with multi-core, multi-processor machines, it cannot be ignored...

Multi-port (numbers in s)

Bounded Multi-port

Parallel Algorithms

A. Legrand

P2P Communication

Hockney LogP and Friends TCP

Modeling Concurency

Multi-port

Single-port (Pure and Fu Duplex) Flows

Imperfection

Topology

A Few Example Virtual Topologies ▶ Assume now that we have threads or multi-core processors.

We can write that sum of the throughputs of all communications (incomming and outgoing). Such a model is OK for wide-area communications [HP04].

Remember, the bounds due to the round-trip-time must not be forgotten!

Multi-port (β) (numbers in Mb/s)

Single-port (Pure)

Parallel Algorithms

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency

Multi-port

Single-port (Pure and Full Duplex)

Flows

Imperfection

Topology

A Few Examp Virtual Topologies

- A process can communicate with only one other process at a time. This constraint is generally written as a constraint on the sum of communication times and is thus rather easy to use in a scheduling context (even though it complexifies problems).
- This model makes sense when using non-threaded versions of communication libraries (e.g., MPI). As soon as you're allowed to use threads, bounded-multiport seems a more reasonnable option (both for performance and scheduling complexity).

1-port (pure) (numbers in s)

Single-port (Full-Duplex)

Parallel Algorithms

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency

Multi-port

Single-port (Pure and Full Duplex)

Flows

Imperfection

Topology A Few Examp

Virtual Topologies At a given time, a process can be engaged in at most one emission and one reception. This constraint is generally written as two constraints: one on the sum of incomming communication times and one on the sum of outgoing communication times.

1-port (full duplex) (numbers in Mb/s)

Single-port (Full-Duplex)

Parallel Algorithms

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency Multi-port

Single-port (Pure and Full Duplex)

Imperfect

Topology A Few Examples Virtual Topologies This model somehow makes sense when using networks like Myrinet that have few multiplexing units and with protocols without control flow [Mar07].

Even if it does not model well complex situations, such a model is not harmfull.

Fluid Modeling

Parallel Algorithms

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex)

Flows

Imperfectio

Topology A Few Examp Virtual When using TCP-based networks, it is generally reasonnable to use flows to model bandwidth sharing [MR99, Low03].

Fluid Modeling

Parallel Algorithms

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex)

Flows

Imperfectio

Topology A Few Examp Virtual When using TCP-based networks, it is generally reasonnable to use flows to model bandwidth sharing [MR99, Low03].

Flows Extensions

Parallel Algorithms

A. Legrand

P2P Communication

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex)

Flows

Imperfection

Topology A Few Exam

Virtual Topologies

- Note that this model is a multi-port model with capacity-constraints (like in the previous bounded multi-port).
 - When latencies are large, using multiple connections enables to get more bandwidth. As a matter of fact, there is very few to loose in using multiple connections...
- Therefore many people enforce a sometimes artificial (but less intrusive) bound on the maximum number of connections per link [Wag05, MYCR06].

Outline

Parallel Algorithms

A. Legrand

P2P Communicat

- Hockney LogP and Friends TCP
- Modeling Concurency Multi-port Single-port (Pure and Fu Duplex)

Imperfection

Topology A Few Examples Virtual Topologies

5 Point to Point Communication Models

- Hockney
- LogP and Friends
- TCP

Modeling Concurency

- Multi-port
- Single-port (Pure and Full Duplex)
- Flows

Remind This is a Model, Hence Imperfect

Topology

- A Few Examples
- Virtual Topologies

Remind This is a Model, Hence Imperfect

Parallel Algorithms

A. Legrand

P2P Communication

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Ful Duplex) Flows

Imperfection

Fopology A Few Examples Virtual Topologies

- The previous sharing models are nice but you generally do not know other flows...
- Communications use the memory bus and hence interfere with computations. Taking such interferences into account may become more and more important with multi-core architectures.
- ► Interference between communications are sometimes. . . surprising.

Modeling is an art. You have to know your platform and your application to know what is negligeable and what is important. Even if your model is imperfect, you may still derive interesting results.

Outline

Parallel Algorithms

A. Legrand

P2P Communicat

- Hockney LogP and Friends TCP
- Modeling Concurency Multi-port Single-port
- (Pure and Duplex)
- Flows

Imperfection

Topology

A Few Examples Virtual Topologies

5 Point to Point Communication Models

- Hockney
- LogP and Friends
- TCP

Modeling Concurency

- Multi-port
- Single-port (Pure and Full Duplex)
- Flows

Remind This is a Model, Hence Imperfect

8 Topology

- A Few Examples
- Virtual Topologies

Various Topologies Used in the Litterature

Parallel Algorithms

A. Legrand

P2P Communicatio

- Hockney LogP and Friends TCP
- Modeling Concurency Multi-port Single-port (Pure and F Duplex)
- Flows
- Imperfection
- Topology
- A Few Examples Virtual Topologies

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port

Duplex

.

Imperiection

Topology

A Few Exampl Virtual Topologies

Beyond MPI_Comm_rank()?

- So far, MPI gives us a unique number for each processor
- With this one can do anything
- But it's pretty inconvenient because one can do anything with it
- Typically, one likes to impose constraints about which processor/process can talk to which other processor/process
- With this constraint, one can then think of the algorithm in simpler terms
 - There are fewer options for communications between processors
 - So there are fewer choices to implementing an algorithm Courtesy of Henri Casanova 63/272

Virtual

Topologies

Virtual Topologies?

- MPI provides an abstraction over physical computers
 - Fach host has an IP address
 - MPI hides this address with a convenient numbers
 - There could be multiple such numbers mapped to the same IP address
 - All "numbers" can talk to each other
- A Virtual Topology provides an abstraction over MPI
 - Each process has a number, which may be different from the MPI number
 - There are rules about which "numbers" a "number" can talk to
- A virtual topology is defined by specifying the neighbors of each process

A. Legrand

P2P Communication

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex)

Imperfectio

Topology A Few Exam

Virtual Topologies

Implementing a Virtual Topology

0 1 2 3 4 5 6 7

 $(i,j) = (floor(log2(rank+1)), rank - 2^{max(i,0)}+1)$ rank = j -1 + 2^{max(i,0)}

A. Legrand

P2P Communication

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex) Elowe

Imperfectio

Topology A Few Examples Virtual

Topologies

Implementing a Virtual Topology

0 1 2 3 4 5 6 7

 $(i,j) = (floor(log2(rank+1)), rank - 2^{max(i,0)}+1)$ rank = j -1 + 2^{max(i,0)}

 $\begin{array}{l} my_parent(i,j) = (i-1, floor(j/2))\\ my_left_child(i,j) = (i+1, j*2), if any\\ my_right_child(i,j) = (i+1, j*2+1), if any \end{array}$

A. Legrand

P2P Communication

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex) Elowe

Imperfection

Topology A Few Examples Virtual Topologies

Implementing a Virtual Topology

0 1 2 3 4 5 6 7

 $(i,j) = (floor(log2(rank+1)), rank - 2^{max(i,0)}+1)$ rank = j -1 + 2^{max(i,0)}

 $\begin{array}{l} my_parent(i,j) = (i-1, floor(j/2)) \\ my_left_child(i,j) = (i+1, j*2), if any \\ my_right_child(i,j) = (i+1, j*2+1), if any \end{array}$

MPI_Send(..., rank(my_parent(i,j)), ...)

MPI_Recv(..., rank(my_left_child(i,j)), ...) Courtesy of Henri Casanova

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex)

Flows

Imperfection

Topology

A Few Examples Virtual Topologies

Typical Topologies

- Common Topologies (see Section 3.1.2)
 - Linear Array
 - Ring
 - 2-D grid
 - 2-D torus
 - One-level Tree
 - Fully connected graph
 - Arbitrary graph
- Two options for all topologies:
 - Monodirectional links: more constrained but simpler
 - Bidirectional links: less constrained but potential more complicated
 - By "complicated" we typically mean more bug-prone
- We'll look at Ring and Grid in detail Courtesy of Henri Casanova 68/272

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port

(Pure an Duplex)

Flows

Imperfection

Topology

A Few Examples Virtual Topologies

Main Assumption and Big Question

- The main assumption is that once we've defined the virtual topology we forget it's virtual and write parallel algorithms assuming it's physical
 - We assume communications on different (virtual) links do not interfere with each other
 - We assume that computations on different (virtual) processors do not interfere with each other
- The big question: How well do these assumptions hold?
 - The question being mostly about the network
- Two possible "bad" cases
- Case #1: the assumptions do not hold and there are interferences
 - We'll most likely achieve bad performance
 - Our performance models will be broken and reasoning about performance improvements will be difficult
- Case #2: the assumptions do hold but we leave a lot of the network resources unutilized
 - We could perhaps do better with another virtual top64059 of Henri Casanova

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency Multi-port

Single-port (Pure and Ful Duplex)

Flows

Imperfection

Topology

A Few Example Virtual Topologies

Which Virtual Topology to Pick

- We will see that some topologies are really well suited to certain algorithms
- The question is whether they are well-suite to the underlying architecture
- The goal is to strike a good compromise
 - Not too bad given the algorithm
 - Not too bad given the platform
- Fortunately, many platforms these days use switches, which support naturally many virtual topologies
 - Because they support concurrent communications between disjoint pairs of processors
- As part of a programming assignment, you will explore whether some virtual topology makes sense on our cluster

A. Legrand

P2P Communicatio

Hockney LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Fu Duplex)

Flows

Imperfection

Topology

A Few Example Virtual Topologies

Iopologies and Data Distribution

- One of the common steps when writing a parallel algorithm is to distribute some data (array, data structure, etc.) among the processors in the topology
 - Typically, one does data distribution in a way that matches the topology
 - E.g., if the data is 3-D, then it's nice to have a 3-D virtual topology
- One question that arises then is: how is the data distributed across the topology?
- In the next set of slides we look at our first topology: a ring

- F	Para	llel
Al	gorit	:hms

A. Legrand

Assumption

Broadcast

Scatter

All-to-All

Broadcast: Going Faster

Part III

Communications on a Ring

Outline

Assumptions

13 Broadcast: Going Faster

A. Legrand

Assumptions

- Broadcast
- Scatter
- All-to-Al
- Broadcast: Going Faster

Ring Topology (Section 3.3)

P₁

- Each processor is identified by a rank
 - MY_NUM()
- There is a way to find the total number of processors
 - NUM_PROCS()
- Each processor can send a message to its successor
 - SEND(addr, L)
- And receive a message from its predecessor
 - RECV(addr, L)
- We'll just use the above pseudocode rather than MPI
- Note that this is much simpler than the example tree topology we saw in the previous set of slideSurtesy of Henri Casanova

A. Legrand

Assumptions

- Broadcast
- Scatter
- All-to-All
- Broadcast: Going Faster

Virtual vs. Physical Topology

- Now that we have chosen to consider a Ring topology we "pretend" our physical topology is a ring topology
- We can always implement a virtual ring topology (see previous set of slides)
 - And read Section 4.6
- So we can write many "ring algorithms"
- It may be that a better virtual topology is better suited to our physical topology
- But the ring topology makes for very simple programs and is known to be reasonably good in practice
- So it's a good candidate for our first look at parallel algorithms

Courtesy of Henri Casanova 75 / 272

A. Legrand

Assumptions

- Broadcast
- Scatter
- All-to-All
- Broadcast: Going Faster

Cost of communication (Sect. 3.2.1)

- It is actually difficult to precisely model the cost of communication
 - E.g., MPI implementations do various optimizations given the message sizes
- We will be using a simple model

```
Time = L + m/B
```

- L: start-up cost or latency
- B: bandwidth (b = 1/B)
- m: message size
- We assume that if a message of length m is sent from P_0 to P_q , then the communication cost is q(L + m b)
- There are many assumptions in our model, some not very realistic, but we'll discuss them later Courtesy of Henri Casanova

A. Legrand

Assumptions

- Broadcast
- Scatter
- All-to-All
- Broadcast: Going Faster

Assumptions about Communications

- Several Options
 - Both Send() and Recv() are blocking
 - Called "rendez-vous"
 - Very old-fashioned systems
 - Recv() is blocking, but Send() is not
 - Pretty standard
 - MPI supports it
 - Both Recv() and Send() are non-blocking
 - Pretty standard as well
 - MPI supports it

A. Legrand

Assumptions

- Broadcast
- Scatter
- All-to-All
- Broadcast: Going Faster

Assumptions about Concurrency

- One question that's important is: can the processor do multiple things at the same time?
- Typically we will assume that the processor can send, receive, and compute at the same time
 - Call MPI_IRecv()
 Call MPI_ISend()
 - Compute something
- This of course implies that the three operations are independent
 - E.g., you don't want to send the result of the computation
 - E.g., you don't want to send what you're receiving (forwarding)
- When writing parallel algorithms (in pseudo-code), we'll simply indicate concurrent activities with a || sign

A. Legran

Assumptions

- Broadcast
- Scatter
- All-to-All
- Broadcast: Going Faster

Collective Communications

- To write a parallel algorithm, we will need collective operations
 - Broadcasts, etc.
- Now MPI provide those, and they likely:
 - Do not use the ring logical topology
 - Utilize the physical resources well
- Let's still go through the exercise of writing some collective communication algorithms
- We will see that for some algorithms we really want to do these communications "by hand" on our virtual topology rather than using the MPI collective

Courtesy of Henri Casanova 79 / 272

Outline

Broadcast

10 Broadcast

13 Broadcast: Going Faster

A. Legran

Assumptions

Broadcast

- Scatter
- All-to-All
- Broadcast: Going Faster

Broadcast (Section 3.3.1)

- We want to write a program that has P_k send the same message of length m to all other processors Broadcast(k.addr.m)
- On the ring, we just send to the next processor, and so on, with no parallel communications whatsoever
- This is of course not the way one should implement a broadcast in practice if the physical topology is not merely a ring
 - MPI uses some type of tree topology

A. Legran

Assumptions

Broadcast

Scatter

All-to-All

Broadcast: Going Faster

Broadcast (Section 3.3.1)

Brodcast (k, addr, m) $q = MY_NUM()$ p = NUM PROCS()if (q == k)SEND (addr, m) else if $(q == k-1 \mod p)$ RECV(addr,m) else RECV(addr,m) SEND (addr, m) endif endif

- Assumes a blocking receive
- Sending may be non-blocking
- The broadcast time is

(p-1)(L+m b)

Outline

Scatter

13 Broadcast: Going Faster

- A. Legrand
- Assumptions
- Broadcast
- Scatter
- All-to-Al
- Broadcast: Going Faster

Scatter (Section 3.2.2)

- Processor k sends a different message to all other processors (and to itself)
 - P_k stores the message destined to P_q at address addr[q], including a message at addr[k]
- At the end of the execution, each processor holds the message it had received in msg
- The principle is just to pipeline communication by starting to send the message destined to P_{k-1}, the most distant processor

A. Legran

```
Assumptions
```

```
Broadcast
```

Scatter

All-to-Al

```
Broadcast: Going
Faster
```

Scatter (Section 3.3.2)

```
Same execution time as the broadcast
Scatter(k, msq, addr, m)
                                          (p-1)(L + m b)
  q = MY NUM()
  p = NUM_PROCS()
  if (q == k)
   for i = 0 to p-2
       SEND(addr[k+p-1-i mod p],m)
   msq \leftarrow addr[k]
                                        Swapping of send buffer
                                        and receive buffer (pointer)
  else
   RECV(tempR, L)
                                             Sending and
                                             Receiving
   for i = 1 to k-1-q mod p
                                             in Parallel, with a
       tempS \leftrightarrow tempR
                                             non blocking Send
       SEND(tempS,m) || RECV(tempR,m)
   msq \leftarrow tempR
```

A. Legrand

```
Assumptions
```

Broadcast

Scatter

All-to-Al

Broadcast: Going Faster

Scatter (Section 3.3.2)

```
Scatter(k, msg, addr, m)

q = MY_NUM()

p = NUM_PROCS()

if (q == k)

for i = 0 to p-2

SERN(addr[k+p-1-i mod p], m)

msg ← addr[k]
```

else

```
RECV(tempR,L)
for i = 1 to k-1-q mod p
tempS ↔ tempR
SEND(tempS,m) || RECV(tempR,m)
msg ← tempR
```


k = 2, p = 4

```
Proc q=2

send addr[2+4-1-0 % 4 = 1]

send addr[2+4-1-1 % 4 = 0]

send addr[2+4-1-2 % 4 = 3]

msg = addr[2]

Proc q=3

recv (addr[1])

//loop 2-1-3 % 4 = 2 times

send (addr[1)) || recv (addr[0])

send (addr[1)) || recv (addr[3])

msg = addr[3]

Proc q=0

recv (addr[1])

// loop 2-1-2 % 4 = 1 time
```

send (addr[1]) || recv (addr[0])

msg = addr[0]

Proc q=1

// loop 2-1-1 % 4 = 0 time
recv (addr[1])

msg = addr[1]

Courtesy of Henri Casanova

Outline

A. Legran

Assumptions

All-to-All

Broadcast: Going Faster

Broadcast

Scatter

12 All-to-All

Broadcast: Going Faster

- A. Legran
- Assumptions
- Broadcast
- Scatter
- All-to-All
- Broadcast: Going Faster

All-to-all (Section 3.3.3)

All2All(my_addr, addr, m) q = MY_NUM() p = NUM_PROCS() addr[g] ← my addr

for
$$i = 1$$
 to $p-1$
SEND(addr[$q-i+1 \mod p$], m)

```
// RECV(addr[q-i mod p],m)
```


Same execution time as the scatter (p-1)(L + m b)

```
Courtesy of Henri Casanova
88 / 272
```

Outline

- A. Legran
- Assumptions
- Broadcast
- Scatter
- All-to-All
- Broadcast: Going Faster

A faster broadcast?

- How can we improve performance?
- One can cut the message in many small pieces, say in r pieces where m is divisible by r.
- The root processor just sends r messages
- The performance is as follows
 - Consider the last processor to get the last piece of the message
 - There need to be p-1 steps for the first piece to arrive, which takes (p-1)(L + m b / r)
 - Then the remaining r-1 pieces arrive one after another, which takes (r-1)(L + m b / r)
 - For a total of: (p 2 + r) (L + mb / r)

Courtesy of Henri Casanova 90 / 272

- A. Legran
- Assumptions
- Broadcast
- Scatter
- All-to-All
- Broadcast: Going Faster

A faster broadcast?

- The question is, what is the value of r that minimizes (p - 2 + r) (L + m b / r)?
- One can view the above expression as (c+ar)(d+b/r), with four constants a, b, c, d
- The non-constant part of the expression is then ad.r + cb/r, which must be minimized
- It is known that this value is minimized for

```
sqrt(cb / ad)
```

and we have

```
r_{opt} = sqrt(m(p-2) b / L)
```

with the optimal time

```
(sqrt((p-2) L) + sqrt(m b))^2
```

which tends to mb when m is large, which is independent of p!

- A. Legrand
- Assumptions
- Broadcast
- Scatter
- All-to-All
- Broadcast: Going Faster

Well-known Network Principle

- We have seen that if we cut a (large) message in many (small) messages, then we can send the message over multiple hops (in our case p-1) almost as fast as we can send it over a single hop
- This is a fundamental principle of IP networks
 - We cut messages into IP frames
 - Send them over many routers
 - But really go as fast as the slowest router

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

Gaussian Elimination LU

Part IV

Algorithms on a Ring

Outline

Parallel Algorithms

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version Distributing Matrices Second MF Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

- Stencil Application Principle Greedy Version Reducing the Granularity
- LU Factorization Gaussian Elimination LU

Matrix Vector Product

- Open MP Version
- First MPI Version
- Distributing Matrices
- Second MPI Version
- Third MPI Version
- Mixed Parallelism Version

Matrix Multiplication

Stencil Application

- Principle
- Greedy Version
- Reducing the Granularity

LU Factorization

- Gaussian Elimination
- LU

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versior Reducing the Granularity LU Factorizatio

Eliminat

Parallel Matrix-Vector product

- y = A x
- Let n be the size of the matrix

```
int a[n][n];
int x[n];
for i = 0 to n-1 {
  y[i] = 0;
  for j = 0 to n-1
  y[i] = y[i] + a[i,j] * x[j];
}
```

How do we do this in parallel?

Section 4.1 in the book

A. Legrand

Matrix Vector Product

Open MP Version

First MPI Version

Matrices Second MP Version

Third MP Version Mixed

Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

Gaussian Elimination LU

Parallel Matrix-Vector product

- How do we do this in parallel?
- For example:
 - Computations of elements of vector y are independent
 - Each of these computations requires one row of matrix a and vector x
- In shared-memory:

```
#pragma omp parallel for private(i,j)
for i = 0 to n-1 {
    y[i] = 0;
    for j = 0 to n-1
        y[i] = y[i] + a[i,j] * x[j];
}
```


96 / 272

A. Legrand

Matrix Vector Product

Open MF Version

First MPI Version

Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versior Reducing the Granularity LU Factorizatio Gaussian

Parallel Matrix-Vector product

- How do we do this in parallel?
- For example:
 - Computations of elements of vector y are independent
 - Each of these computations requires one row of matrix a and vector x
- In shared-memory:

```
#pragma omp parallel for private(i,j)
for i = 0 to n-1 {
    y[i] = 0;
    for j = 0 to n-1
        y[i] = y[i] + a[i,j] * x[j];
}
```


97 / 272

A. Legrand

Matrix Vector Product

Open MF Version

First MPI Version

Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

Gaussian Elimination LU

Parallel Matrix-Vector Product

- In distributed memory, one possibility is that each process has a full copy of matrix a and of vector x
- Each processor declares a vector y of size n/p
 - We assume that p divides n
- Therefore, the code can just be

```
load(a); load(x)
p = NUM_PROCS(); r = MY_RANK();
for (i=r*n/p; i<(r+1)*n/p; i++) {
    for (j=0; j<n; j++)
        y[i-r*n/p] = a[i][j] * x[j];
}</pre>
```

- It's embarrassingly parallel
- What about the result?

A. Legrand

Matrix Vector Product

Open MP Version

First MPI Version

Distributing Matrices Second MPI Version Mixed Parallelism Version

Matrix Multiplicatior

Stencil Application Principle Greedy Version Reducing the Granularity

Gaussian Elimination LU

What about the result?

- After the processes complete the computation, each process has a piece of the result
- One probably wants to, say, write the result to a file
 - Requires synchronization so that the I/O is done correctly
- For example

```
if (r != 0) {
    recv(&token, 1);
}
open(file, "append");
for (j=0; j<n/p ; j++)
    write(file, y[j]);
send(&token, 1);
close(file)
barrier(); // optional</pre>
```

- Could also use a "gather" so that the entire vector is returned to processor 0
 - vector y fits in the memory of a single node

Courtesy of Henri Casanova 99 / 272

A. Legrand

Matrix Vector Product

Open MP Version

First MPI Version

Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplicatior

Stencil Application Principle Greedy Versio Reducing the Granularity LU Factorizatio

Gaussian Eliminatio LU

What if matrix a is too big?

- Matrix a may not fit in memory
 - Which is a motivation to use distributed memory implementations
- In this case, each processor can store only a piece of matrix a
- For the matrix-vector multiply, each processor can just store n/p rows of the matrix
 - Conceptually: A[n][n]
 - But the program declares a[n/p][n]
- This raises the (annoying) issue of global indices versus local indices

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Distributing Matrices

Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versio Reducing the Granularity

Gaussian Elimination LU

Global vs. Local indices

- When an array is split among processes
 - global index (I,J) that references an element of the matrix
 - local index (i,j) that references an element of the local array that stores a piece of the matrix
 - Translation between global and local indices
 - think of the algorithm in terms of global indices
 - implement it in terms of local indices

Global: A[5][3] Local: a[1][3] on process P1

a[i,j] = A[(n/p)*rank + i][j]

Courtesy of Henri Casanova 101 / 272

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplicatior

Stencil Application Principle Greedy Versic Reducing the Granularity

LU Factorization Gaussian Elimination LU

Global Index Computation

- Real-world parallel code often implements actual translation functions
 - GlobalToLocal()
 - LocalToGlobal()
- This may be a good idea in your code, although for the ring topology the computation is pretty easy, and writing functions may be overkill
- We'll see more complex topologies with more complex associated data distributions and then it's probably better to implement such functions

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versior Reducing the Granularity

Gaussian Elimination LU

Distributions of arrays

- At this point we have
 - 2-D array a distributed
 - 1-D array y distributed
 - 1-D array x replicated
- Having distributed arrays makes it possible to partition work among processes
 - But it makes the code more complex due to global/local indices translations
 - It may require synchronization to load/save the array elements to file

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versio Reducing the Granularity

Gaussian Elimination LU

All vector distributed?

- So far we have array x replicated
- It is usual to try to have all arrays involved in the same computation be distributed in the same way
 - makes it easier to read the code without constantly keeping track of what's distributed and what's not
 - e.g., "local indices for array y are different from the global ones, but local indices for array x are the same as the global ones" will lead to bugs
- What one would like it for each process to have
 - N/n rows of matrix A in an array a[n/p][n]
 - N/n components of vector x in an array x[n/p]
 - N/n components of vector y in an array y[n/p]
- Turns out there is an elegant solution to do this Courtesy of Henri Casanova

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

LU Factorization Gaussian Elimination LU

Principle of the Algorithm

 $\begin{pmatrix} A_{00} & A_{01} & A_{02} & A_{03} & A_{04} & A_{05} & A_{06} & A_{0} \\ A_{10} & A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} & A_{1} \end{pmatrix}$ X_0 P_o **X**₁ **X**₂ P₁ X₃ $\begin{array}{c} A_{40} A_{41} A_{42} A_{43} A_{44} A_{45} A_{46} A_{4} \\ A_{50} A_{51} A_{52} A_{53} A_{54} A_{55} A_{56} A_{5} \end{array}$ X4 P_2 X₅ $\begin{array}{c} A_{60} \ A_{61} \ A_{62} \ A_{63} \ A_{64} \ A_{65} \ A_{66} \ A_{67} \\ A_{70} \ A_{71} \ A_{72} \ A_{73} \ A_{74} \ A_{75} \ A_{76} \ A_{77} \end{array}$ X_6 Ρ., X₇

Initial data distribution for: n = 8p = 4n/p = 2

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versic Reducing the Granularity

LU Factorization Gaussian Elimination LU

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versic Reducing the Granularity

LU Factorization Gaussian Elimination LU

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versic Reducing the Granularity

LU Factorization Gaussian Elimination LU

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versio Reducing the Granularity

LU Factorization Gaussian Elimination LU

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versi Reducing the Granularity

LU Factorization Gaussian Elimination LU

Principle of the Algorithm

P _o	$ \begin{bmatrix} A_{00} \ A_{01} \bullet & \bullet & \bullet & \bullet & \bullet \\ A_{10} \ A_{11} \bullet & \bullet & \bullet & \bullet & \bullet \end{bmatrix} $	$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$
P_1	$ \left[\begin{array}{ccccc} \bullet & A_{22} \ A_{23} \ \bullet & \bullet & \bullet \\ \bullet & \bullet & A_{32} \ A_{33} \ \bullet & \bullet & \bullet \end{array} \right] $	$\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$
P ₂	$ \left[\begin{matrix} \bullet & \bullet & \bullet & \bullet & A_{44} A_{45} \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & A_{54} A_{55} \bullet & \bullet \\ \end{matrix} \right] $	$\begin{pmatrix} x_4 \\ x_5 \end{pmatrix}$
P ₃	$ \begin{bmatrix} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & A_{66} & A_{67} \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & A_{76} & A_{77} \end{bmatrix} $	$\begin{bmatrix} x_6 \\ x_7 \end{bmatrix}$

The final exchange of vector x is not strictly necessary, but one may want to have it distributed as the end of the computation like it was distributed at the beginning.

Final state

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Distributing Matrices

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

LU Factorization Gaussian Elimination LU

Algorithm

- Uses two buffers
 - tempS for sending and tempR to receiving

```
float A[n/p][n], x[n/p], y[n/p];
r \leftarrow n/p
tempS \leftarrow x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */
SEND(tempS,r)
RECV(tempR,r)
for (i=0; i<n/p; i++)
for (j=0; j < n/p; j++)
y[i] ← y[i] + a[i, (rank - step mod p) * n/p + j] * tempS[j]
tempS \leftrightarrow tempR
}
```

 In our example, process of rank 2 at step 3 would work with the 2x2 matrix block starting at column ((2 - 3) mod 4)*8/4 = 3 * 8 / 4 = 6;

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Distributir

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Vers Reducing th

LU Factorization Gaussian Elimination

A few General Principles

- Large data needs to be distributed among processes (running on different nodes of a cluster for instance)
 - causes many arithmetic expressions for index computation
 - People who do this for a leaving always end up writing local_to_global() and global_to_local() functions
- Data may need to be loaded/written before/after the computation
 - requires some type of synchronization among processes
- Typically a good idea to have all data structures distributed similarly to avoid confusion about which indices are global and which ones are local
 - In our case, all indices are local
- In the end the code looks much more complex than the equivalent OpenMP implementation resy of Henri Casanova

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Distributir

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

Gaussian Elimination LU

Performance

- There are p identical steps
- During each step each processor performs three activities: computation, receive, and sending
 - Computation: r² w
 - w: time to perform one += * operation
 - Receiving: L + r b
 - Sending: L + r b

$$T(p) = p (r^2w + 2L + 2rb)$$

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Distributing Matrices

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplicatior

Stencil Application Principle Greedy Versio Reducing the Granularity

LU Factorization Gaussian Elimination LU

Asymptotic Performance

•
$$T(p) = p(r^2w + 2L + 2rb)$$

- Speedup(p) = n²w / p (r²w + 2L + 2rb) = n²w / (n²w/p + 2pL + 2nb)
- $Eff(p) = n^2w / (n^2w + 2p^2L + 2pnb)$
- For p fixed, when n is large, Eff(p) ~ 1
- Conclusion: the algorithm is asymptotically optimal

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MPI Version

Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorizatio

Gaussian Elimination LU

 Note that an algorithm that initially broadcasts the entire vector to all processors and then have every processor compute independently would be in time

 $(p-1)(L + n b) + pr^2 w$

- Could use the pipelined broadcast
- which:
 - has the same asymptotic performance
 - is a simpler algorithm
 - wastes only a tiny little bit of memory
 - is arguably much less elegant
- It is important to think of simple solutions and see what works best given expected matrix size, etc. Courtesy of Henri Casanova

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version

Third MPI Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versio Reducing the Granularity

LU Factorization Gaussian Elimination LU

Back to the Algorithm

```
float A[n/p][n], x[n/p], y[n/p];
r \leftarrow n/p
tempS \leftarrow x /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */
SEND(tempS,r)
RECV(tempR,r)
for (i=0; i<n/p; i++)
for (j=0; j <n/p; j++)
y[i] \leftarrow y[i] + a[i, (rank - step mod p) * n/p + j] * tempS[j]
tempS \leftrightarrow tempR
```

- In the above code, at each iteration, the SEND, the RECV, and the computation can all be done in parallel
- Therefore, one can overlap communication and computation by using non-blocking SEND and RECV if available
- MPI provides MPI_ISend() and MPI_IRecv() for this purpose

A. Legrand

Matrix Vector Product Open MP

First MPI Version

Matrices Second MPI Version

Third MPI Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versior Reducing the Granularity

ł

LU Factorization Gaussian Elimination LU

Nore Concurrent Algorithm

Notation for concurrent activities:

Courtesy of Henri Casanova 117 / 272

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Version Distributi

Matrices Second MP Version

Third MPI Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versic Reducing the Granularity

LU Factorization Gaussian Elimination LU

Better Performance

- There are p identical steps
- During each step each processor performs three activities: computation, receive, and sending
 - Computation: r²w
 - Receiving: L + rb
 - Sending: L + rb

$T(p) = p \max(r^2w, L + rb)$

Same asymptotic performance as above, but better performance for smaller values of n

- A. Legrand
- Matrix Vector Product
- Open MP Version
- Version
- Distributing Matrices
- Second MF Version
- Third MP Version

Mixed Parallelism Version

- Matrix Multiplicatio
- Stencil Application Principle Greedy Versio Reducing the Granularity
- Gaussian Elimination LU

Hybrid parallelism

- We have said many times that multi-core architectures are about to become the standard
- When building a cluster, the nodes you will buy will be multi-core
- Question: how to exploit the multiple cores?
 - Or in our case how to exploit the multiple processors in each node
- Option #1: Run multiple processes per node
 - Causes more overhead and more communication
 - In fact will cause network communication among processes within a node!
 - MPI will not know that processes are colocated

A. Legrand

Matrix Vector Product

Open MF Version

Version

Matrices

Version

Third MP Version

Mixed Parallelism Version

Matrix Multiplicatio

Stencil Application Principle Greedy Versic Reducing the Granularity

LU Factorization Gaussian Elimination LU

OpenMP MPI Program

- Option #2: Run a single multi-threaded process per node
 - Much lower overhead, fast communication within a node
 - Done by combining MPI with OpenMP!
- Just write your MPI program
- Add OpenMP pragmas around loops
- Let's look back at our Matrix-Vector multiplication example

A. Legrand

Matrix Vector Product Open MP Version

First MPI Version

Distributing Matrices Second MP

Version Third MPI

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

LU Factorizatior Gaussian Elimination LU

Hybrid Parallelism

- This is called Hybrid Parallelism
- Communication via the network among nodes
- Communication via the shared memory within nodes

Outline

Parallel Algorithms

A. Legrand

Matrix Vector Product

- Open MP Version First MPI
- Distributin
- Matrices Second N
- Version
- Third MP Version Mixed
- Version

Matrix Multiplication

- Stencil Application Principle Greedy Versic Reducing the Granularity
- LU Factorization Gaussian Elimination LU

Matrix Vector Product

- Open MP Version
- First MPI Version
- Distributing Matrices
- Second MPI Version
- Third MPI Version
- Mixed Parallelism Version

15 Matrix Multiplication

Stencil Application

- Principle
- Greedy Version
- Reducing the Granularity

LU Factorization

- Gaussian Elimination
- LU

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version Distributin Matrices

Second MF Version Third MPI Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorizatio

Gaussian Elimination LU

Matrix Multiplication on the Ring

- See Section 4.2
- Turns out one can do matrix multiplication in a way very similar to matrix-vector multiplication
 - A matrix multiplication is just the computation of n² scalar products, not just n
- We have three matrices, A, B, and C
- We want to compute C = A*B
- We distribute the matrices to that each processor "owns" a block row of each matrix
 - Easy to do if row-major is used because all matrix elements owned by a processor are contiguous in memory

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

Gaussian Elimination LU

Data Distribution

Courtesy of Henri Casanova 124 / 272

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

Gaussian Elimination LU

First Step

p=4B_{1,1} B_{1,2} B_{1,3} B_{1,0} let's look at processor P₁ n +=+=+ =+ = $A_{1,1}$ A_{1,2} A_{1,3} A_{1,0} A_{1.1}×B_{1.0} A_{1.1}×B_{1.1} A_{1.1}×B_{1.2} A_{1.1}×B_{1.3}

> Courtesy of Henri Casanova 125 / 272

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

Gaussian Elimination LU

Shifting of block rows of B

p=4r let's look at processor P_a n $A_{q,1}$ A_{q,2} A_{q,3} A_{q,0}

> Courtesy of Henri Casanova 126 / 272

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

Gaussian Elimination LU

Second step

p=4B_{0,1} B_{0,0} B_{0.3} B_{0.2} r let's look at processor P₁ n +=+=+=+ = $A_{1,1}$ A_{1,2} A_{1,3} A_{1,0} A_{1.0}×B_{0.0} A_{1.0}×B_{0.1} A_{1.0}×B_{0.2} A_{1.0}×B_{0.3}

> Courtesy of Henri Casanova 127 / 272

A. Legrand

```
Matrix Vector
Product
Open MP
Version
First MPI
Version
Distributing
Matrices
Second MPI
Version
```

```
Version
Third MPI
Version
Mixed
Parallelism
Version
```

Matrix Multiplication

```
Application
Principle
Greedy Version
Reducing the
Granularity
LU Factorization
Gaussian
Elimination
LU
```

Algorithm

- In the end, every Ci,j block has the correct value: $A_{i,0}B_{0,j}$ + $A_{i,1}B_{1,j}$ +
- Basically, this is the same algorithm as for matrix-vector multiplication, replacing the partial scalar products by submatrix products (gets tricky with loops and indices)

```
float A[N/p][N], B[N/p][N], C[N/p][N];
r ← N/p
tempS ← B
q ← MY_RANK()
for (step=0; step<p; step++) { /* p steps */
    SEND(tempS,r*N)
// RECV(tempR,r*N)
// for (1=0; 1<p; 1++)
    for (i=0; i<N/p; i++)
    for (j=0; j<N/p; j++)
    for (k=0; k<N/p; k++)
        C[i,1*r+j] ← C[i,1*r+j] + A[i,r((q - step)&p)+k] * tempS[k,1*r+j]
tempS ↔ tempR
```

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorizatio Gaussian

Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND(tempS, r*N)
    // RECV(tempR, r*N)
    // for (1=0; i<N/p; i++)
    for (j=0; j<N/p; j++)
    for (j=0; j<N/p; j++)
    for (k=0; k<N/p; k++)
        C[i,lr+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
    tempS \leftrightarrow tempR</pre>
```

}

step=0 I=0 i=0 j=0

> Courtesy of Henri Casanova 129 / 272

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorization Gaussian Elimination

Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND(tempS, r*N)
    // RECV(tempR, r*N)
    // for (1=0; i<N/p; i++)
    for (j=0; j<N/p; j++)
    for (k=0; k<N/p; k++)
        C[i,lr+j] ← C[i,lr+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
    tempS ↔ tempR</pre>
```

}

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorizatio Gaussian

Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND(tempS, r*N)
    // RECV(tempS, r*N)
    // for (l=0; l<p; l++)
    for (j=0; j<N/p; i++)
    for (j=0; j<N/p; j++)
    for (k=0; k<N/p; k++)
        C[i,lr+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
    tempS + tempR</pre>
```

}

step=0
l=0
i=*
j=*

Courtesy of Henri Casanova 131 / 272

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorization Gaussian

Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND(tempS, r*N)
    // RECV(tempS, r*N)
    // RECV(tempR, r*N)
    // for (1=0; 1<p; 1++)
    for (j=0; j<N/p; j++)
    for (j=0; k<N/p; j++)
    for (k=0; k<N/p; k++)
        C[i,1r+j] ← C[i,1r+j] + A[i,r((rank - step)%p)+k] * tempS[k,1r+j]
    tempS ↔ tempR</pre>
```

}

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorization Gaussian Elimination

Algorithm

```
for (step=0; step+p; step++) { /* p steps */
    SEND(tempS, r*N)
    // RECV(tempR, r*N)
    // for (1=0; 1<p; 1++)
    for (i=0; i<N/p; i++)
    for (j=0; j<N/p; j++)
    for (k=0; k<N/p; k++)
        C[i,lr+j] ← C[i,lr+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
    tempS ↔ tempR</pre>
```

}

step=0 |=* i=* j=*

> Courtesy of Henri Casanova 133 / 272

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorization Gaussian Elimination

Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND(tempS, r*N)
    // RECV(tempS, r*N)
    // for (1=0; 1<p; 1++)
    for (j=0; j<N/p; i++)
    for (j=0; k<N/p; j++)
    for (k=0; k<N/p; k++)
        C[i, lr+j] ← C[i, lr+j] + A[i, r((rank - step)%p)+k] * tempS[k, lr+j]
    tempS ↔ tempR</pre>
```

}

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorization Gaussian Elimination

Algorithm

```
for (step=0; step:p; step:+) { /* p steps */
    SEND(tempS,r*N)
    // RECV(tempS,r*N)
    // for (1=0; 1<p; 1++)
    for (i=0; i<N/p; i++)
    for (j=0; j<N/p; j++)
    for (k=0; k<N/p; k++)
        C[i,lr+j] ← C[i,lr+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
    tempS ↔ tempR</pre>
```

}

step=2 |=* i=* j=*

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorization Gaussian Elimination

Algorithm

```
for (step=0; step+p; step++) { /* p steps */
    SEND(tempS, r*N)
    // RECV(tempR, r*N)
    // for (1=0; 1<p; 1++)
    for (i=0; i<N/p; i++)
    for (j=0; j<N/p; j++)
    for (k=0; k<N/p; k++)
        C[i,lr+j] ← C[i,lr+j] + A[i,r((rank - step)%p)+k] * tempS[k,lr+j]
    tempS ↔ tempR</pre>
```

}

A. Legrand

Matrix Vector Product

Version First MPI Version Distributin Matrices Second MF Version Third MPI Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versior Reducing the Granularity LU Factorizatio Gaussian Performance

- Performance Analysis is straightforward
- p steps and each step takes time: max (nr² w, L + nrb)
 - p rxr matrix products = pr³ = nr² operations
- Hence, the running time is:

 $T(p) = p \max (nr^2 w, L + nrb)$

 Note that a naive algorithm computing n Matrix-vector products in sequence using our previous algorithm would take time

 $T(p) = p \max(nr^2 w, nL + nrb)$

We just saved network latencies!

Outline

Parallel Algorithms

A. Legrand

Matrix Vector Product

Open MP Version

Version

Distributin

Second N

Version

Version Mixed

Parallelism Version

Matrix Multiplication

Stencil Application

Principle Greedy Version Reducing the Granularity

LU Factorizatior Gaussian Elimination LU

Matrix Vector Product

- Open MP Version
- First MPI Version
- Distributing Matrices
- Second MPI Version
- Third MPI Version
- Mixed Parallelism Version

Matrix Multiplication

16 Stencil Application

- Principle
- Greedy Version
- Reducing the Granularity

LU Factorization

- Gaussian Elimination
- LU

- A. Legrand
- Matrix Vector Product
- Open MP Version First MPI Version Distributin
- Second MF Version Third MPI
- Version Mixed
- Version
- Matrix Multiplication
- Stencil Application
- Principle
- Greedy Version Reducing the Granularity
- LU Factorization Gaussian Elimination

Stencil Application (Section 4.3)

 We've talked about stencil applications in the context of shared-memory programs

new = update(old,W,N)

- We found that we had to cut the matrix in "small" blocks
 - On a ring the same basic idea applies, but let's do it step-Courtesy of Henri Casanova 120 (272)

A. Legrand

Matrix Vector Product

Open MP Version

First MPI Version

Distributing

Matrices

Second MI

Third ME

Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application

Principle

Greedy Version Reducing the Granularity

LU Factorization

Gaussian Elimination LU

Stencil Application

- Let us, for now, consider that the domain is of size nxn and that we have p=n processors
 - Classic way to first approach a problem
- Each processor is responsible for computing one row of the domain (at each iteration)
- Each processor holds one row of the domain and has the following declaration:

var A: array[0..n-1] of real

- One first simple idea is to have each processor send each cell value to its neighbor as soon as that cell value is computed
- Basic principle: do communication as early as possible to get your "neighbors" started as early as possible
 - Remember that one of the goals of a parallel program is to reduce idle time on the processors
- We call this algorithm the Greedy algorithm, and seek an evaluation of its performance

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

```
Stencil
Application
Principle
Greedy Version
Reducing the
Granularity
LU Factorizatior
```

Gaussian Eliminatio LU

The Greedy Algorithm

q = MY NUM()p = NUM PROCS if (q == 0) then A[0] = Update(A[0],nil,nil) Send(A[0],1) else Recv(v.1) A[0] = Update(A[0],nil,v)endif for i = 1 to n-1if (q == 0) then A[i] = Update(A[i], A[i-1], nil)Send(A[i],1) elsif (q == p-1) then Recv(v,1) A[i] = Update(A[i], A[i-1], v)else Send(A[j-1], 1) || Recv(v,1) A[j] = Update(A[j], A[j-1], v)endif endfor

First element of the row

Other elements

note the use of "nil" for borders and corners Courtesy of Henri Casanova

A. Legrand

Matrix Vector Product

Open MP Version

Version

Distributing

Second M

Version

Third MI Version

Mixed Parallelism

Matrix Multiplication

Stencil Application

Principle

Greedy Version Reducing the Granularity

LU Factorization

Elimin LU

Greedy Algorithm

- This is all well and good, but typically we have n > p
- Assuming that p divides n, each processor will hold n/p rows
 - Good for load balancing
- The goal of a greedy algorithm is always to allow processors to start computing as early as possible
- This suggests a cyclic allocation of rows among processors

PO
P1
P2
PO
P1
P2
PO
P1
P2

 P1 can start computing after P0 has computed its first computing casanova 142/272

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Matrices

Second M

Third MF Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application

Principle

Greedy Version Reducing the

LU Factorization Gaussian Elimination

Greedy Algorithm

- Each processor holds n/p rows of the domain
- Thus it declares:

var A[0..n/p-1,n] of real

- Which is a contiguous array of rows, with these rows not contiguous in the domain
 - Therefore we have a non-trivial mapping between global indices and local indices, but we'll see that they don't appear in the code
- Let us rewrite the algorithm

A. Legrand

```
Matrix Vector
Product
Open MP
Version
First MPI
Version
Distributing
Matrices
Second MPI
Version
Third MPI
Version
Mixed
Parallelism
Version
```

Matrix Multiplication

```
Stencil
Application
Principle
Greedy Version
Reducing the
Granularity
LU Factorization
Gaussian
```

The Greedy Algorithm

```
p = MY NUM()
a = NUM PROCS
For i = 0 to n/p - 1
   if (q == 0) and (i == 0) then
          A[0.0] = Update(A[0.0],nil,nil)
          Send(A[0].1)
   else
          Recv(v.1)
          A[i,0] = Update(A[i,0],nil,v)
   endif
   for i = 1 to n-1
          if (q == 0) and (i == 0) then
                     A[i,j] = Update(A[i,j], A[i,j-1], nil)
                     Send(A[i,i],1)
          elsif (q == p-1) and (i = n/p-1) then
                     Recv(v.1)
                     A[i,i] = Update(A[i,i], A[i-1,i], v)
          else
                     Send(A[i,i-1], 1) || Recv(v,1)
                     A[i,i] = Update(A[i,i], A[i-1,i-1], v)
          endif
   endfor
endfor
```

A. Legrand

Matrix Vector Product

Open MP Version

Version

Distributin

Second M

Version

Third MI

Mixed Parallelism

Matrix Multiplication

Stencil Application

Principle

Greedy Version

Reducing the Granularity

LU Factorization

Elimin: LU

Performance Analysis

- Let T(n,p) denote the computation time of the algorithm for a nxn domain and with p processors
- A each step a processor does at most three things
 - Receive a cell
 - Send a cell
 - Update a cell
- The algorithm is "clever" because at each step k, the sending of messages from step k is overlapped with the receiving of messages at step k+1
- Therefore, the time needed to compute one algorithm step is the sum of
 - Time to send/receive a cell:
 L + b
 - Time to perform a cell update: w
- So, if we can count the number of steps, we can simply multiply and get the overall execution time

A. Legrand

Matrix Vector Product

- Open MF Version
- First MP
- Distributir
- Matrices
- Second M
- Version
- Version
- Mixed Parallelism Version

Matrix Multiplication

Stencil Application

Principle

Greedy Version

Reducing the Granularity

LU Factorizatio Gaussian Elimination LU

Performance Analysis

- It takes p-1 steps before processor P_{p-1} can start computing its first cell
- Thereafter, this processor can compute one cell at every step
- The processor holds n*n/p cells
- Therefore, the whole program takes: p-1+n*n/p steps
- And the overall execution time:

 $T(n,p) = (p - 1 + n^2/p) (w + L + b)$

- The sequential time is: n²w
- The Speedup, S(n,p) = n²w / T(n,p)
- When n gets large, T(n,p) ~ n²/p (w + L + b)
- Therefore, Eff(n,p) \sim w / (w + L + b)
- This could be WAY below one
 - In practice, and often, L + b >> w
- Therefore, this greedy algorithm is probably not a good idea at all!

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributin Matrices

Second M

Third MP Version

Nixed Parallelism Version

Matrix Multiplication

Stencil Application

Principle

Greedy Version Reducing the

Granularity

LU Factorization Gaussian Elimination LU

Granularity

- How do we improve on performance?
- What really kills performance is that we have to do so much communication
 - Many bytes of data
 - Many individual messages
- So we we want is to augment the granularity of the algorithm
 - Our "tasks" are not going to be "update one cell" but instead "update multiple cells"
- This will allow us to reduce both the amount of data communicated and the number of messages exchanged

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing

Second MI

Version Third MP Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle

Croody Vo

Reducing the Granularity

LU Factorization Gaussian Elimination LU

Reducing the Granularity

- A simple approach: have a processor compute k cells in sequence before sending them
- This is in conflict with the "get processors to compute as early as possible" principle we based our initial greedy algorithm on
 - So we will reduce communication cost, but will increase idle time
- Let use assume that k divides n
- Each row now consists of n/k segments
 - If k does not divide n we have left over cells and it complicates the program and the performance analysis and as usual doesn't change the asymptotic performance analysis

- A. Legrand
- Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version
- Matrix Multiplicatior
- Stencil Application Principle
- Greedy V
- Reducing the Granularity
- LU Factorization Gaussian Elimination LU

- The algorithm computes segment after segment
- The time before P1 can start computing is the time for P0 to compute a whole segment
- Therefore, it will take longer until P_{p-1} can start computing

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MI

Third MP Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Applicatior

Principle

Greedy Versi

Reducing the Granularity

LU Factorization Gaussian Elimination LU

Reducing the Granularity More

- So far, we've allocated non-contiguous rows of the domain to each processor
- But we can reduce communication by allocating processors groups of contiguous rows
 - If two contiguous rows are on the same processors, there is no communication involved to update the cells of the second row
- Let us use say that we allocate blocks of rows of size r to each processor
 - We assume that r*p divides n
- Processor Pi holds rows j such that i = floor(j/r) mod p
- This is really a "block cyclic" allocation

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity LU Factorizatio

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Distributin

Matrices

Version

Third MF Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle

Reducing the Granularity

LU Factorization Gaussian Elimination LU

Idle Time?

- One question is: does any processor stay idle?
- Processor P_0 computes all values in its first block of rows in n/k algorithm steps
- After that, processor P₀ must wait for cell values from processor P_{p-1}
- But P_{p-1} cannot start computing before p steps
- Therefore:
 - If $p \ge n/k$, P_0 is idle
 - If p < n/k, P₁ is not idle
- If p < n/k, then processors had better be able to buffer received cells while they are still computing
 - Possible increase in memory consumption

Courtesy of Henri Casanova 152 / 272

A. Legrand

Matrix Vecto Product Open MP Version

First MPI Version

Matrices

Second M Version

Third MP Version Mixed

Parallelism Version

Matrix Multiplication

Stencil Application Principle

Principle

Reducing the Granularity

LU Factorization Gaussian Elimination LU

Performance Analysis

- It is actually very simple
- At each step a processor is involved at most in
 - Receiving k cells from its predecessor
 - Sending k cells to its successor
 - Updating k*r cells
- Since sending and receiving are overlapped, the time to perform a step is L + k b + k r w
- Question: How many steps?
- Answer: It takes p-1 steps before Pp-1 can start doing any thing. Pp-1 holds n²/(pkr) blocks
- Execution time:

 $T(n,p,r,k) = (p-1 + n^2/(pkr)) (L + kb + k r w)$

A. Legrand

Matrix Vector Product

Open MF Version

Version

Distributin

iviatrices

Version

Third MF

version

Parallelism

Matrix Multiplication

Stencil Applicatior

Principle

Greedy Version

Reducing the Granularity

LU Factorization Gaussian Elimination LU

Performance Analysis

- Our naïve greedy algorithm had asymptotic efficiency equal to w / (w + L + b)
- This algorithm does better: Assympt. Eff = w / (w + L/rk + b/r)
 - Divide n²w by p T(n,p,r,k)
 - And make n large
- In the formula for the efficiency we clearly see the effect of the granularity increase
- Asymptotic efficiency is higher
- But not equal to 1
- Therefore, this is a "difficult" application to parallelize
 - We can try to do the best we can by increasing r and k, but it's never going to be perfect
- One can compute the optimal values of r and k using numerical solving
 - See the book for details

Outline

Parallel Algorithms

A. Legrand

Matrix Vector Product

- Open MP Version
- First MP Version
- Distributin
- Second N
- Version
- Third MI Version
- Mixed Parallelism Version

Matrix Multiplication

- Stencil Application Principle Greedy Versi Reducing the
- Granularity

LU Factorization

Gaussian Elimination LU

Matrix Vector Product

- Open MP Version
- First MPI Version
- Distributing Matrices
- Second MPI Version
- Third MPI Version
- Mixed Parallelism Version

5 Matrix Multiplication

Stencil Application

- Principle
- Greedy Version
- Reducing the Granularity

17 LU Factorization

- Gaussian Elimination
- LU

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Version

Distributin

Second MI

Version

Third MF

Mixed Parallelism

Version

Matrix Multiplication

Stencil Application Principle Greedy Versi Reducing the

LU Factorization

Gaussian Elimination

Solving Linear Systems of Eq.

- Method for solving Linear Systems
 - The need to solve linear systems arises in an estimated 75% of all scientific computing problems [Dahlquist 1974]
- Gaussian Elimination is perhaps the most well-known method
 - based on the fact that the solution of a linear system is invariant under scaling and under row additions
 - One can multiply a row of the matrix by a constant as long as one multiplies the corresponding element of the right-hand side by the same constant
 - One can add a row of the matrix to another one as long as one adds the corresponding elements of the right-hand side
 - Idea: scale and add equations so as to transform matrix A in an upper triangular matrix:

equation n-i has i unknowns, with

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

LU Factorization

Gaussian Elimination LU

Gaussian Elimination

0 -3

0 0

 $\frac{1}{-5}$ X =

Subtract row 1 from rows 2 and 3

Multiple row 3 by 3 and add row 2

Solving equations in reverse order (backsolving) $x_1 + x_2 + x_3 = 0$ $x_3 = -2$ $x_1 = 4$

> Courtesy of Henri Casanova 157 / 272

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Version Third MP

Version Mixed Parallelism

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

LU Factorization

Gaussian Elimination

Gaussian Elimination

- The algorithm goes through the matrix from the top-left corner to the bottom-right corner
- the ith step eliminates non-zero sub-diagonal elements in column i, substracting the ith row scaled by a_{ji}/a_{ii} from row j, for j=i+1,..,n.

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

LU Factorization

Gaussian Elimination LU

Sequential Gaussian Elimination

Simple sequential algorithm

- Several "tricks" that do not change the spirit of the algorithm but make implementation easier and/or more efficient
 - Right-hand side is typically kept in column n+1 of the matrix and one speaks of an *augmented matrix*
 - Compute the A(i,j)/A(i,i) term outside of the loop

- A. Legrand
- Matrix Vector Product
- Open MP Version
- First MPI
- Distributin
- Matrices
- Second MI
- Third MF
- Version
- Mixed Parallelism Version
- Matrix Multiplication
- Stencil Application Principle
- Reducing the
- LU Factorization

Gaussian Elimination LU

Pivoting: Motivation

- A few pathological cases 1
- Division by small numbers → round-off error in computer arithmetic
- Consider the following system
 0.0001x₁ + x₂ = 1.000

 $x_1 + x_2 = 2.000$

- exact solution: x₁=1.00010 and x2 = 0.99990
- say we round off after 3 digits after the decimal point
- Multiply the first equation by 10⁴ and subtract it from the second equation
- $(1 1)x_1 + (1 10^4)x_2 = 2 10^4$
- But, in finite precision with only 3 digits:
 - 1 10⁴ = -0.9999 E+4 ~ -0.999 E+4
 - 2 10⁴ = -0.9998 E+4 ~ -0.999 E+4
- Therefore, $x_2 = 1$ and $x_1 = 0$ (from the first equation)

Courtesy of Henri Casanova

^{160 / 272}

- A. Legrand
- Matrix Vector Product
- Open MP Version
- First MPI Version
- Distributin
- Matrices
- Second M
- Version
- Version
- Mixed Parallelism
- Matrix Multiplication
- Stencil Application Principle
- Greedy Ve
- Reducing the
- LU Factorization

Gaussian Elimination

Partial Pivoting

- One can just swap rows $x_1 + x_2 = 2.000$ $0.0001x_1 + x_2 = 1.000$
- Multiple the first equation my 0.0001 and subtract it from the second equation gives:

 $(1 - 0.0001) \times 2 = 1 - 0.0001$

```
0.9999 x_2 = 0.9999 => x_2 = 1
```

and then $x_1 = 1$

- Final solution is closer to the real solution. (Magical?)
- Partial Pivoting
 - For numerical stability, one doesn't go in order, but pick the next row in rows i to n that has the largest element in row i
 - This row is swapped with row i (along with elements of the right hand side) before the subtractions
 - the swap is not done in memory but rather one keeps an indirection array
- Total Pivoting
 - Look for the greatest element ANYWHERE in the matrix
 - Swap columns
 - Swap rows
- Numerical stability is really a difficult field

A. Legrand

Matrix Vector Product Open MP Version

First MPI Version Distributing Matrices Second MP Version Third MPI Version Mixed

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versio Reducing the Granularity

LU Factorization

Gaussian Elimination LU

Parallel Gaussian Elimination?

Assume that we have one processor per matrix element

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Version

Distributin

Second MI

Version

Third MF

Mixed

Parallelism Version

Matrix Multiplication

Stencil Application

Principle

Greedy Versio

Granularity

LU Factorization

Elimination

Solving Linear Systems of Eq.

- Method for solving Linear Systems
 - The need to solve linear systems arises in an estimated 75% of all scientific computing problems [Dahlquist 1974]
- Gaussian Elimination is perhaps the most well-known method
 - based on the fact that the solution of a linear system is invariant under scaling and under row additions
 - One can multiply a row of the matrix by a constant as long as one multiplies the corresponding element of the right-hand side by the same constant
 - One can add a row of the matrix to another one as long as one adds the corresponding elements of the right-hand side
 - Idea: scale and add equations so as to transform matrix A in an upper triangular matrix:

equation n-i has i unknowns, with

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism

Matrix Multiplication

Application Principle Greedy Version Reducing the Granularity LU Factorizatio Gaussian

Gaussian Elimination

0 -3

0 0

 $\frac{1}{-5}$ X =

Subtract row 1 from rows 2 and 3

Multiple row 3 by 3 and add row 2

Solving equations in reverse order (backsolving) $x_1 + x_2 + x_3 = 0$ $x_3 = -2$ $x_1 = 4$

> Courtesy of Henri Casanova 164 / 272

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Version Third MPI

Version Mixed

Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versior Reducing the Granularity

Gaussian Elimination

Gaussian Elimination

- The algorithm goes through the matrix from the top-left corner to the bottom-right corner
- the ith step eliminates non-zero sub-diagonal elements in column i, substracting the ith row scaled by a_{ji}/a_{ii} from row j, for j=i+1,..,n.

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versior Reducing the Granularity LU Factorizatio Gaussian Elimination

Sequential Gaussian

Simple sequential algorithm

- Several "tricks" that do not change the spirit of the algorithm but make implementation easier and/or more efficient
 - Right-hand side is typically kept in column n+1 of the matrix and one speaks of an *augmented matrix*
 - Compute the A(i,j)/A(i,i) term outside of the loop

- A. Legrand
- Matrix Vector Product
- Open MP Version
- First MPI
- Distributin
- Matrices
- Second M
- Third MP
- Version
- Parallelism Version
- Matrix Multiplication
- Stencil Application
- Principle
- Reducing the
- Granularity
- LU Factorization Gaussian Elimination

Pivoting: Motivation

- A few pathological cases 1
- Division by small numbers → round-off error in computer arithmetic
- Consider the following system
 0.0001x₁ + x₂ = 1.000

$$x_1 + x_2 = 2.000$$

- exact solution: x₁=1.00010 and x2 = 0.99990
- say we round off after 3 digits after the decimal point
- Multiply the first equation by 10⁴ and subtract it from the second equation
- $(1 1)x_1 + (1 10^4)x_2 = 2 10^4$
- But, in finite precision with only 3 digits:
 - 1 10⁴ = -0.9999 E+4 ~ -0.999 E+4
 - 2 10⁴ = -0.9998 E+4 ~ -0.999 E+4
- Therefore, $x_2 = 1$ and $x_1 = 0$ (from the first equation)

Courtesy of Henri Casanova

167 / 272

- A. Legrand
- Matrix Vector Product
- Open MP Version
- First MPI Version
- Distributin
- Matrices
- Second M
- Third MP
- Version
- Mixed Parallelism Version
- Matrix Multiplication
- Stencil Application
- Principle
- Greedy Versio
- Reducing the
- LU Factorization
- Gaussian Elimination
- LU

Partial Pivoting

- One can just swap rows $x_1 + x_2 = 2.000$ $0.0001x_1 + x_2 = 1.000$
- Multiple the first equation my 0.0001 and subtract it from the second equation gives:

```
(1 - 0.0001) \times 2 = 1 - 0.0001
```

```
0.9999 x_2 = 0.9999 => x_2 = 1
```

and then $x_1 = 1$

- Final solution is closer to the real solution. (Magical?)
- Partial Pivoting
 - For numerical stability, one doesn't go in order, but pick the next row in rows i to
 n that has the largest element in row i
 - This row is swapped with row i (along with elements of the right hand side) before the subtractions
 - the swap is not done in memory but rather one keeps an indirection array
- Total Pivoting
 - Look for the greatest element ANYWHERE in the matrix
 - Swap columns
 - Swap rows
- Numerical stability is really a difficult field

A. Legrand

Matrix Vector Product Open MP Version

Version Distributing Matrices Second MP Version Third MPI Version Mixed

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versic Reducing the Granularity

LU Factorization Gaussian Elimination

Parallel Gaussian Elimination?

Assume that we have one processor per matrix element

A. Legrand

Matrix Vector Product

Open MF Version

First MPI

Distributing

Matrices

Second M

Third MF

Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versi Reducing the

LU Factorization Gaussian Elimination

LU

LU Factorization (Section 4.4)

- Gaussian Elimination is simple but
 - What if we have to solve many Ax = b systems for different values of b?
 - This happens a LOT in real applications
- Another method is the "LU Factorization"
- Ax = b
- Say we could rewrite A = L U, where L is a lower triangular matrix, and U is an upper triangular matrix O(n³)
- Then Ax = b is written LUx = b
- Solve L y = b
 O(n²)
- Solve U x = y
 O(n²)

triangular system solves are easy

equation i has i unknowns

equation n-i has i unknowns

- A. Legrand
- Matrix Vector Product
- Open MP Version First MPI Version
- Distributin
- Second M
- Version
- Third MF Version
- Mixed Parallelism
- Matrix Multiplication
- Stencil Application Principle Greedy Versi Reducing the Granularity
- LU Factorization Gaussian Elimination LU

LU Factorization: Principle

 It works just like the Gaussian Elimination, but instead of zeroing out elements, one "saves" scaling coefficients.

- Magically, A = L × U !
- Should be done with pivoting as well

A. Legrand

```
Matrix Vector
Product
Open MP
Version
First MPI
Version
Distributing
Matrices
Second MPI
Version
Third MPI
Version
Mixed
Parallelism
Version
```

Matrix Multiplication

```
Stencil
Application
Principle
Greedy Version
Reducing the
Granularity
```

LU Factorizatio Gaussian Elimination LU

LU Factorization

- We're going to look at the simplest possible version
 - No pivoting:just creates a bunch of indirections that are easy but make the code look complicated without changing the overall principle

A. Legrand

Matrix Vector Product Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplicatior

Stencil Application Principle Greedy Versio Reducing the Granularity

Gaussian Elimination

LU Factorization

- We're going to look at the simplest possible version
 - No pivoting:just creates a bunch of indirections that are easy but make the code look complicated without changing the overall principle

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Distributing Matrices

Second MI Version

Third MP Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Vers

Reducing the

LU Factorization Gaussian Elimination LU

Parallel LU on a ring

- Since the algorithm operates by columns from left to right, we should distribute columns to processors
- Principle of the algorithm
 - At each step, the processor that owns column k does the "prepare" task and then broadcasts the bottom part of column k to all others
 - Annoying if the matrix is stored in row-major fashion
 - Remember that one is free to store the matrix in anyway one wants, as long as it's coherent and that the right output is generated
 - After the broadcast, the other processors can then update their data.
- Assume there is a function alloc(k) that returns the rank of the processor that owns column k
 - Basically so that we don't clutter our program with too many global-to-local index translations
- In fact, we will first write everything in terms of globalsy of Henri Casanova indices, as to sucid all approximating index arithmetic

A. Legrand

Matrix Vector Product Open MP Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

ļ

Gaussian Elimination LU

LU-broadcast algorithm

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Distributir

Second M

Version Third MF Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versi Reducing the

LU Factorization Gaussian Elimination

Dealing with local indices

- Assume that p divides n
- Each processor needs to store r=n/p columns and its local indices go from 0 to r-1
- After step k, only columns with indices greater than k will be used
- Simple idea: use a local index, I, that everyone initializes to 0
- At step k, processor alloc(k) increases its local index so that next time it will point to its next local column

A. Legrand

Matrix Vector Product Open MP Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versior Reducing the Granularity LU Factorizatio Gaussian

ł

LU-broadcast algorithm

```
....
double a[n-1][r-1];
```

```
\begin{array}{l} q \leftarrow MY\_NUM() \\ p \leftarrow NUM\_PROCS() \\ 1 \leftarrow 0 \\ \text{for } k = 0 \text{ to } n-2 \\ \text{ if } (alloc(k) == q) \\ for i = k+1 \text{ to } n-1 \\ buffer[i-k-1] \leftarrow a[i,k] \leftarrow -a[i,l] / a[k,l] \\ 1 \leftarrow 1+1 \\ \text{broadcast}(alloc(k), buffer, n-k-1) \\ for j = 1 \text{ to } r-1 \\ for i=k+1 \text{ to } n-1 \\ a[i,j] \leftarrow a[i,j] + buffer[i-k-1] * a[k,j] \\ \} \end{array}
```

A. Legrand

Matrix Vector Product

- Open MP Version First MPI
- Version Distributin
- Matrices
- Second MI
- Version Third MP
- Version Mixed
- Parallelism Version

Matrix Multiplication

- Stencil Application Principle Greedy Vers
- Reducing the Granularity

LU Factorization Gaussian Elimination

What about the Alloc function?

- One thing we have left completely unspecified is how to write the alloc function: how are columns distributed among processors
- There are two complications:
 - The amount of data to process varies throughout the algorithm's execution
 - At step k, columns k+1 to n-1 are updated
 - Fewer and fewer columns to update
 - The amount of computation varies among columns
 - e.g., column n-1 is updated more often than column 2
 - Holding columns on the right of the matrix leads to much more work
- There is a strong need for load balancing
 - All processes should do the same amount of work

LU Factorizatio Gaussian Elimination

Parallel Algorithms Good Load Balancing? already done already done working on it

LU Factorization Gaussian Elimination

Cyclic distribution

A. Legrand

Matrix Vector Product

Open MP Version

First MPI

Distributing

Matrices

Second M

Version

Version

Mixed Parallelism

Matrix

Stencil Application Principle

Carada M

Reducing the

Granularity

LU Factorization

Eliminatior LU

Proof that load balancing is good

- The computation consists of two types of operations
 - column preparations
 - matrix element updates
- There are many more updates than preparations, so we really care about good balancing of the preparations
- Consider column j
- Let's count the number of updates performed by the processor holding column j
- Column j is updated at steps k=0, ..., j-1
- At step k, elements i=k+1, ..., n-1 are updates
 - indices start at 0
- Therefore, at step k, the update of column j entails n-k-1 updates
- The total number of updates for column j in the execution is:

$$\sum_{k=0}^{j-1} (n-k-1) = j(n-1) - \frac{j(j-1)}{2}$$

Courtesy of Henri Casanova 181/272

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Distributin

Second M

Version

Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Vers

Granularity

LU Factorization Gaussian

Elimina

Proof that load balancing is

- Consider processor P_i, which holds columns lp+i for l=0, ... , n/p -1
- Processor P_i needs to perform this many updates:

$$\sum_{l=0}^{n/p-1} ((lp+i)(n-1) - \frac{(lp+i)(lp+i-1)}{2})$$

- Turns out this can be computed
 - separate terms
 - use formulas for sums of integers and sums of squares
- What it all boils down to is:

$$\frac{n^3}{3p} + O(n^2)$$

- This does not depend on i !!
- Therefore it is (asymptotically) the same for all P_i processors
- Therefore we have (asymptotically) perfect load balancing!

A. Legrand

Matrix Vector Product Open MP Version Distributing Matrices Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Versior Reducing the Granularity LU Factorizatio Gaussian

ł

Load-balanced program

```
....
double a[n-1][r-1];
```

```
\begin{array}{l} q \leftarrow MY_NUM() \\ p \leftarrow NUM_PROCS() \\ 1 \leftarrow 0 \\ \text{for } k = 0 \text{ to } n-2 \\ \text{ if } (k \mod p == q) \\ for i = k+1 \text{ to } n-1 \\ buffer[i-k-1] \leftarrow a[i,k] \leftarrow -a[i,l] / a[k,l] \\ 1 \leftarrow l+1 \\ \text{ broadcast}(alloc(k), buffer, n-k-1) \\ for j = 1 \text{ to } r-1 \\ for i=k+1 \text{ to } n-1 \\ a[i,j] \leftarrow a[i,j] + buffer[i-k-1] * a[k,j] \\ \} \end{array}
```

A. Legrand

Matrix Vector Product

Open MP Version First MPI Version

Matrices

Second M

Third MF Version

Mixed Parallelism Version

Matrix Multiplication

Stencil Application Principle Greedy Vers

Reducing the

LU Factorization Gaussian Elimination

Performance Analysis

- How long does this code take to run?
- This is not an easy question because there are many tasks and many communications
- A little bit of analysis shows that the execution time is the sum of three terms
 - n-1 communications: n L + (n²/2) b + O(1)
 - n-1 column preparations: (n²/2) w' + O(1)
 - column updates: (n³/3p) w + O(n²)
- Therefore, the execution time is ~ (n³/3p) w
- Note that the sequential time is: (n³/3) w
- Therefore, we have perfect asymptotic efficiency!
- This is good, but isn't always the best in practice
- How can we improve this algorithm?

A. Legrand

Matrix Vector Product

Open MP Version First MPI

Distributin

Second MI

Version

Third MF Version

Mixed Parallelism

Matrix Multiplication

Stencil Application Principle Greedy Ver

Greedy Ver

Granularity

LU Factorization Gaussian Elimination

Pipelining on the Ring

- So far, the algorithm we've used a simple broadcast
- Nothing was specific to being on a ring of processors and it's portable
 - in fact you could just write raw MPI that just looks like our pseudo-code and have a very limited, inefficient for small n, LU factorization that works only for some number of processors
- But it's not efficient
 - The n-1 communication steps are not overlapped with computations
 - Therefore Amdahl's law, etc.
- Turns out that on a ring, with a cyclic distribution of the columns, one can interleave pieces of the broadcast with the computation
 - It almost looks like inserting the source code from the source code f

A. Legrand

The Problem Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

Part V

A Complete Example on an Heterogeneous Ring

The Context: Distributed Heterogeneous Platforms

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

How to embed a ring in a complex network [LRRV04]. Sources of problems

- Heterogeneity of processors (computational power, memory, etc.)
- Heterogeneity of communications links.
- Irregularity of interconnection network.

Targeted Applications: Iterative Algorithms

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- A set of data (typically, a matrix)
- Structure of the algorithms:
 - Each processor performs a computation on its chunk of data
 - 2 Each processor exchange the "border" of its chunk of data with its neighbor processors
 - We go back at Step 1

Targeted Applications: Iterative Algorithms

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- A set of data (typically, a matrix)
- Structure of the algorithms:
 - Each processor performs a computation on its chunk of data
 - 2 Each processor exchange the "border" of its chunk of data with its neighbor processors
 - We go back at Step 1

Question: how can we efficiently execute such an algorithm on such a platform?

The Questions

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- Which processors should be used ?
- What amount of data should we give them ?
- How do we cut the set of data ?

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

Data: a 2-D array

 P_1

 P_2

₽́₄

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

Data: a 2-D array

[
P_1	<i>P</i> ₂	<i>P</i> ₄	<i>P</i> ₃

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

Data: a 2-D array

<i>P</i> ₁	<i>P</i> ₂	<i>P</i> ₄	<i>P</i> ₃	

- Unidimensional cutting into vertical slices
- Consequences:

 P_2

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

Data: a 2-D array

<i>P</i> ₁	<i>P</i> ₂	<i>P</i> ₄	<i>P</i> ₃

- Consequences:
 - Borders and neighbors are easily defined

 P_2

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

Data: a 2-D array

- Consequences:
 - Borders and neighbors are easily defined
 - Onstant volume of data exchanged between neighbors: D_c

 P_2

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case) Data: a 2-D array

- Unidimensional cutting into vertical slices
- Consequences:
 - Borders and neighbors are easily defined
 - Onstant volume of data exchanged between neighbors: D_c
 - Processors are virtually organized into a ring

Notations

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- Processors: $P_1, ..., P_p$
- Processor P_i executes a unit task in a time w_i
- ► Overall amount of work D_w ; Share of P_i : $\alpha_i.D_w$ processed in a time $\alpha_i.D_w.w_i$ $(\alpha_i \ge 0, \sum_j \alpha_j = 1)$
- ▶ Cost of a unit-size communication from P_i to P_j: c_{i,j}
- Cost of a sending from P_i to its successor in the ring: $D_c.c_{i,succ(i)}$

Communications: 1-Port Model (Full-Duplex)

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

A processor can:

- send at most one message at any time;
- receive at most one message at any time;
- send and receive a message simultaneously.

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

• Select q processors among p

Objective

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- Select q processors among p
- Order them into a ring

Objective

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- Select q processors among p
- Order them into a ring
- Oistribute the data among them

Objective

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- Select q processors among p
- Order them into a ring
- Oistribute the data among them

So as to minimize:

$$\max_{1 \leq i \leq p} \mathbb{I}\{i\}[\alpha_i.D_w.w_i + D_c.(c_{i,\text{pred}(i)} + c_{i,\text{succ}(i)})]$$

Where $\mathbb{I}{i}[x] = x$ if P_i participates in the computation, and 0 otherwise

Special Hypotheses

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network

Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- There exists a communication link between any two processors
- 2 All links have the same capacity

$$(\exists c, \forall i, j \ c_{i,j} = c)$$

Consequences

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network

Heterogeneous Network (Complete) Heterogeneous Network (General Case) Either the most powerful processor performs all the work, or all the processors participate

Consequences

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network

Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously

Consequences

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network

Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously(∃τ, α_i.D_w.w_i = τ, so 1 = ∑_i τ/D_w.w_i)

Consequences

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network

Heterogeneous Network (Complete) Heterogeneous Network (General Case)

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously(∃τ, α_i.D_w.w_i = τ, so 1 = ∑_i τ/D_w.w_i)
- Time of the optimal solution:

$$T_{\text{step}} = \min\left\{D_{w}.w_{\min}, D_{w}.\frac{1}{\sum_{i}\frac{1}{w_{i}}} + 2.D_{c}.c\right\}$$

Special hypothesis

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network

Heterogeneou Network (Complete)

Heterogeneous Network (General Case) **1** There exists a communication link between any two processors

All the Processors Participate: Study (1)

All processors end simultaneously

All the Processors Participate: Study (2)

Parallel Algorithms

A. Legrand

The Problem Fully

Homogeneou: Network

Heterogeneou Network (Complete)

Heterogeneous Network (General Case) All processors end simultaneously

$$T_{\text{step}} = \alpha_i . D_w . w_i + D_c . (c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)})$$

All the Processors Participate: Study (2)

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneou: Network

Heterogeneou Network (Complete)

Heterogeneous Network (General Case) All processors end simultaneously

$$T_{\mathsf{step}} = \alpha_i.D_{\mathsf{w}}.\mathsf{w}_i + D_c.(\mathsf{c}_{i,\mathsf{succ}(i)} + \mathsf{c}_{i,\mathsf{pred}(i)})$$

$$\sum_{i=1}^{p} \alpha_{i} = 1 \implies \sum_{i=1}^{p} \frac{T_{\text{step}} - D_{c} \cdot (c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)})}{D_{w} \cdot w_{i}} = 1. \text{ Thus}$$

$$\frac{T_{\text{step}}}{D_{w} \cdot w_{\text{cumul}}} = 1 + \frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)}}{w_{i}}$$

$$\text{where } w_{\text{cumul}} = \frac{1}{\sum_{i} \frac{1}{w_{i}}}$$

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network

Heterogeneous Network (Complete)

Heterogeneous Network (General Case)

$$\frac{T_{\text{step}}}{D_{w}.w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^{p} \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$\mathcal{T}_{\mathsf{step}}$$
 is minimal when $\sum_{i=1}^{p} rac{C_{i,\mathsf{succ}}(i) + C_{i,\mathsf{pred}}(i)}{w_{i}}$ is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the edge from P_i to P_j has a weight of $d_{i,j} = \frac{c_{i,j}}{w_i} + \frac{c_{j,i}}{w_i}$

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network

Heterogeneou Network (Complete)

Heterogeneous Network (General Case)

$$\frac{T_{\text{step}}}{D_w.w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^{p} \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$\mathcal{T}_{\mathsf{step}}$$
 is minimal when $\sum_{i=1}^{p} rac{C_{i,\mathsf{succ}}(i) + C_{i,\mathsf{pred}}(i)}{w_{i}}$ is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the edge from P_i to P_j has a weight of $d_{i,j} = \frac{c_{i,j}}{w_i} + \frac{c_{j,i}}{w_i}$

NP-complete problem

All the Processors Participate: Linear Program

 $x_{i,i} = 1$ if, and only if, the edge from P_i to P_i is used

General Case: Linear program

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneou Network

Heterogeneou Network (Complete)

Heterogeneous Network (General Case)

Best ring made of q processors			
Minimize T satisfying the (in)equations			
(1) $x_{i,j} \in \{0, 1\}$ (2) $\sum_{j=1}^{p} x_{i,j} \leq 1$ (3) $\sum_{i=1}^{p} \sum_{j=1}^{p} x_{i,j} = q$ (4) $\sum_{i=1}^{p} x_{i,j} = \sum_{i=1}^{p} x_{j,i}$	$1 \leq i, j \leq p$ $1 \leq j \leq p$ $1 \leq j \leq p$		
(5) $\sum_{i=1}^{p} \alpha_{i} = 1$ (6) $\alpha_{i} \leq \sum_{j=1}^{p} x_{i,j}$ (7) $\alpha_{i}.w_{i} + \frac{D_{c}}{D_{w}} \sum_{j=1}^{p} (x_{i,j}c_{i,j} + x_{j,i}c_{j,i}) \leq T$	$1 \leqslant i \leqslant p$ $1 \leqslant i \leqslant p$		
(8) $\sum_{i=1}^{p} y_i = 1$ (9) $-p.y_i - p.y_j + u_i - u_j + q.x_{i,j} \leq q - 1$ (10) $y_i \in \{0, 1\}$ (11) u_i integer, $u_i \geq 0$	$1 \leqslant i, j \leqslant p, i \neq j$ $1 \leqslant i \leqslant p$ $1 \leqslant i \leqslant p$		

Linear Programming

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous

Heterogeneou Network (Complete)

Heterogeneous Network (General Case)

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
 - Problems with integer variables: solved in exponential time in the worst case.
 - ▶ No relaxation in rationals seems possible here...

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous

Heterogeneous Network (Complete)

Heterogeneous Network (General Case) **All processors participate.** One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one)

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network

Heterogeneous Network (Complete)

Heterogeneous Network (General Case) **All processors participate.** One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one) No guarantee, but excellent results in practice.

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network

Heterogeneou Network (Complete)

Heterogeneous Network (General Case) **All processors participate.** One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one) No guarantee, but excellent results in practice.

General case.

- Exhaustive search: feasible until a dozen of processors...
- Greedy heuristic: initially we take the best pair of processors; for a given ring we try to insert any unused processor in between any pair of neighbor processors in the ring...

A. Legrand

The Problem Fully Homogeneous Network

Heterogeneoı Network (Complete)

Heterogeneous Network (General Case

Virtual ring

A. Legrand

The Problem Fully Homogeneous Network

Heterogeneou Network (Complete)

Heterogeneous Network (General Case

Virtual ring

A. Legrand

The Problem Fully Homogeneous Network

Heterogeneou Network (Complete)

Heterogeneous Network (General Case

Virtual ring

A. Legrand

The Problem Fully Homogeneous Network

Heterogeneou Network (Complete)

Heterogeneous Network (General Case)

Virtual ring

We must take communication link sharing into account.

New Notations

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network Heterogeneous Network (Complete)

Heterogeneous Network (General Case)

- ▶ A set of communications links: *e*₁, ..., *e*_n
- Bandwidth of link e_m: b_{em}
- There is a path S_i from P_i to $P_{succ(i)}$ in the network
 - S_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m
 - ▶ P_i needs a time D_c. 1/min_{em∈Si} s_{i,m} to send to its successor a message of size D_c
 - ► Constraints on the bandwidth of e_m : $\sum_{1 \le i \le p} s_{i,m} \le b_{e_m}$
- Symmetrically, there is a path P_i from P_i to P_{pred(i)} in the network, which uses a fraction p_{i,m} of the bandwidth b_{em} of link e_m

Toy Example: Choosing the Ring

- 7 processors and 8 bidirectional communications links
- We choose a ring of 5 processors:

 $P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P_5$ (we use neither Q, nor R)

Toy Example: Choosing the Ring

- 7 processors and 8 bidirectional communications links
- We choose a ring of 5 processors:

 $P_1
ightarrow P_2
ightarrow P_3
ightarrow P_4
ightarrow P_5$ (we use neither Q, nor R)

From P_1 to P_2 , we use the links *a* and *b*: $S_1 = \{a, b\}$.

Heterogeneoi Network (Complete)

Heterogeneous Network (General Case)

From P_1 to P_2 , we use the links *a* and *b*: $S_1 = \{a, b\}$. From P_2 to P_1 , we use the links *b*, *g* and *h*: $P_2 = \{b, g, h\}$.

A. Legrand

The Problem Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous

Network (General Case)

From P_1 to P_2 , we use the links *a* and *b*: $S_1 = \{a, b\}$. From P_2 to P_1 , we use the links *b*, *g* and *h*: $P_2 = \{b, g, h\}$.

From P_1 : to P_2 , $S_1 = \{a, b\}$ and to P_5 , $\mathcal{P}_1 = \{h\}$ From P_2 : to P_3 , $S_2 = \{c, d\}$ and to P_1 , $\mathcal{P}_2 = \{b, g, h\}$ From P_3 : to P_4 , $S_3 = \{d, e\}$ and to P_2 , $\mathcal{P}_3 = \{d, e, f\}$ From P_4 : to P_5 , $S_4 = \{f, b, g\}$ and to P_3 , $\mathcal{P}_4 = \{e, d\}$ From P_5 : to P_1 , $S_5 = \{h\}$ and to P_4 , $\mathcal{P}_5 = \{g, b, f\}$

Toy Example: Bandwidth Sharing

Parallel Algorithms

A. Legran

The Problem Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous

Network (General Case) From P_1 to P_2 we use links a and b: $c_{1,2} = \frac{1}{\min(s_{1,a},s_{1,b})}$. From P_1 to P_5 we use the link h: $c_{1,5} = \frac{1}{P_{1,h}}$.

Toy Example: Bandwidth Sharing

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network From P_1 to P_2 we use links a and b: $c_{1,2} = \frac{1}{\min(s_{1,a},s_{1,b})}$. From P_1 to P_5 we use the link h: $c_{1,5} = \frac{1}{P_{1,h}}$.

Set of all sharing constraints:

Lien a: $s_{1,a} \leq b_a$ Lien b: $s_{1,b} + s_{4,b} + p_{2,b} + p_{5,b} \leq b_b$ Lien c: $s_{2,c} \leq b_c$ Lien d: $s_{2,d} + s_{3,d} + p_{3,d} + p_{4,d} \leq b_d$ Lien e: $s_{3,e} + p_{3,e} + p_{4,e} \leq b_e$ Lien f: $s_{4,f} + p_{3,f} + p_{5,f} \leq b_f$ Lien g: $s_{4,g} + p_{2,g} + p_{5,g} \leq b_g$ Lien h: $s_{5,h} + p_{1,h} + p_{2,h} \leq b_h$

Toy Example: Final Quadratic System

Parallel Algorithms

A. Legrand

The Problem

Fully Homogeneous Network

Heterogeneo Network (Complete)

Heterogeneous Network (General Case)

 $p_{5,f}.c_{5,4} \ge 1$

ÍINIMIZE	$\max_{1\leqslant i\leqslant 5}$	$(\alpha_i.D_w.w_i + D_c.(c_{i,i-1} + c_{i,i+1}))$	UNDER THE CONSTRAINTS
----------	----------------------------------	--	-----------------------

$\sum_{i=1}^{5} \alpha_i = 1$ $s_{1,a} \leq b_a$ $s_{1,b} + s_{4,b} + p_{2,b} + p_{5,b} \leq b_b$ $s_{2,d} + s_{3,d} + p_{3,d} + p_{4,d} \leq b_d$ $s_{3,e} + p_{3,e} + p_{4,e} \leq b_e$ $s_{4,g} + p_{2,g} + p_{5,g} \leq b_g$ $s_{5,h} + p_{1,h} + p_{2,h} \leq b_h$ $s_{1,a}, c_{1,2} \ge 1$ $s_{1,b}, c_{1,2} \ge 1$ $s_{2,c}, c_{2,3} \ge 1$ $s_{2,d}, c_{2,3} \ge 1$ $p_{2,g}, c_{2,1} \ge 1$ $p_{2,h}, c_{2,1} \ge 1$ $p_{3,d}.c_{3,2} \ge 1$ $s_{3,e}, c_{3,4} \ge 1$ $p_{3,f}.c_{3,2} \ge 1$ $s_{4,f}, c_{4,5} \ge 1$ $s_{4,g}$. $c_{4,5} \ge 1$ $p_{4,e} \cdot c_{4,3} \ge 1$ $s_{5,h}, c_{5,1} \ge 1$ $p_{5,g} \cdot c_{5,4} \ge 1$

 $\begin{array}{l} s_{2,c} \leqslant b_c \\ s_{4,f} + p_{3,f} + p_{5,f} \leqslant b_f \\ p_{1,h}.c_{1,5} \geqslant 1 \\ p_{2,b}.c_{2,1} \geqslant 1 \\ s_{3,d}.c_{3,4} \geqslant 1 \\ p_{3,e}.c_{3,2} \geqslant 1 \\ s_{4,b}.c_{4,5} \geqslant 1 \\ p_{4,d}.c_{4,3} \geqslant 1 \\ p_{5,b}.c_{5,4} \geqslant 1 \end{array}$

Toy Example: Conclusion

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network Heterogeneous Network (Complete)

Heterogeneous Network (General Case) The problem sums up to a quadratic system if

- The processors are selected;
- Interprocessors are ordered into a ring;

• The communication paths between the processors are known. In other words: a quadratic system if the ring is known.

Toy Example: Conclusion

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous Network

(General Case)

The problem sums up to a quadratic system if

- The processors are selected;
- Processors are ordered into a ring;

• The communication paths between the processors are known. In other words: a quadratic system if the ring is known.

If the ring is known:

- Complete graph: closed-form expression;
- General graph: quadratic system.

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network Heterogeneous Network (Complete)

Heterogeneous Network (General Case) We adapt our greedy heuristic:

- Initially: best pair of processors
- **2** For each processor P_k (not already included in the ring)
 - For each pair (P_i, P_j) of neighbors in the ring
 - We build the graph of the unused bandwidths (Without considering the paths between *P_i* and *P_j*)
 - **2** We compute the shortest paths (in terms of bandwidth) between P_k and P_i and P_j
 - 8 We evaluate the solution
- We keep the best solution found at step 2 and we start again

+ refinements (*max-min fairness*, quadratic solving).

Is This Meaningful ?

Parallel Algorithms

- A. Legrand
- The Problem Fully Homogeneous Network
- Network (Complete)
- Heterogeneous Network (General Case)

- ▶ No guarantee, neither theoretical, nor practical
- Simple solution:
 - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
 - e we apply the heuristic for complete graphs
 - e allocate the bandwidths

Example: an Actual Platform (Lyon)

Processors processing times (in seconds par megaflop)

Results

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network Heterogeneous Network (Complete)

Heterogeneous Network (General Case)

- First heuristic building the ring without taking link sharing into account
- Second heuristic taking into account link sharing (and with quadratic programing)

Ratio D_c/D_w	H1	H2	Gain
0.64	0.008738 (1)	0.008738 (1)	0%
0.064	0.018837 (13)	0.006639 (14)	64.75%
0.0064	0.003819 (13)	0.001975 (14)	48.28%
Ratio D_c/D_w	H1	H2	Gain
0.64	0.005825 (1)	0.005825 (1)	0 %
0.064	0.027919 (8)	0.004865 (6)	82.57%
0.0064	0.007218 (13)	0.001608 (8)	77.72%

Table: T_{step}/D_w for each heuristic on Lyon's and Strasbourg's platforms (the numbers in parentheses show the size of the rings built).

Conclusion

Parallel Algorithms

A. Legrand

The Problem Fully Homogeneous Network Heterogeneous Network (Complete) Heterogeneous

Heterogeneous Network (General Case) Even though this is a very basic application, it illustrates many difficulties encountered when:

- Processors have different characteristics
- Communications links have different characteristics
- There is an irregular interconnection network with complex bandwidth sharing issues.

We need to use a realistic model of networks... Even though a more realistic model leads to a much more complicated problem, this is worth the effort as derived solutions are more efficient in practice.

A. Legrand

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

Part VI

Algorithms on a Grid

Outline

Parallel Algorithms

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

18 Communications

Matrix Multiplication

- Outer Product
- Grid Rocks!
- Cannon
- Fox
- Snyder
- Data Distribution

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

2-D Grid (Chapter 5)

- Consider p=q² processors
- We can think of them arranged in a square grid
 - A rectangular grid is also possible, but we'll stick to square grids for most of our algorithms
- Each processor is identified as P_{i,i}
 - i: processor row
 - J: processor column

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

- Wrap-around links from edge to edge
- Each processor belongs to 2 different rings
 - Will make it possible to reuse algorithms we develop for the ring topology
- Mono-directional links OR Bi-directional links
 - Depending on what we need the algorithm to do and on what makes sense for the physical platform

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Concurrency of Comm. and Comp.

- When developing performance models we will assume that a processor can do all three activities in parallel
 - Compute
 - Send
 - Receive
- What about the bi-directional assumption?
 - Two models
 - Half-duplex: two messages on the same link going in opposite directions contend for the link's bandwidth
 - Full-duplex: it's as if we had two links in between each neighbor processors
 - The validity of the assumption depends on the platform
 Courtesy of Henri Casanova 200 / 272

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Multiple concurrent communications?

- Now that we have 4 (logical) links at each processor, we need to decide how many concurrent communications can happen at the same time
 - There could be 4 sends and 4 receives in the bi-directional link model
- If we assume that 4 sends and 4 receives can happened concurrently without loss of performance, we have a *multi-port* model
- If we only allow 1 send and 1 receive to occur concurrently we have a single-port model

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

So what?

- We have many options:
 - Grid or torus
 - Mono- or bi-directional
 - Single-or multi-port
 - Half- or full-duplex
- We'll mostly use the torus, bi-directional, fullduplex assumption
- We'll discuss the multi-port and the single-port assumptions
- As usual, it's straightforward to modify the performance analyses to match with whichever assumption makes sense for the physical platform

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

How realistic is a grid

- Some parallel computers are built as physical grids (2-D or 3-D)
 - Example: IBM's Blue Gene/L
- If the platform uses a switch with all-to-all communication links, then a grid is actually not a bad assumption
 - Although the full-duplex or multi-port assumptions may not hold
- We will see that even if the physical platform is a shared single medium (e.g., a non-switched Ethernet), it's sometimes preferable to think of it as a grid when developing algorithms!

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Communication on a Grid

- As usual we won't write MPI here, but some pseudo code
- A processor can call two functions to known where it is in the grid:
 - My_Proc_Row()
 - My_Proc_Col()
- A processor can find out how many processors there are in total by:
 - Num_Procs()
 - Recall that here we assume we have a square grid
 - In programming assignment we may need to use a rectangular grid

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Communication on the Grid

- We have two point-to-point functions
 - Send(dest, addr, L)
 - Recv(src, addr, L)
- We will see that it's convenient to have broadcast algorithms within processor rows or processor columns
 - BroadcastRow(i, j, srcaddr, dstaddr, L)
 - BroadcastCol(i, j, srcaddr, dstaddr, L)
- We assume that a a call to these functions by a processor not on the relevant processor row or column simply returns immediately
- How do we implement these broadcasts?

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Row and Col Broadcasts?

- If we have a torus
 - If we have mono-directional links, then we can reuse the broadcast that we developed on a ring of processors
 - Either pipelined or not
 - It we have bi-directional links AND a multi-port model, we can improved performance by going both-ways simultaneously on the ring
 - We'll see that the asymptotic performance is not changed
- If we have a grid
 - If links are bi-directional then messages can be sent both ways from the source processor
 - Either concurrently or not depending on whether we have a one-port or multi-port model
 - If links are mono-directional, then we can't implement the broadcasts at all

Outline

Parallel Algorithms

A. Legrand

Communications

Matrix Multiplication

Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

Communications

19 Matrix Multiplication

- Outer Product
- Grid Rocks!
- Cannon
- Fox
- Snyder
- Data Distribution

A. Legrand

Communications

Matrix Multiplication

Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

Matrix Multiplication on a Grid

- Matrix multiplication on a Grid has been studied a lot because
 - Multiplying huge matrices fast is always important in many, many fields
 - Each year there is at least a new paper on the topic
 - It's a really good way to look at and learn many different issues with a grid topology
- Let's look at the natural matrix distribution scheme induced by a grid/torus

A. Legrand

Communications

Matrix Multiplication

Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

2-D Matrix Distribution

- We denote by a_{i,j} an element of the matrix
- We denote by A_{i,j} (or A_{ij}) the block of the matrix allocated to P_{i,i}

	C ₀₀	C ₀₁	C ₀₂	C ₀₃
	C ₁₀	C_{11}	C ₁₂	C ₁₃
	C ₂₀	C ₂₁	C ₂₂	C ₂₃
- F	C ₃₀	C ₃₁	C ₃₂	C ₃₃

A ₀₀	A_{01}	A_{02}	A_{03}
A_{10}	A_{11}	A_{12}	A_{13}
A_{20}	A_{21}	A ₂₂	A_{23}
A ₃₀	A_{31}	A ₃₂	A ₃₃

B ₀₀	B ₀₁	B ₀₂	B ₀₃	
B_{10}	B_{11}	B_{12}	B_{13}	
B ₂₀	B_{21}	B ₂₂	B ₂₃	
B ₃₀	B ₃₁	B ₃₂	B ₃₃	Henri Casanov

229 / 272

A. Legrand

Communications

Matrix Multiplication

Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

How do Matrices Get Distributed? (Sec. 4.7)

- Data distribution can be completely ad-hoc
- But what about when developing a library that will be used by others?
- There are two main options:
- Centralized
 - when calling a function (e.g., matrix multiplication)
 - the input data is available on a single "master" machine (perhaps in a file)
 - the input data must then be distributed among workers
 - the output data must be undistributed and returned to the "master" machine (perhaps in a file)
 - More natural/easy for the user
 - Allows for the library to make data distribution decisions transparently to the user
 - Prohibitively expensive if one does sequences of operations
 - and one almost always does so
- Distributed
 - when calling a function (e.g., matrix multiplication)
 - Assume that the input is already distributed
 - Leave the output distributed
 - May lead to having to "redistribute" data in between calls so that distributions match, which is harder for the user and may be costly as well
 - For instance one may want to change the block size between calls, or go from a non-cyclic to a cyclic distribution
- Most current software adopt the distributed approach
 - more work for the user
 - more flexibility and control
- We'll always assume that the data is magically already distributed by the distributed of the data is magically already distributed by the distributed of the data is magically already distributed by the data is magically already distr

A. Legrand

Communications

Matrix Multiplication

Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

Four Matrix Multiplication

- We'll look at four algorithms
 - Outer-Product
 - Cannon
 - Fox
 - Snyder
- The first one is used in practice
- The other three are more "historical" but are really interesting to discuss
 - We'll have a somewhat hand-wavy discussion here, rather than look at very detailed code

A. Legran

Communications

Matrix Multiplicatio

Outer Product

Grid Rocks Cannon Fox Snyder Data Distribution

The Outer-Product Algorithm

 Consider the "natural" sequential matrix multiplication algorithm

```
for i=0 to n-1
```

```
for j=0 to n-1
```

```
for k=0 to n-1
```

$$c_{i,j} += a_{i,k} * b_{k,j}$$

- This algorithm is a sequence of inner-products (also called scalar products)
- We have seen that we can switch loops around
- Let's consider this version

```
for k=0 to n-1
```

```
for i=0 to n-1
```

```
for j=0 to n-1
```

$$c_{i,j} += a_{i,k} * b_{k,j}$$

This algorithm is a sequence of outer-products!

A. Legran

Communications

Matrix Multiplication

Outer Produ Grid Rocks!

Cannon Fox Snyder Data Distribution

The Outer-Product Algorithm

for k=0 to n-1 for i=0 to n-1 for j=0 to n-1 $c_{i,j} += a_{i,k} * b_{k,j}$

Courtesy of Henri Casanova 233 / 272

A. Legran

Communications

Matrix Multiplic

Multiplication

Outer Product

Grid Rocks! Cannon Fox Snyder Data Distribution

The outer-product algorithm

- Why do we care about switching the loops around to view the matrix multiplication as a sequence of outer products?
- Because it makes it possible to design a very simple parallel algorithm on a grid of processors!
- First step: view the algorithm in terms of the blocks assigned to the processors

for k=0 to q-1 for i=0 to q-1 for j=0 to q-1 $C_{i,j} += A_{i,k} * B_{k,j}$

C ₀₀	C_{01}	C ₀₂	C ₀₃
C_{10}	C_{11}	C ₁₂	C ₁₃
C ₂₀	C ₂₁	C ₂₂	C ₂₃
C ₃₀	C ₃₁	C ₃₂	C ₃₃

A ₀₀	A_{01}	A ₀₂	A ₀₃
A_{10}	A_{11}	A_{12}	A ₁₃
A ₂₀	A_{21}	A ₂₂	A ₂₃
A ₃₀	A_{31}	A_{32}	A ₃₃

B ₀₀	B_{01}	B ₀₂	B ₀₃	
B_{10}	B ₁₁	B ₁₂	B ₁₃	
B ₂₀	B ₂₁	B ₂₂	B ₂₃	
B ₃₀	B ₃₁	Began	B tesy ³ ∂f	Henri Casanova

234 / 272

A. Legrand

Communications

Matrix Multiplication

Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

The Outer-Product Algorithm

C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A_{01}	A
C_{10}	C ₁₁	C ₁₂	C ₁₃	A_{10}	A_{11}	A ₁
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₀	A_{21}	A ₂
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A_{31}	Α3

A ₀₂	A ₀₃	B_0	Bo	B ₀
A ₁₂	A_{13}	₿1	B ₁	₿1
A ₂₂	A_{23}	B ₂	B ₂	₿₂
A ₃₂	A_{33}	₿₃	B3	₿₃
		0	1	2

or k=0 to q-1
for i=0 to q-1
for j=0 to q-1
$C_{i,j} += A_{i,k} * B_{k,j}$

f

B₀

₿₁ ₿₂

- At step k, processor P_{i,j} needs A_{i,k} and B_{k,j}
 - If k = j, then the processor already has the needed block of A
 - Otherwise, it needs to get it from P_{i,k}
 - If k = I, then the processor already has the needed block of B
 - Otherwise, it needs to get it from P_{k,i}

A. Legran

Communications

Matrix Multiplicatior

Outer Product

Grid Rocks! Cannon Fox Snyder Data Distribution

The Outer-Product Algorithm

- Based on the previous statements, we can now see how the algorithm works
- At step k
 - Processor P_{i,k} broadcasts its block of matrix A to all processors in processor row i
 - True for all i
 - Processor P_{k,j} broadcasts its block of matrix B to all processor in processor column j
 - True for all j
- There are q-1 steps

A. Legran

Communications

Matrix Multiplication

Outer Product

Grid Rocks Cannon Fox Snyder Data Distribution

The Outer Product Algorithm

Step k=1 of the algorithm

A. Legrand

Communications

Matrix Multiplication

Outer Product

Grid Rocks Cannon Fox Snyder Data Distribution

The Outer-Product Algorithm

```
//m = n/a
var A. B. C: arrav[0..m-1. 0..m-1] of real
var bufferA. bufferB: arrav[0..m-1. 0..m-1] of real
var myrow, mycol
myrow = My Proc Row()
mvcol = Mv Proc Col()
for k = 0 to a-1
   // Broadcast A along rows
   for i = 0 to a-1
         BroadcastRow(i.k.A.bufferA.m*m)
   // Broadcast B along columns
   for j=0 to q-1
         BroadcastCol(k,j,B,bufferB,m*m)
   // Multiply Matrix blocks (assuming a convenient MatrixMultiplyAdd()
   function)
   if (mvrow == k) and (mvcol == k)
         MatrixMultiplvAdd(C.A.B.m)
   else if (myrow == k)
         MatrixMultiplyAdd(C,bufferA,B,m)
   else if (mycol == k)
         MatrixMultiplyAdd(C, A, bufferB, m)
   else
         MatrixMultiplyAdd(C, bufferA, bufferB, m)
```

A. Legrand

Communications

Matrix Multiplicatio

Outer Product

Grid Rocks! Cannon Fox Snyder Data Distribution

Performance Analysis

- The performance analysis is straightforward
- With a one-port model:
 - The matrix multiplication at step k can occur in parallel with the broadcasts at step k+1
 - Both broadcasts happen in sequence
 - Therefore, the execution time is equal to:

T(m,q) = 2 Tbcast + (q-1) max (2 Tbcast, m³ w) + m³ w

- w: elementary += * operation
- Tbcast: time necessary for the broadcast
- With a multi-port model:
 - Both broadcasts can happen at the same time

T(m,q) = Tbcast + (q-1) max (Tbcast, m³ w) + m³ w

- The time for a broadcast, using the pipelined broadcast: Tbcast = (sqrt((q-2)L) + sqrt(m² b))²
- When n gets large: T(m,q) ~ q m³ = n³ / q²
- Thus, asymptotic parallel efficiency is 1!

Courtesy of Henri Casanova 239 / 272

A. Legrand

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

So what?

- On a ring platform we had already given an asymptotically optimal matrix multiplication algorithm on a ring in an earlier set of slides
- So what's the big deal about another asymptotically optimal algorithm?
- Once again, when n is huge, indeed we don't care
- But communication costs are often non-negligible and do matter
 - When n is "moderate"
 - When w/b is low
- It turns out, that the grid topology is advantageous for reducing communication costs! Courtesy of Henri Casanova

A. Legrand

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data

Ring vs. Grid

- When we discussed the ring, we found that the communication cost of the matrix multiplication algorithm was: n² b
 - A each step, the algorithm sends n²/p matrix elements among neighboring processors
 - There are p steps
- For the algorithm on a grid:
 - Each step involves 2 broadcasts of n²/p matrix elements
 - Assuming a one-port model, not to give an "unfair" advantage to the grid topology
 - Using a pipelined broadcast, this can be done in approximately the same time as sending n²/p matrix elements between neighboring processors on each ring (unless n is really small)
 - Therefore, at each step, the algorithm on a grid spends twice as much time communicating as the algorithm on a ring
 - But it does sqrt(p) fewer steps!
- Conclusion: the algorithm on a grid spends at least sqrt(p) less time in communication than the algorithm on a ring Courtesy of Henri Casanova

A. Legrand

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

Grid vs. Ring

- Why was the algorithm on a Grid much better?
- Reason: More communication links can be used in parallel
 - Point-to-point communication replaced by broadcasts
 - Horizontal and vertical communications may be concurrent
 - More network links used at each step
- Of course, this advantage isn't really an advantage if the underlying physical platform does not really look like a grid
- But, it turns out that the 2-D distribution is inherently superior to the 1-D distribution, no matter what the underlying platform is!

A. Legrand

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

Grid vs. Ring

- On a ring
 - The algorithm communicates p matrix block rows that each contain n²/p elements, p times
 - Total number of elements communicated: pn²
- On a grid
 - Each step, 2sqrt(p) blocks of n²/p elements are sent, each to sqrt(p)-1 processors, sqrt(p) times
 - Total number of elements communicated: 2sqrt(p)n²
- Conclusion: the algorithm with a grid in mind inherently sends less data around than the algorithm on a ring
- Using a 2-D data distribution would be better than using a 1-D data distribution even if the underlying platform were a non-switched Ethernet for instance!
 - Which is really 1 network link, and one may argue is closer to a ring (p comm links) than a grid (p² comm links) Courtesy of Henri Casanova

A. Legran

Communications

Matrix Multiplication Outer Produ Grid Rocks! Cannon Fox Snyder Data Distribution

Conclusion

- Writing algorithms on a grid topology is a little bit more complicated than in a ring topology
- But there is often a payoff in practice and grid topologies are very popular

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

2-D Matrix Distribution

We denote by a _{i,j} an
element of the matrix

• We denote by $A_{i,j}$ (or A_{ij}) the block of the matrix allocated to $P_{i,j}$

C ₀₀	C ₀₁	C ₀₂	C ₀₃
C_{10}	C_{11}	C ₁₂	C ₁₃
C ₂₀	C ₂₁	C ₂₂	C ₂₃
C ₃₀	C ₃₁	C ₃₂	C ₃₃

A_{00}	A_{01}	A_{02}	A_{03}
A_{10}	A_{11}	A_{12}	A_{13}
A_{20}	A_{21}	A ₂₂	A_{23}
A ₃₀	A_{31}	A ₃₂	A ₃₃

B ₀₀	B_{01}	B ₀₂	B ₀₃	
B_{10}	B_{11}	B_{12}	B ₁₃	
B ₂₀	B ₂₁	B ₂₂	B ₂₃	
B ₃₀	B ₃₁	B ₃₂	B ₃₃	Henri Casanova

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

The Cannon Algorithm

- This is a very old algorithm
 - From the time of systolic arrays
 - Adapted to a 2-D grid
- The algorithm starts with a redistribution of matrices A and B
 - Called "preskewing"
- Then the matrices are multiplied
- Then the matrices are reredistributed to match the initial distribution
 - Called "postskewing"

A. Legran

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data

Cannon's Preskewing

 Matrix A: each block row of matrix A is shifted so that each processor in the first processor column holds a diagonal block of the matrix

A ₀₀	A_{01}	A ₀₂	A ₀₃
A_{10}		A_{12}	A_{13}
A_{20}	A_{21}		A ₂₃
A ₃₀	A_{31}	A ₃₂	A ₃₃

A ₀₀	A_{01}	A ₀₂	A_{03}
A_{11}	A_{12}	A_{13}	A_{14}
		A_{20}	A_{21}
A ₃₃	A_{30}	A_{31}	A_{32}

A. Legran

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Cannon's Preskewing

 Matrix B: each block column of matrix B is shifted so that each processor in the first processor row holds a diagonal block of the matrix

B ₀₀	B_{01}	B_{02}	B ₀₃
		B_{12}	B_{13}
			B ₂₃
		B ₃₂	B ₃₃

B ₀₀	B ₁₁	B ₂₂	B ₃₃
			B_{03}
	B_{31}		B ₁₃
	B_{01}		B ₂₃

Matrix Multiplication Outer Product Grid Rocks! **Cannon** Fox Snyder Data Distribution

Cannon's Computation

- The algorithm proceeds in q steps
- At each step each processor performs the multiplication of its block of A and B and adds the result to its block of C
- Then blocks of A are shifted to the left and blocks of B are shifted upward
 - Blocks of C never move
- Let's see it on a picture

Cannon's Steps

C ₀₀	C_{01}	C ₀₂	C ₀₃		A ₀₀	A_{01}	A ₀₂	A ₀₃	B ₀₀	B_{11}	B ₂₂	B ₃₃]
C_{10}	C_{11}	C ₁₂	C ₁₃		A_{11}	A_{12}	A ₁₃	A ₁₀	B_{10}	B_{21}	B ₃₂	B ₀₃	local
C ₂₀	C_{21}	C ₂₂	C ₂₃		A ₂₂	A ₂₃	A ₂₀	A ₂₁	B ₂₀	B_{31}	B ₀₂	B ₁₃	computation on proc (0,0)
C ₃₀	C_{31}	C ₃₂	C ₃₃		A ₃₃	A_{30}	A_{31}	A ₃₂	B ₃₀	B_{01}	B ₁₂	B ₂₃	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	1	A ₀₁	A ₀₂	A 03	A ₀₀	B ₁₀	B ₂₁	B ₃₂	B ₀₃	
C ₁₀	C ₁₁	C ₁₂		1					B ₂₀	B ₈₁	B ₀₂	В ₁₃	Shifts
C ₂₀	C ₂₁	C ₂₂	C ₂₃			A ₂₀			B ₃₀	B ₀₁	B ₁₂	B ₂₃	
C ₃₀	C_{31}	C ₃₂	C ₃₃		A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₀₀	B ₁₁	B ₂₂		
C ₀₀	C ₀₁	C ₀₂	C ₀₃		A ₀₁	A ₀₂	A ₀₃	A ₀₀	B ₁₀	B ₂₁	B ₃₂	B ₀₃	
C ₁₀		C ₁₂	C ₁₃	1				A ₁₁	B ₂₀	B_{31}	B ₀₂	B ₁₃	local
C ₂₀	C ₂₁	C ₂₂	C ₂₃	1		A ₂₀	A ₂₁	A ₂₂	B ₃₀	B ₀₁	B ₁₂	B ₂₃	computation on proc (0,0)
C ₃₀	C_{31}	C ₃₂	C ₃₃	J	A_{30}	A_{31}	A_{32}	A ₃₃	B ₀₀	B_{11}	B ₂₂	B ₃₃	Courtesy of Henri Casanova
													200/212

Communication

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Fox Snyder Data Distribution

The Algorithm

Participate in preskewing of A Partitipate in preskweing of B For k = 1 to q Local C = C + A*B Vertical shift of B Horizontal shift of A Participate in postskewing of A Partitipate in postskewing of B

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Performance Analysis

- Let's do a simple performance analysis with a 4-port model
 - The 1-port model is typically more complicated
- Symbols
 - n: size of the matrix
 - qxq: size of the processor grid
 - m = n / q
 - L: communication start-up cost
 - w: time to do a basic computation (+= . * .)
 - b: time to communicate a matrix element
- T(m,q) = Tpreskew + Tcompute + Tpostskew

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Pre/Post-skewing times

- Let's consider the horizontal shift
- Each row must be shifted so that the diagonal block ends up on the first column
- On a mono-directional ring:
 - The last row needs to be shifted (q-1) times
 - All rows can be shifted in parallel
 - Total time needed: (q-1) (L + m² b)
- On a bi-directional ring, a row can be shifted left or right, depending on which way is shortest!
 - A row is shifted at most floor(q/2) times
 - All rows can be shifted in parallel
 - Total time needed: floor(q/2) (L + m² b)
- Because of the 4-port assumption, preskewing of A and B can occur in parallel (horizontal and vertical shifts do not interfere)
- Therefore: Tpreskew = Tpostskew = floor(q/2) (L+m²b)

A. Legran

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Time for each step

- At each step, each processor computes an mxm matrix multiplication
 - Compute time: m³ w
- At each step, each processor sends/receives a mxm block in its processor row and its processor column
 - Both can occur simultaneously with a 4-port model
 - Takes time L+ m²b
- Therefore, the total time for the q steps is: Tcompute = q max (L + m²b, m³w)

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Cannon Performance Model

- T(m,n) =2* floor(q/2) (L + m²b) + q max(m³w, L + m²b)
- This performance model is easily adapted
 - If one assumes mono-directional links, then the "floor(q/2)" above becomes "(q-1)"
 - If one assumes 1-port, there is a factor 2 added in front of communication terms
 - If one assumes no overlap of communication and computation at a computation at

A. Legran

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

The Fox Algorithm

- This algorithm was originally developed to run on a hypercube topology
 - But in fact it uses a grid, embedded in the hypercube
- This algorithm requires no pre- or postskewing
- It relies on horizontal broadcasts of the diagonals of matrix A and on vertical shifts of matrix B
- Sometimes called the "multiply-broadcastroll" algorithm
- Let's see it on a picture
 - Although it's a bit awkward to draw because of Casanova 256/272

Execution Steps...

C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₀	B ₀₁	B ₀₂	B ₀₃	
C ₁₀	C ₁₁							B ₁₀	B ₁₁	B ₁₂	B ₁₃	initial
C ₂₀	C ₂₁		C ₂₃	 A ₂₀	A_{21}	A ₂₂	A ₂₃	B ₂₀	B ₂₁	B ₂₂	B ₂₃	state
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A_{31}	A_{32}	A ₃₃	B ₃₀	B_{31}	B ₃₂	B ₃₃	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₀	A ₀₀	A ₀₀	B ₀₀	B ₀₁	B ₀₂	B ₀₃	Broadcast of A's 1st diag.
C ₁₀	C_{11}		C ₁₃	A_{11}	A_{11}	A_{11}	A ₁₁	B_{10}	B_{11}	B_{12}	B ₁₃	(stored in a
C ₂₀	C_{21}		C ₂₃	A ₂₂	A ₂₂	A_{22}	A ₂₂	B ₂₀	B_{21}	B ₂₂	B ₂₃	Separate
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₃	A ₃₃	A ₃₃	A ₃₃	B ₃₀	B_{31}	B ₃₂	B ₃₃	buffer)
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₀	A ₀₀	A ₀₀	B ₀₀	B_{01}	B ₀₂	B ₀₃	
C ₁₀	C_{11}			A ₁₁	A_{11}	A ₁₁	A ₁₁	B ₁₀	B ₁₁	B ₁₂	B ₁₃	Local
C ₂₀				A ₂₂	A ₂₂	A ₂₂	A ₂₂	B ₂₀	B ₂₁	B ₂₂	B ₂₃	computation
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₃	A ₃₃	A ₃₃	A ₃₃	B ₃₀	B_{31}	B ₃₂	B ₃₃	Courtesy of Henri Casanova

257 / 272

A. Legrand

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

Execution Steps...

C ₁₀ C ₂₀	C ₁₁ C ₂₁	C ₁₂ C ₂₂	C ₁₃ C ₂₃	A ₂₀	A ₁₁ A ₂₁	A ₀₂ A ₁₂ A ₂₂ A ₃₂	A ₀₃ A ₁₃ A ₂₃ A ₃₃	B ₂₀ B ₂₀ B ₃₀ B ₀₀	B ₁₁ B ₂₁ B ₃₁ B ₀₁	B ₁₂ B ₂₂ B ₃₂ B ₀₂	B ₁₃ B ₂₃ B ₃₃ B ₀₃	Shift of B
C ₀₀ C ₁₀ C ₂₀	C ₁₁ C ₂₁	C ₁₂ C ₂₂	C ₁₃ C ₂₃	A ₁₂ A ₂₃	A ₁₂ A ₂₃	A ₁₂ A ₂₃	A_{01} A_{12} A_{23} A_{30}	$ \begin{array}{c} B_{10} \\ B_{20} \\ B_{30} \\ B_{00} \end{array} $	B ₁₁ B ₂₁ B ₃₁ B ₀₁	B ₁₂ B ₂₂ B ₃₂ B ₀₂	B ₁₃ B ₂₃ B ₃₃ B ₀₃	Broadcast of A's 2nd diag. (stored in a Separate buffer)
C ₁₀ C ₂₀	C ₁₁ C ₂₁	C ₁₂ C ₂₂	C ₁₃ C ₂₃	A ₁₂ A ₂₃	A ₁₂ A ₂₃	A ₁₂ A ₂₃	A ₁₂ A ₂₃	B ₁₀ B ₂₀ B ₃₀ B ₀₀	B ₁₁ B ₂₁ B ₃₁ B ₀₁	B ₁₂ B ₂₂ B ₃₂ B ₀₂	B ₁₃ B ₂₃ B ₃₃ B ₀₃	Local computation Courtesy of Henri Casanova 258/272

A. Legran

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Fox's Algorithm

// No initial data movement
for k = 1 to q in parallel
Broadcast A's kth diagonal
Local C = C + A*B
Vertical shift of B
// No final data movement

- Again note that there is an additional array to store incoming diagonal block
- This is the array we use in the A*B multiplication

A. Legran

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

Performance Analysis

- You'll have to do it in a homework assignment
 - Write pseudo-code of the algorithm in more details
 - Write the performance analysis

A. Legran

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox **Fox Snyder**

Snyder's Algorithm (1992)

- More complex than Cannon's or Fox's
- First transposes matrix B
- Uses reduction operations (sums) on the rows of matrix C
- Shifts matrix B

A. Legrand

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox **Snyder** Data Distribution

Execution Steps...

								 				_
C ₀₀	C_{01}	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A_{02}	A ₀₃	B_{00}	B_{01}	B_{02}	B_{03}	
C ₁₀	C_{11}	C ₁₂	C ₁₃	A ₁₀	A ₁₁	A ₁₂	A ₁₃	B_{10}	B_{11}	B ₁₂	B ₁₃	
C ₂₀	C_{21}	C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₂₂	A ₂₃	B ₂₀	B ₂₁	B ₂₂	B ₂₃	state
C ₃₀	C_{31}	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₃₀	B_{31}	B ₃₂	B ₃₃	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₀	B ₁₀	B ₂₀	B ₃₀	
C ₁₀	C ₁₁		C ₁₃	A ₁₀	A ₁₁	A ₁₂	A ₁₃	B ₀₁	B ₁₁	B ₂₁	B ₃₁	Transness R
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₂₂	A ₂₃	B ₀₂	B ₁₂	B ₂₂	B ₃₂	Transpose B
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B ₀₃	B ₁₃	B ₂₃	B ₃₃	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₀	B ₁₀	B ₂₀	B ₃₀	
C_{10}	C_{11}	C ₁₂	C ₁₃	A ₁₀	A ₁₁	A ₁₂	A ₁₃	B_{01}	B_{11}	B ₂₁	B_{31}	Local
C ₂₀	C_{21}		C ₂₃			A ₂₂	A ₂₃	B ₀₂	B ₁₂	B ₂₂	B ₃₂	computation
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A_{32}	A ₃₃	B ₀₃	B ₁₃	B ₂₃	B ₃₃	Courtesy of Henri Casanova

A. Legrand

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox **Snyder** Data Distribution

Execution Steps...

C ₁₀ C ₂₀	C ₁₁ C ₂₁	C ₁₂ C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₁₂ A ₂₂	A ₁₃ A ₂₃	B ₀₃	B ₁₃	B ₂₃	B ₃₂	Shireb
C ₀₀ C ₁₀ C ₂₀	C ₀₁ C ₁₁ C ₂₁	C ₀₂ C ₁₂ C ₂₂	C ₀₃ C ₁₃ C ₂₃	A ₀₀ A ₁₀ A ₂₀	A ₀₁ A ₁₁ A ₂₁	A ₀₂ A ₁₂ A ₂₂	A ₀₃ A ₁₃ A ₂₃	$ B_{00} B_{01} B_{02} B_{03} $	B ₁₁ B ₁₂ B ₁₃	B ₂₁ B ₂₂ B ₂₃		Global sum on the rows of C
C ₁₀	C ₀₁ C ₁₁ C ₂₁	C ₀₂ C ₁₂ C ₂₂	C ₀₃ C ₁₃ C ₂₃	A ₀₀ A ₁₀ A ₂₀	A ₀₁ A ₁₁ A ₂₁	A ₀₂ A ₁₂ A ₂₂	A ₀₃ A ₁₃ A ₂₃	B_{00} B_{01} B_{02} B_{03} B_{00}	B ₁₁	B ₂₀ B ₂₁ B ₂₂ B ₂₃ B ₂₀	B ₃₁	Local computation

263 / 272

Execution Steps...

C ₀₀	C_{01}	C ₀₂	C ₀₃	A_{00}	A_{01}	A ₀₂	A ₀₃	B ₀₂	B ₁₂	B ₂₂	B ₃₂	
C_{10}	C_{11}	C ₁₂	C ₁₃	A_{10}	A_{11}	A_{12}	A ₁₃	B ₀₃	B ₁₃	B ₂₃	B ₃₃	Shift B
C ₂₀	C_{21}	C ₂₂	C ₂₃	A_{20}	A_{21}	A ₂₂	A ₂₃	B ₀₀	B ₁₀	B ₂₀	B ₃₀	0
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A_{30}	A_{31}	A_{32}	A ₃₃	B ₀₁	B ₁₁	B ₂₁	B ₃₁	
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₂	B ₁₂	B ₂₂	B ₃₂	Clabal
C ₁₀	C ₁₁			A ₁₀				B ₀₃	B ₁₃	B ₂₃	B ₃₃	Global sum
C ₂₀	C ₂₁	C ₂₂	C ₂₃	A ₂₀	A ₂₁	A ₂₂	A ₂₃	B ₀₀	B ₁₀	B ₂₀	B ₃₀	on the rows
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A_{30}	A ₃₁	A ₃₂	A ₃₃	B_{01}	B ₁₁	B ₂₁	B ₃₁	of C
C ₀₀	C ₀₁	C ₀₂	C ₀₃	A ₀₀	A ₀₁	A ₀₂	A ₀₃	B ₀₂	B ₁₂	B ₂₂	B ₃₂	
C ₁₀	C ₁₁	C ₁₂	C ₁₃	A_{10}	A ₁₁	A ₁₂	A ₁₃	B ₀₃	B ₁₃	B ₂₃	B ₃₃	Local
C ₂₀		C ₂₂	C ₂₃	A ₂₀			A ₂₃	B ₀₀	B ₁₀	B ₂₀	B ₃₀	computation
C ₃₀	C ₃₁	C ₃₂	C ₃₃	A ₃₀	A ₃₁	A ₃₂	A ₃₃	B_{01}	B ₁₁	B ₂₁	B ₃₁	Courtesy of Henri Casanova

264 / 272

A. Legran

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data

The Algorithm

var A,B,C: array[0..m-1][0..m-1] of real var bufferC: array[0..m-1][0..m-1] of real Transpose B MatrixMultiplyAdd(bufferC, A, B, m) Vertical shifts of B For k = 1 to q-1Global sum of bufferC on proc rows into $C_{i,(i+k-1)\%q}$ MatrixMultiplyAdd(bufferC, A, B, m) Vertical shift of B Global sum of bufferC on proc rows into C_{i (i+k-1)%g} Transpose B

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder

Performance Analysis

- The performance analysis isn't fundamentally different than what we've done so far
- But it's a bit cumbersome
- See the textbook
 - in particular the description of the matrix transposition (see also Exercise 5.1)

A. Legran

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data

Distribution

- Which Data Distribution?

- So far we've seen:
 - Block Distributions
 - 1-D Distributions
 - 2-D Distributions
 - Cyclic Distributions
- One may wonder what a good choice is for a data distribution?
- Many people argue that a good "Swiss Army knife" is the "2-D block cyclic distribution

Distribution

The 2-D block cyclic distribution

- Goal: try to have all the advantages of both the horizontal and the vertical 1-D block cyclic distribution
 - Works whichever way the computation "progresses"
 - Ieft-to-right, top-to-bottom, wavefront, etc.

268 / 272

- Consider a number of processors p = r * c
 - arranged in a rxc matrix
- Consider a 2-D matrix of size NxN
- Consider a block size b (which Courtesy of Henri Casanova (IN appivib

A. Legran

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

P0	Ρ1	P2
Р3	Ρ4	Р5

A. Legran

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution The 2-D block cyclic distribution

P0	Ρ1	P2
Р3	Ρ4	Р5

Courtesy of Henri Casanova 270 / 272

A. Legrand

Communications

Matrix Multiplication Outer Produc Grid Rocks! Cannon Fox Snyder Data Distribution

The 2-D block cyclic distribution

									_
Î	P0	Ρ1	P2	P0	Ρ1	P2	P0	Ρ1	
	Р3	Ρ4	Ρ5	Р3	Ρ4	Ρ5	Р3	Ρ4	
	P0	Ρ1	P2	P0	Ρ1	P2	P0	P1	
N	Р3	Ρ4	Ρ5	Р3	Ρ4	P5	Р3	P4	
	P0	Ρ1	P2	P0	Ρ1	P2	P0	P1	
	Р3	Ρ4	Ρ5	Р3	Ρ4	P5	Р3	P4	
	P0	Ρ1	P2	P0	Ρ1	P2	P0	P1	ľ
•		•						b	

P0	Ρ1	P2
Р3	Ρ4	Ρ5

- Slight load imbalance
 - Becomes negligible with many blocks
- Index computations had better be implemented in separate functions
- Also: functions that tell a process who its neighbors are
- Overall, requires a whole infrastructure, but many think you can't go wrong with this distribution

b

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data

Distribution

Conclusion

- All the algorithms we have seen in the semester can be implemented on a 2-D block cyclic distribution
- The code ends up much more complicated
- But one may expect several benefits "for free"
- The ScaLAPAK library recommends to use the 2-D block cyclic distribution
 - Although its routines support all other distributions

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman. LogGP: Incorporating long messages into the LogP model for parallel computation.

Journal of Parallel and Distributed Computing, 44(1):71–79, 1997.

 D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos, K. Schauser, R. Subramonian, and T. von Eicken.
 LogP: a practical model of parallel computation.
 Communication of the ACM, 39(11):78–85, 1996.

R. W. Hockney.

The communication challenge for mpp : Intel paragon and meiko cs-2.

Parallel Computing, 20:389–398, 1994.

- - B. Hong and V.K. Prasanna.

Distributed adaptive task allocation in heterogeneous computing environments to maximize throughput.

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution In International Parallel and Distributed Processing Symposium IPDPS'2004. IEEE Computer Society Press, 2004.

T. Kielmann, H. E. Bal, and K. Verstoep. Fast measurement of LogP parameters for message passing platforms.

In Proceedings of the 15th IPDPS. Workshops on Parallel and Distributed Processing, 2000.

Steven H. Low.

A duality model of TCP and queue management algorithms. *IEEE/ACM Transactions on Networking*, 2003.

Dong Lu, Yi Qiao, Peter A. Dinda, and Fabián E. Bustamante. Characterizing and predicting tcp throughput on the wide area network.

In Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS'05), 2005.

A. Legrand

Communications

Matrix Multiplication Outer Product Grid Rocks! Cannon Fox Snyder Data Distribution

Arnaud Legrand, Hélène Renard, Yves Robert, and Frédéric Vivien.

Mapping and load-balancing iterative computations on heterogeneous clusters with shared links.

IEEE Trans. Parallel Distributed Systems, 15(6):546–558, 2004.

Maxime Martinasso.

Analyse et modélisation des communications concurrentes dans les réseaux haute performance.

PhD thesis, Université Joseph Fourier de Grenoble, 2007.

Laurent Massoulié and James Roberts. Bandwidth sharing: Objectives and algorithms. In *INFOCOM (3)*, pages 1395–1403, 1999.

Loris Marchal, Yang Yang, Henri Casanova, and Yves Robert. Steady-state scheduling of multiple divisible load applications on wide-area distributed computing platforms.

A. Legrand

Communications

Matrix Multiplication Outer Produc: Grid Rocks! Cannon Fox Snyder Data

Data Distribution *Int. Journal of High Performance Computing Applications*, (3), 2006.

Frédéric Wagner.

Redistribution de données à travers un réseau haut débit. PhD thesis, Université Henri Poincaré Nancy 1, 2005.