Parallel Algorithms

Arnaud Legrand, CNRS, University of Grenoble
LIG laboratory, arnaud.legrand@imag.fr

November 1, 2009

Outline

Part I Performance Evaluation
Part II Network Models
Part III Communications on a Ring
Part IV Algorithms on a Ring
Part V Algorithm on an Heterogeneous Ring
Part VI Algorithms on an Grid

Part I

Performance Evaluation

Code Performance

- We will mostly talk about how to make code go fast, hence the "High Performance".
- Performance conflicts with other concerns:

Correctness. You will see that when trying to make code go fast one often breaks it
Readability. Fast code typically requires more lines! Modularity can hurt performance (e.g., Too many classes) Portability.

- Code that is fast on machine A can be slow on machine B
- At the extreme, highly optimized code is not portable at all, and in fact is done in hardware!

Why Performance?

- To do a time-consuming operation in less time
- I am an aircraft engineer
- I need to run a simulation to test the stability of the wings at high speed
- I'd rather have the result in 5 minutes than in 5 hours so that I can complete the aircraft final design sooner.
- To do an operation before a tighter deadline
- I am a weather prediction agency
- I am getting input from weather stations/sensors
- I'd like to make the forecast for tomorrow before tomorrow
- To do a high number of operations per seconds
- I am the CTO of Amazon.com
- My Web server gets 1,000 hits per seconds
- I'd like my Web server and my databases to handle 1,000 transactions per seconds so that customers do not experience bad delays (also called scalability)
- Amazon does "process" several GBytes of data per seconds

Outline

(1) Performance: Definition?

- Time?
- Rate?
- Peak performance
- Benchmarks
(2) Speedup and Efficiency
- Speedup
- Amdahl's Law
(3) Performance Measures
- Measuring Time

4 Performance Improvement

- Finding Bottlenecks
- Profiling Sequential Programs
- Profiling Parallel Programs

Outline

Parallel Algorithms
A. Legrand

Performance: Definition? Time?
Rate?
Peak
performance
Benchmarks
Speedup and
Efficiency
Speedup
Amdahl's Law
Performance
Measures
Measuring Tim
Performance Improvement
Finding
Bottlenecks
Profiling
Sequential
Programs
Profiling Parallel Programs
(1) Performance: Definition?

- Time?
- Rate?
- Peak performance
- Benchmarks
(2) Speedup and Efficiency
- Speedup
- Amdahl's Law
(3) Performance Measures
- Measuring Time
(4) Performance Improvement
- Finding Bottlenecks
- Profiling Sequential Programs
- Profiling Parallel Programs

Performance as Time

- Time between the start and the end of an operation
- Also called running time, elapsed time, wall-clock time, response time, latency, execution time, ...
- Most straightforward measure: "my program takes 12.5 s on a Pentium 3.5GHz"
- Can be normalized to some reference time
- Must be measured on a "dedicated" machine

Performance as Rate

Used often so that performance can be independent on the "size" of the application (e.g., compressing a 1MB file takes 1 minute. compressing a 2 MB file takes 2 minutes \sim the performance is the same).
MIPS Millions of instructions $/ \mathrm{sec}=\frac{\text { instruction count }}{\text { execution time } \times 10^{6}}=\frac{\text { clock rate }}{\mathrm{CPI} \times 10^{6}}$.
But Instructions Set Architectures are not equivalent

- 1 CISC instruction $=$ many RISC instructions
- Programs use different instruction mixes
- May be ok for same program on same architectures

MFlops Millions of floating point operations /sec

- Very popular, but often misleading
- e.g., A high MFlops rate in a stupid algorithm could have poor application performance

Application-specific

- Millions of frames rendered per second
- Millions of amino-acid compared per second
- Millions of HTTP requests served per seconds

Application-specific metrics are often preferable and others may be misleading

"Peak" Performance?

Resource vendors always talk about peak performance rate

- computed based on specifications of the machine
- For instance:
- I build a machine with 2 floating point units
- Each unit can do an operation in 2 cycles
- My CPU is at 1 GHz
- Therefore I have a $1^{*} 2 / 2=1$ GFlops Machine
- Problem:
- In real code you will never be able to use the two floating point units constantly
- Data needs to come from memory and cause the floating point units to be idle

Typically, real code achieves only an (often small) fraction of the peak performance

Benchmarks

- Since many performance metrics turn out to be misleading, people have designed benchmarks
- Example: SPEC Benchmark
- Integer benchmark
- Floating point benchmark
- These benchmarks are typically a collection of several codes that come from "real-world software"
- The question "what is a good benchmark" is difficult
- If the benchmarks do not correspond to what you'll do with the computer, then the benchmark results are not relevant to you

How About GHz?

- This is often the way in which people say that a computer is better than another
- More instruction per seconds for higher clock rate
- Faces the same problems as MIPS

Processor	Clock Rate	SPEC FP2000 Benchmark
IBM Power3	450 MHz	434
Intel PIII	1.4 GHz	456
Intel P4	2.4 GHz	833
Itanium-2	1.0 GHz	1356

- But usable within a specific architecture

Program Performance

- In this class we're not really concerned with determining the performance of a compute platform (whichever way it is defined)
- Instead we're concerned with improving a program's performance
- For a given platform, take a given program
- Run it an measure its wall-clock time
- Enhance it, run it an quantify the performance improvement (i.e., the reduction in wall-clock time)
- For each version compute its performance
- preferably as a relevant performance rate
- so that you can say: the best implementation we have so far goes "this fast" (perhaps a \% of the peak performance)

Outline

Parallel Algorithms
A. Legrand

Performance: Definition? Time?
Rate?
Peak
performance
Benchmarks
Speedup and Efficiency
Speedup
Amdahl's Law
Performance
Measures
Measuring Time
Performance Improvement
Finding
Bottlenecks
Profiling
Sequential
Programs
Profiling Parallel Programs
(1) Performance: Definition?

- Time?
- Rate?
- Peak performance
- Benchmarks
(2) Speedup and Efficiency
- Speedup
- Amdahl's Law
(3) Performance Measures
- Measuring Time

4. Performance Improvement

- Finding Bottlenecks
- Profiling Sequential Programs
- Profiling Parallel Programs

Speedup

- We need a metric to quantify the impact of your performance enhancement
- Speedup: ratio of "old" time to "new" time
- new time $=1 \mathrm{~h}$
- speedup $=2 \mathrm{~h} / 1 \mathrm{~h}=2$
- Sometimes one talks about a "slowdown" in case the "enhancement" is not beneficial
- Happens more often than one thinks

Parallel Performance

- The notion of speedup is completely generic
- By using a rice cooker l've achieved a 1.20 speedup for rice cooking
- For parallel programs one defines the Parallel Speedup (we'll just say "speedup"):
- Parallel program takes time T_{1} on 1 processor
- Parallel program takes time T_{p} on p processors
- Parallel Speedup: $S(p)=\frac{T_{1}}{T_{p}}$
- In the ideal case, if my sequential program takes 2 hours on 1 processor, it takes 1 hour on 2 processors: called linear speedup

Speedup

Parallel
Algorithms
A. Legrand

Performance:
Definition?
Time?
Rate?
Peak
performance
Benchmarks
Speedup and
Speedup
Amdahl's Law
Performance
Measures
Measuring Time

Superlinear Speedup? There are several possible causes

Speedup

Parallel
Algorithms
A. Legrand

Performance:
Definition?
Time?
Rate?
Peak
perfortlance
Benchmarks
Speedup and Efficiency
Speedup Amdahil's Law
Performance
Measures Measuring Time

Superlinear Speedup? There are several possible causes
Algorithm with optimization problems, throwing many processors at it increases the chances that one will "get lucky" and find the optimum fast

Speedup

Superlinear Speedup? There are several possible causes
Algorithm with optimization problems, throwing many processors at it increases the chances that one will "get lucky" and find the optimum fast
Hardware with many processors, it is possible that the entire application data resides in cache (vs. RAM) or in RAM (vs. Disk)

Bad News: Amdahl's Law

Consider a program whose execution consists of two phases
(1) One sequential phase: $T_{\text {seq }}=(1-f) T_{1}$
(2) One phase that can be perfectly parallelized (linear speedup) $T_{p a r}=f T_{1}$
Therefore: $T_{p}=T_{\text {seq }}+T_{p a r} / p=(1-f) T_{1}+f T_{1} / p$.

Amdahl's Law:

$$
S_{p}=\frac{1}{1-f+\frac{f}{p}}
$$

Lessons from Amdahl's Law

- It's a law of diminishing return
- If a significant fraction of the code (in terms of time spent in it) is not parallelizable, then parallelization is not going to be good
- It sounds obvious, but people new to high performance computing often forget how bad Amdahl's law can be
- Luckily, many applications can be almost entirely parallelized and f is small

Parallel Efficiency

- Efficiency is defined as $\operatorname{Eff}(p)=S(p) / p$
- Typically <1, unless linear or superlinear speedup
- Used to measure how well the processors are utilized
- If increasing the number of processors by a factor 10 increases the speedup by a factor 2, perhaps it's not worth it: efficiency drops by a factor 5
- Important when purchasing a parallel machine for instance: if due to the application's behavior efficiency is low, forget buying a large cluster

Scalability

- Measure of the "effort" needed to maintain efficiency while adding processors
- Efficiency also depends on the problem size: $\operatorname{Eff}(n, p)$
- Isoefficiency: At which rate does the problem size need to be increase to maintain efficiency
- $n_{c}(p)$ such that $\operatorname{Eff}\left(n_{c}(p), p\right)=c$
- By making a problem ridiculously large, on can typically achieve good efficiency
- Problem: is it how the machine/code will be used?

Outline

Performance

 MeasuresMeasuring Time
Performance Improvement
Finding
Bottleneeks
Profiling
Sequential
Programs
Profiling Parallel Programs
(1) Performance: Definition?

- Time?
- Rate?
- Peak performance
- Benchmarks
(2) Speedup and Efficiency
- Speedup
- Amdahl's Law
(3) Performance Measures
- Measuring Time
(4) Performance Improvement
- Finding Bottlenecks
- Profiling Sequential Programs
- Profiling Parallel Programs

Performance Measures

This is all well and good, but how does one measure the performance of a program in practice?
Two issues:
(1) Measuring wall-clock times (We'll see how it can be done shortly)
(2) Measuring performance rates

- Measure wall clock time (see above)
- "Count" number of "operations" (frames, flops, amino-acids: whatever makes sense for the application)
- Either by actively counting (count++)
- Or by looking at the code and figure out how many operations are performed
- Divide the count by the wall-clock time

Measuring time by hand?

- One possibility would be to do this by just "looking" at a clock, launching the program, "looking" at the clock again when the program terminates
- This of course has some drawbacks
- Poor resolution
- Requires the user's attention
- Therefore operating systems provide ways to time programs automatically
- UNIX provide the time command

The UNIX time Command

- You can put time in front of any UNIX command you invoke
- When the invoked command completes, time prints out timing (and other) information

```
surf:~$ /usr/bin/X11/time ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (Omajor+1344minor)pagefaults Oswaps
```

- 4.17 seconds of user time
- 4.34 seconds of system time
- 2 minutes and 55.85 seconds of wall-clock time
- 4% of CPU was used
- 0+0k memory used (text + data)
- 0 input, 0 output output (file system I/O)
- 1344 minor pagefaults and 0 swaps

User, System, Wall-Clock?

Parallel
Algorithms
A. Legrand

- User Time: time that the code spends executing user code (i.e., non system calls)

User, System, Wall-Clock?

Parallel
Algorithms
A. Legrand

- User Time: time that the code spends executing user code (i.e., non system calls)
- System Time: time that the code spends executing system calls

User, System, Wall-Clock?

- User Time: time that the code spends executing user code (i.e., non system calls)
- System Time: time that the code spends executing system calls
- Wall-Clock Time: time from start to end

User, System, Wall-Clock?

- User Time: time that the code spends executing user code (i.e., non system calls)
- System Time: time that the code spends executing system calls
- Wall-Clock Time: time from start to end
- Wall-Clock \geqslant User + System. Why?

User, System, Wall-Clock?

- User Time: time that the code spends executing user code (i.e., non system calls)
- System Time: time that the code spends executing system calls
- Wall-Clock Time: time from start to end
- Wall-Clock \geqslant User + System. Why?
- because the process can be suspended by the O/S due to contention for the CPU by other processes

User, System, Wall-Clock?

- User Time: time that the code spends executing user code (i.e., non system calls)
- System Time: time that the code spends executing system calls
- Wall-Clock Time: time from start to end
- Wall-Clock \geqslant User + System. Why?
- because the process can be suspended by the O/S due to contention for the CPU by other processes
- because the process can be blocked waiting for I/O

Using time

- It's interesting to know what the user time and the system time are
- for instance, if the system time is really high, it may be that the code does to many calls to malloc(), for instance
- But one would really need more information to fix the code (not always clear which system calls may be responsible for the high system time)
- Wall-clock - system - user $\simeq \mathrm{I} / \mathrm{O}+$ suspended
- If the system is dedicated, suspended $\simeq 0$
- Therefore one can estimate the ecost of I/O
- If I/O is really high, one may want to look at reducing I/O or doing I/O better
- Therefore, time can give us insight into bottlenecks and gives us wall-clock time
- Measurements should be done on dedicated systems

Dedicated Systems

- Measuring the performance of a code must be done on a "quiescent", "unloaded" machine (the machine only runs the standard O/S processes)
- The machine must be dedicated
- No other user can start a process
- The user measuring the performance only runs the minimum amount of processes (basically, a shell)
- Nevertheless, one should always present measurement results as averages over several experiments (because the (small) load imposed by the O / S is not deterministic)

Drawbacks of UNIX time

- The time command has poor resolution
- "Only" milliseconds
- Sometimes we want a higher precision, especially if our performance improvements are in the $1-2 \%$ range
- time times the whole code
- Sometimes we're only interested in timing some part of the code, for instance the one that we are trying to optimize
- Sometimes we want to compare the execution time of different sections of the code

Timing with gettimeofday

- gettimeofday from the standard C library
- Measures the number of microseconds since midnight, Jan 1st 1970, expressed in seconds and microseconds

```
struct timeval start;
..
gettimeofday(&tv,NULL);
printf("%ld,%ld\n",start.tv_sec, start.tv_usec);
```

- Can be used to time sections of code
- Call gettimeofday at beginning of section
- Call gettimeofday at end of section
- Compute the time elapsed in microseconds:

```
(end.tv_sec*1000000.0 + end.tv_usec -
start.tv_sec*1000000.0 - start.tv_usec) / 1000000.0)
```


Other Ways to Time Code

- ntp_gettime() (Internet RFC 1589)
- Sort of like gettimeofday, but reports estimated error on time measurement
- Not available for all systems
- Part of the GNU C Library
- Java: System.currentTimeMillis()
- Known to have resolution problems, with resolution higher than 1 millisecond!
- Solution: use a native interface to a better timer
- Java: System.nanoTime()
- Added in J2SE 5.0
- Probably not accurate at the nanosecond level
- Tons of "high precision timing in Java" on the Web

Outline

Parallel
Algorithms
A. Legrand

Performance: Definition? Time?
Rate?
Peak
perfomance
Benchmarks
Speedup and Efficiency
Speedup
Amdahl's Law
Performance
Measures Measuring Time

Performance Improvement Finding
Bottlenecks
Profiling
Sequential
Programs
Profiling Parallel Programs
(1) Performance: Definition?

- Time?
- Rate?
- Peak performance
- Benchmarks
(2) Speedup and Efficiency
- Speedup
- Amdahl's Law
(3) Performance Measures
- Measuring Time

4 Performance Improvement

- Finding Bottlenecks
- Profiling Sequential Programs
- Profiling Parallel Programs

Why is Performance Poor?

Performance is poor because the code suffers from a performance bottleneck
Definition:

- An application runs on a platform that has many components (CPU, Memory, Operating System, Network, Hard Drive, Video Card, etc.)
- Pick a component and make it faster
- If the application performance increases, that component was the bottleneck!

Removing a Bottleneck

There are two may approaches to remove a bottleneck:
Brute force Hardware Upgrade

- Is sometimes necessary
- But can only get you so far and may be very costly (e.g., memory technology)
Modify the code
- The bottleneck is there because the code uses a "resource" heavily or in non-intelligent manner
- We will learn techniques to alleviate bottlenecks at the software level

Identifying a Bottleneck

- It can be difficult
- You're not going to change the memory bus just to see what happens to the application
- But you can run the code on a different machine and see what happens
- One Approach
- Know/discover the characteristics of the machine
- Instrument the code with gettimeofdays everywhere
- Observe the application execution on the machine
- Tinker with the code
- Run the application again
- Repeat
- Reason about what the bottleneck is

A better approach: profiling

- A profiler is a tool that monitors the execution of a program and that reports the amount of time spent in different functions
- Useful to identify the expensive functions
- Profiling cycle
- Compile the code with the profiler
- Run the code
- Identify the most expensive function
- Optimize that function (i.e. call it less often if possible or make it faster)
- Repeat until you can't think of any ways to further optimize the most expensive function

Using gprof

Parallel Algorithms
A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

- Compile your code using gcc with the -pg option
- Run your code until completion
- Then run gprof with your program's name as single command-line argument
- Example: gcc -pg prog.c -o prog; ./prog gprof prog > profile_file
- The output file contains all profiling information (which fraction of the code is spent in which function)

Callgrind

- Callgrind is a tool that uses runtime code instrumentation framework of Valgrind for call-graph generation
- Valgrind is a kind of emulator or virtual machine.
- It uses JIT (just-in-time) compilation techniques to translate x86 instructions to simpler form called ucode on which various tools can be executed.
- The ucode processed by the tools is then translated back to the x86 instructions and executed on the host CPU.
- This way even shared libraries and dynamically loaded plugins can be analyzed but this kind of approach results with huge slow down (about 50 times for callgrind tool) of analyzed application and big memory consumption.

Callgrind/Kcachegrind

Parallel Algorithms A. Legrand

Performance: Definition? Time? Rate? Peak performance Benchmarks

Speedup and Efficiency
speedup Amdahil's Law

Performance Measures Measuring Time
Performance Improvement
Finding
Profiling
Sequential
Programs
Profiling Parallel

Data produced by callgrind can be loaded into KCacheGrind tool for browsing the performance results.

mpiP

- mpiP is a link-time library (it gathers MPI information through the MPI profiling layer)
- It only collects statistical information about MPI functions
- All the information captured by mpiP is task-local

```
sleeptime = 10;
MPI_Init (&argc, &argv);
MPI_Comm_size (comm, &nprocs);
MPI_Comm_rank (comm, &rank);
MPI_Barrier (comm);
if (rank == 0) sleep (sleeptime);
MPI Barrier (comm);
MPI_Finalize ();
```

Task	AppTime	MPITime	MPI\%
0	10	0.000243	0.00
1	10	10	99.92
2	10	10	99.92
3	10	10	99.92
$*$	40	30	74.94

Parallel Algorithms
A. Legrand

Performance: Definition? Time? Rate? Peak

Performance Improvement

Finding
Bottlenecks
Profiling
Sequential
Profiling Parallel Programs

Part II

Modeling

Concurency
Multi-port
Single-port
(Pure and Full

Network Models

Motivation

- Scientific computing : large needs in computation or storage resources.
- Need to use systems with "several processors":
- Parallel computers with shared/distributed memory
- Clusters
- Heterogeneous clusters
- Clusters of clusters
- Network of workstations
- The Grid
- Desktop Grids
- When modeling platform, communications modeling seems to be the most controversial part.
- Two kinds of people produce communication models: those who are concerned with scheduling and those who are concerned with performance evaluation.
- All these models are imperfect and intractable.

Outline

Parallel
Algorithms
A. Legrand

P2P
Communication
Hockney
LogP and
Friends
TCP
Modeling
Concurency
Multi-port
Single-port
(Pure and Full Duplex) Flows

Imperfection
Topotogy
A Few Examples

Virtual

Topologies
(5) Point to Point Communication Models

- Hockney
- LogP and Friends
- TCP
(6) Modeling Concurency
- Multi-port
- Single-port (Pure and Full Duplex)
- Flows
(7) Remind This is a Model, Hence Imperfect
(8) Topology
- A Few Examples
- Virtual Topologies

UET-UCT

Parallel
Algorithms
A. Legrand

P2P
Communication
Hockney
LogP anc
Friends
TCP
Modeling
Concurency
Multi-port
Single-port
(Pure and Full) Duplex
Flows
Imperfection
Topology
A Few Examples
Virtual
Topologies

Hem... This one is mainly used by scheduling theoreticians to prove that their problem is hard and to know whether there is some hope to prove some clever result or not.

Hockney [Hoc94] proposed the following model for performance evaluation of the Paragon. A message of size m from P_{i} to P_{j} requires:

$$
t_{i, j}(m)=L_{i, j}+m / B_{i, j}
$$

In scheduling, there are three types of "corresponding" models:

- Communications are not "splitable" and each communication k is associated to a communication time t_{k} (accounting for message size, latency, bandwidth, middleware, ...).
- Communications are "splitable" but latency is considered to be negligible (linear divisible model):

$$
t_{i, j}(m)=m / B_{i, j}
$$

- Communications are "splitable" and latency cannot be neglected (linear divisible model):

$$
t_{i, j}(m)=L_{i, j}+m / B_{i, j}
$$

The LogP model $\left[\mathrm{CKP}^{+} 96\right]$ is defined by 4 parameters:

- L is the network latency
- O is the middleware overhead (message splitting and packing, buffer management, connection, ...) for a message of size w
- g is the gap (the minimum time between two packets communication) between two messages of size w
- P is the number of processors/modules

- Sending m bytes with packets of size w :

$$
2 o+L+\left\lceil\frac{m}{w}\right\rceil \cdot \max (o, g)
$$

- Occupation on the sender and on the receiver:

$$
o+L+\left(\left\lceil\frac{m}{w}\right\rceil-1\right) \cdot \max (o, g)
$$

The LogP model $\left[\mathrm{CKP}^{+} 96\right]$ is defined by 4 parameters:

- L is the network latency
- O is the middleware overhead (message splitting and packing, buffer management, connection, ...) for a message of size w
- g is the gap (the minimum time between two packets communication) between two messages of size w
- P is the number of processors/modules

- Sending m bytes with packets of size w :

$$
2 o+L+\left\lceil\frac{m}{w}\right\rceil \cdot \max (o, g)
$$

- Occupation on the sender and on the receiver:

$$
o+L+\left(\left\lceil\frac{m}{w}\right\rceil-1\right) \cdot \max (o, g)
$$

LogGP \& pLogP

The previous model works fine for short messages. However, many parallel machines have special support for long messages, hence a higher bandwidth. LogGP [AISS97] is an extension of LogP:
G captures the bandwidth for long messages:
short messages $20+L+\left\lceil\frac{m}{w}\right\rceil \cdot \max (o, g)$
long messages $20+L+(m-1) G$
There is no fundamental difference. . .
OK, it works for small and large messages. Does it work for averagesize messages ? pLogP [KBVO0] is an extension of LogP when L, o and g depends on the message size m. They also have introduced a distinction between o_{s} and o_{r}. This is more and more precise but concurency is still not taken into account.

Bandwidth as a Function of Message Size

Parallel Algorithms
A. Legrand

P2P

 Communication HockneyLogP and Friends
TCP
Modeling Concurency
Multi-port
Single-port (Pure and Full) Duplex) Flows

Imperfection
Topology
A Few Examples
Virtual Topologies

With the Hockney model: $\frac{m}{L+m / B}$.

MPICH, TCP with Gigabit Ethernet

Bandwidth as a Function of Message Size

Parallel Algorithms
A. Legrand

P2P

 Communication HockneyLogP and Friends
TCP
Modeling Concurency
Multi-port
Single-port (Pure and Full) Duplex) Flows

Imperfection
Topology
A Few Examples Virtual Topologies

With the Hockney model: $\frac{m}{L+m / B}$.

MPICH, TCP with Gigabit Ethernet

What About TCP-based Networks?

The previous models work fine for parallel machines. Most networks use TCP that has fancy flow-control mechanism and slow start. Is it valid to use affine model for such networks?
The answer seems to be yes but latency and bandwidth parameters have to be carefully measured [LQDB05].

- Probing for $m=1 \mathrm{~b}$ and $m=1 \mathrm{Mb}$ leads to bad results.
- The whole middleware layers should be benchmarked (theoretical latency is useless because of middleware, theoretical bandwidth is useless because of middleware and latency).
The slow-start does not seem to be too harmful.
Most people forget that the round-trip time has a huge impact on the bandwidth.

Outline

Parallel
Algorithms
A. Legrand

P2P

Communication
Hockney
LogP and
Friends
TCP
Modeling Concurency
Multi-port
Single-port
(Pure and Full Duplex)
Flows
Imperfection
Topotogy
A Few Examples

Virtual

Topologies
(5) Point to Point Communication Models

- Hockney
- LogP and Friends
- TCP
(6) Modeling Concurency
- Multi-port
- Single-port (Pure and Full Duplex)
- Flows
(7) Remind This is a Model, Hence Imperfect
(8) Topology
- A Few Examples
- Virtual Topologies

Multi-ports

- A given processor can communicate with as many other processors as he wishes without any degradation.
- This model is widely used by scheduling theoreticians (think about all DAG with commmunications scheduling problems) to prove that their problem is hard and to know whether there is some hope to prove some clever result or not.
This model is borderline, especially when allowing duplication, when one communicates with everybody at the same time, or when trying to design algorithms with super tight approximation ratios.
Frankly, such a model is totally unrealistic.
- Using MPI and synchronous communications, it may not be an issue. However, with multi-core, multi-processor machines, it cannot be ignored...

Multi-port
(numbers in s)

Bounded Multi-port

- Assume now that we have threads or multi-core processors. We can write that sum of the throughputs of all communications (incomming and outgoing). Such a model is OK for wide-area communications [HP04].
- Remember, the bounds due to the round-trip-time must not be forgotten!

Multi-port (β)
(numbers in Mb / s)

Single-port (Pure)

- A process can communicate with only one other process at a time. This constraint is generally written as a constraint on the sum of communication times and is thus rather easy to use in a scheduling context (even though it complexifies problems).
- This model makes sense when using non-threaded versions of communication libraries (e.g., MPI). As soon as you're allowed to use threads, bounded-multiport seems a more reasonnable option (both for performance and scheduling complexity).

1-port (pure) (numbers in s)

Single-port (Full-Duplex)

At a given time, a process can be engaged in at most one emission and one reception. This constraint is generally written as two constraints: one on the sum of incomming communication times and one on the sum of outgoing communication times.

Single-port (Full-Duplex)

Parallel Algorithms

This model somehow makes sense when using networks like Myrinet that have few multiplexing units and with protocols without control flow [Mar07].

Myrinet		
$\bullet{ }_{(3.7)} / 2 \rightarrow \bullet^{1}<K_{(3.7)}^{2} \bullet^{2}$ $12 \mathrm{~b}$	$\begin{gathered} \bullet^{0}</ 2-{ }_{(3.4)}^{\bullet}-{ }_{(4)}^{2}>\bullet^{2} \\ 13 \mathrm{~b} \end{gathered}$	$\begin{gathered} \bullet^{0}-(1.9) \\ 14 \mathrm{~b} \end{gathered}$
$\begin{gathered} \bullet_{(3.6)}^{0}-2 \rightarrow \bullet^{1} \underset{(1.9)}{\leftarrow} \bullet^{2} \\ 15 \mathrm{~b} \end{gathered}$	$\begin{gathered} \bullet 0 \leftarrow / 2-\bullet_{(3.3)}{ }^{1} \underset{(2.2)}{ } \bullet^{2} \\ 16 \mathrm{~b} \end{gathered}$	$\begin{gathered} \bullet_{(1.9)}^{0}-2 \rightarrow \bullet^{1} \underset{(1)}{\longrightarrow} \bullet^{2} \\ 17 \mathrm{~b} \end{gathered}$

Even if it does not model well complex situations, such a model is not harmfull.

Fluid Modeling

Parallel
Algorithms
A. Legrand

P2P
Communication
Hockney
LogP and Friends TCP

Modeling Concurency Multi-port Single-port (Pure and Ful) Duple
Flows
Imperfection
Topology
A Few Examples
Virtual
Topologies

When using TCP-based networks, it is generally reasonnable to use flows to model bandwidth sharing [MR99, Low03].

$$
\sum_{r \in \mathcal{R} \text { s.t. }}^{\forall I \in \mathcal{L},} \varrho_{r} \leqslant c_{l} \quad \text { Income Maximization maximize } \sum_{r \in \mathcal{R}} \varrho_{r}
$$

Proportional Fairness maximize $\sum_{r \in \mathcal{R}} \log \left(\varrho_{r}\right)$

Potential Delay Minimization minimize $\sum_{r \in \mathcal{R}} \frac{1}{\varrho_{r}}$
Some weird function minimize $\sum_{r \in \mathcal{R}} \arctan \left(\varrho_{r}\right)$

Fluid Modeling

Parallel Algorithms
A. Legrand

When using TCP-based networks, it is generally reasonnable to use flows to model bandwidth sharing [MR99, Low03].

$$
\begin{array}{ll}
\forall I \in \mathcal{L}, & \text { Income Maximization maximize } \sum_{r \in \mathcal{R}} \varrho_{r} \\
\sum_{r \in \mathcal{R} \text { s.t. }} \varrho_{r} \leqslant c_{l} \quad \text { Max-Min Fairness maximize } \min _{r \in \mathcal{R}} \varrho_{r} \text { ATM }
\end{array}
$$

Proportional Fairness maximize $\sum_{r \in \mathcal{R}} \log \left(\varrho_{r}\right)$
TCP Vegas
Potential Delay Minimization minimize $\sum_{r \in \mathcal{R}} \frac{1}{\varrho_{r}}$
Some weird function minimize $\sum_{r \in \mathcal{R}} \arctan \left(\varrho_{r}\right)$ TCP Reno

Flows Extensions

- Note that this model is a multi-port model with capacity-constraints (like in the previous bounded multi-port).
- When latencies are large, using multiple connections enables to get more bandwidth. As a matter of fact, there is very few to loose in using multiple connections...
- Therefore many people enforce a sometimes artificial (but less intrusive) bound on the maximum number of connections per link [Wag05, MYCR06].

Outline

Communication
Hockney
LogP and
Friends TCP

Modeling
Concurency
Multi-port
Single-port
(Pure and Full Duplex)
Flows
Imperfection

Topology

A Few Examples Virtual
Topologies
(5) Point to Point Communication Models

- Hockney
- LogP and Friends
- TCP
(6) Modeling Concurency
- Multi-port
- Single-port (Pure and Full Duplex)
- Flows
(7) Remind This is a Model, Hence Imperfect
(8) Topology
- A Few Examples
- Virtual Topologies

Remind This is a Model, Hence Imperfect

- The previous sharing models are nice but you generally do not know other flows...
- Communications use the memory bus and hence interfere with computations. Taking such interferences into account may become more and more important with multi-core architectures.
- Interference between communications are sometimes. . . surprising.

Modeling is an art. You have to know your platform and your application to know what is negligeable and what is important. Even if your model is imperfect, you may still derive interesting results.

Outline

Parallel Algorithms

P2P
Communication
Hockney
LogP and
Friends
TCP
Modeling
Concurency
Multi-port
Single-port
(Pure and Full Duplex) Flows

Imperfection
Topology
A Few Examples Virtual Topologies
(5) Point to Point Communication Models

- Hockney
- LogP and Friends
- TCP

6 Modeling Concurency

- Multi-port
- Single-port (Pure and Full Duplex)
- Flows
(7) Remind This is a Model, Hence Imperfect
(8) Topology
- A Few Examples
- Virtual Topologies

Various Topologies Used in the Litterature

Parallel Algorithms
A. Legrand

P2P

Communication
Hockney
LogP and
Friends
TCP
Modeling
Concurency
Multi-port
Single-port
(Pure and Full Duptex) Flows
Imperfection
Topology
A Few Examples
Virtual
Topologies

Beyond MPI_Comm_rank()?

- So far, MPI gives us a unique number for each processor
- With this one can do anything
- But it's pretty inconvenient because one can do anything with it
- Typically, one likes to impose constraints about which processor/process can talk to which other processor/process
- With this constraint, one can then think of the algorithm in simpler terms
- There are fewer options for communications between processors
- So there are fewer choices to implementing an algorithm

Virtual Topologies?

- MPI provides an abstraction over physical computers
- Each host has an IP address
- MPI hides this address with a convenient numbers
- There could be multiple such numbers mapped to the same IP address
- All "numbers" can talk to each other
- A Virtual Topology provides an abstraction over MPI
- Each process has a number, which may be different from the MPI number
- There are rules about which "numbers" a "number" can talk to
- A virtual topology is defined by specifying the neighbors of each process

Impiementıng a Vırtual Topology

$(\mathrm{i}, \mathrm{j})=\left(\mathrm{floor}(\log 2(\right.$ rank +1$))$, rank $\left.-2^{\text {max }(i, 0)}+1\right)$
rank $=\mathrm{j}-1+2^{\text {max }(i, 0)}$

impiementıng a Vırtual Topology

$(\mathrm{i}, \mathrm{j})=\left(\mathrm{floor}(\log 2(\right.$ rank +1$))$, rank $\left.-2^{\text {max }(i, 0)}+1\right)$
rank $=\mathrm{j}-1+2^{\text {max }(i, 0)}$
my_parent $(\mathrm{i}, \mathrm{j})=(\mathrm{i}-1$, floor($\mathrm{j} / 2)$)
my_left_child $(\mathrm{i}, \mathrm{j})=\left(\mathrm{i}+1, \mathrm{j}^{*} 2\right)$, if any my_right_child $(\mathrm{i}, \mathrm{j})=(\mathrm{i}+1, j * 2+1)$, if any

impiementıng a Vırtual Topology

$(\mathrm{i}, \mathrm{j})=\left(\mathrm{floor}(\log 2(\operatorname{rank}+1))\right.$, rank $\left.-2^{\max (i, 0)}+1\right)$
rank $=j-1+2^{\max (i, 0)}$
my_parent $(\mathrm{i}, \mathrm{j})=(\mathrm{i}-1$, floor($\mathrm{j} / 2)$)
my_left_child $(\mathrm{i}, \mathrm{j})=(\mathrm{i}+1, \mathrm{j} * 2)$, if any my_right_child $(\mathrm{i}, \mathrm{j})=(\mathrm{i}+1, \mathrm{j} * 2+1)$, if any

MPI_Send(..., rank(my_parent(i,j)), ...)
MPI_Recv(..., rank(my_left_child(i,j)), ...)

Typical Topologies

- Common Topologies (see Section 3.1.2)
- Linear Array
- Ring
- 2-D grid
- 2-D torus
- One-level Tree
- Fully connected graph
- Arbitrary graph
- Two options for all topologies:
- Monodirectional links: more constrained but simpler
- Bidirectional links: less constrained but potential more complicated
" By "complicated" we typically mean more bug-prone
- We'll look at Ring and Grid in detail Courtesy of Heni Casanova | $68 / 272$ |
| :---: |

Main Assumption and Big Question

- The main assumption is that once we've defined the virtual topology we forget it's virtual and write parallel algorithms assuming it's physical
" We assume communications on different (virtual) links do not interfere with each other
- We assume that computations on different (virtual) processors do not interfere with each other
- The big question: How well do these assumptions hold?
- The question being mostly about the network
" Two possible "bad" cases
- Case \#1: the assumptions do not hold and there are interferences
- We'll most likely achieve bad performance
- Our performance models will be broken and reasoning about performance improvements will be difficult
- Case \#2: the assumptions do hold but we leave a lot of the network resources unutilized
- We could perhaps do better with another virtual topødæछgy of Henri Casanova

VVhich Virtual Iopology to

 Pick- We will see that some topologies are really well suited to certain algorithms
- The question is whether they are well-suite to the underlying architecture
- The goal is to strike a good compromise
- Not too bad given the algorithm
- Not too bad given the platform
- Fortunately, many platforms these days use switches, which support naturally many virtual topologies
- Because they support concurrent communications between disjoint pairs of processors
- As part of a programming assignment, you will explore whether some virtual topology makes sense on our cluster

Iopologies and vata Distribution

- One of the common steps when writing a parallel algorithm is to distribute some data (array, data structure, etc.) among the processors in the topology
- Typically, one does data distribution in a way that matches the topology
- E.g., if the data is 3-D, then it's nice to have a 3-D virtual topology
- One question that arises then is: how is the data distributed across the topology?
- In the next set of slides we look at our first topology: a ring

Broadcast

Part III

Communications on a Ring

Outline

Parallel Algorithms
A. Legrand

Assumptions

(9) Assumptions

Broadcast
Scatter
All-to-All
(10) Broadcast

Broadcast: Going Faster
(11) Scatter
(12) All-to-All
(13) Broadcast: Going Faster

Parallel
Algorithms
A. Legrand

Ring Topology (Section 3.3)

- Each processor is identified by a rank
- MY_NUM()
- There is a way to find the total number of processors
- NUM_PROCS()
- Each processor can send a message to its successor
- SEND(addr, L)
- And receive a message from its predecessor
- RECV(addr, L)
- We'll just use the above pseudocode rather than MPI
- Note that this is much simpler than the example tree topology we saw in the previous set of slideturresy of Henri Casanova

Virtual vs. Physical Topology

- Now that we have chosen to consider a Ring topology we "pretend" our physical topology is a ring topology
- We can always implement a virtual ring topology (see previous set of slides)
- And read Section 4.6
- So we can write many "ring algorithms"
- It may be that a better virtual topology is better suited to our physical topology
- But the ring topology makes for very simple programs and is known to be reasonably good in practice
- So it's a good candidate for our first look at parallel algorithms

Cost of communication (Sect. 3.2.1)

- It is actually difficult to precisely model the cost of communication
- E.g., MPI implementations do various optimizations given the message sizes
- We will be using a simple model

$$
\text { Time }=\mathrm{L}+\mathrm{m} / \mathrm{B}
$$

L: start-up cost or latency
B : bandwidth $\quad(b=1 / B)$
m: message size

- We assume that if a message of length m is sent from P_{0} to P_{q}, then the communication cost is $q(L$ +mb)
- There are many assumptions in our model, some not very realistic, but we'll discuss them later

Assumptions about Communications

- Several Options
- Both Send() and Recv() are blocking
- Called "rendez-vous"
- Very old-fashioned systems
- $\operatorname{Recv}()$ is blocking, but Send() is not
- Pretty standard
- MPI supports it
- Both Recv() and Send() are non-blocking
- Pretty standard as well
- MPI supports it

Assumptions about

 Concurrency-One question that's important is: can the processor do multiple things at the same time?

- Typically we will assume that the processor can send, receive, and compute at the same time
- Call MPI_IRecv()

Call MPI_ISend()

- Compute something
- This of course implies that the three operations are independent
- E.g., you don't want to send the result of the computation
- E.g., you don't want to send what you're receiving (forwarding)
- When writing parallel algorithms (in pseudo-code), we'll simply indicate concurrent activities with a || sign

Collective Communications

- To write a parallel algorithm, we will need collective operations
- Broadcasts, etc.
- Now MPI provide those, and they likely:
- Do not use the ring logical topology
- Utilize the physical resources well
- Let's still go through the exercise of writing some collective communication algorithms
- We will see that for some algorithms we really want to do these communications "by hand" on our virtual topology rather than using the MPI collective

Outline

Parallel Algorithms
A. Legrand

Assumptions
(9) Assumptions

Broadcast
Scatter
All-to-All
(10) Broadcast

Broadeast: Going Faster
(11) Scatter
(12) All-to-All
(13) Broadcast: Going Faster

Broadcast (Section 3.3.1)

- We want to write a program that has P_{k} send the same message of length m to all other processors

Broadcast(k,addr,m)

- On the ring, we just send to the next processor, and so on, with no parallel communications whatsoever
- This is of course not the way one should implement a broadcast in practice if the physical topology is not merely a ring
- MPI uses some type of tree topology

Parallel
Algorithms
A. Legrand

Broadcast

Broadcast (Section 3.3.1)

```
Brodcast (k,addr,m)
        q = MY_NUM()
        p = NUM_PROCS()
        if (q == k)
        SEND (addr,m)
    else
        if (q == k-1 mod p)
            RECV (addr,m)
            else
            RECV (addr,m)
            SEND (addr,m)
        endif
    endif
```

- Assumes a blocking receive
- Sending may be non-blocking
- The broadcast time is
$(p-1)(L+m b)$

Outline

Parallel
Algorithms
A. Legrand

Assumptions
9) Assumptions

Broadcast
Scatter
All-to-All
(10) Broadcast

Broadcast: Going Faster

\square $-$

(11) Scatter
(12) All-to-All
(13) Broadcast: Going Faster

- Processor k sends a different message to all other processors (and to itself)
- P_{k} stores the message destined to P_{q} at address addr[q], including a message at addr[k]
- At the end of the execution, each processor holds the message it had received in msg
- The principle is just to pipeline communication by starting to send the message destined to $\mathrm{P}_{\mathrm{k}-1}$, the most distant processor

Parallel
Algorithms
A. Legrand

Scatter ($k, m s g$, addr, m) $q=M Y _N U M()$
$p=N U M _P R O C S()$
if ($q==k$)
for $i=0$ to $p-2$
SEND (addr [k+p-1-i mod $p], m)$
$m s g \leftarrow a d d r[k]$
else
RECV (tempR, L)
for $i=1$ to $k-1-q$ niod p tempS \leftrightarrow tempR
SEND (tempS,m) | / RECV (tempR,m)
$m s g \leftarrow t e m p R$

Parallel Algorithms
A. Legrand

Scatter
All-to-All
Broadcast: Going Faster

 Scatter ($k, m s g, a d d r, m$)
 $$
k=2, p=4
$$

$q=M Y_{-} N U M()$
$p=N U M _P R O C S$ ()
if ($q==k$) for $i=0$ to $p-2$

SEND $(a d d r[k+p-1-i \bmod p], m)$ $m s g \leftarrow \operatorname{addr}[k]$
else
RECV (tempR, L) for $i=1$ to $k-1-q \bmod p$
temps \leftrightarrow tempR
SEND (tempS,m) || RECV (tempR,m) $m s g \leftarrow t e m p R$

2

Proc $q=2$

$$
\begin{aligned}
& \text { send } \operatorname{addr}[2+4-1-0 \% 4=1] \\
& \text { send } \operatorname{addr}[2+4-1-1 \% 4=0] \\
& \text { send } \operatorname{addr}[2+4-1-2 \% 4=3] \\
& \mathrm{msg}=\operatorname{addr}[2] \\
& \text { recv (addr[1]) } \\
& \text { // loop } 2-1-3 \% 4=2 \text { times } \\
& \text { send (addr[1]) }|\mid \text { recv (addr[0]) } \\
& \text { send (addr[0]) || recv (addr[3]) } \\
& \text { msg }=\operatorname{addr}[3]
\end{aligned}
$$

Proc $q=3$

Proc $q=0$
recv (addr[1])
// loop 2-1-2 \% 4 = 1 time send (addr[1]) || recv (addr[0])
$\mathrm{msg}=\operatorname{addr}[0]$
Proc $q=1$
// loop 2-1-1 \% $4=0$ time
recv (addr[1])
$\mathrm{msg}=\operatorname{addr}[1]$

Outline

Parallel Algorithms
A. Legrand

Assumptions
9) Assumptions

Broadcast
Scatter
All-to-All
(10) Broadcast
(11) Scatter
(12) All-to-All
(13) Broadcast: Going Faster

Parallel
Algorithms
A. Legrand

Same execution time as the scatter

$$
(p-1)(L+m b)
$$

All2All (my_addr, addr, m) $q=M Y _N U M()$
$p=N U M _P R O C S()$
addr[q] \leftarrow my_addr
for $i=1$ to $p-1$
SEND (addr $[q-i+1 \bmod p], m)$
| | $\operatorname{RECV}(a d d r[q-i \bmod p], m)$

Outline

Parallel Algorithms
A. Legrand

Assumptions
(9) Assumptions

Broadcast
Scatter
All-to-All
Broadcast: Going Faster
(10) Broadcast
(11) Scatter
(12) All-to-All
(13) Broadcast: Going Faster

A faster broadcast?

- How can we improve performance?
- One can cut the message in many small pieces, say in r pieces where m is divisible by r.
- The root processor just sends r messages
- The performance is as follows
- Consider the last processor to get the last piece of the message
- There need to be p-1 steps for the first piece to arrive, which takes $(p-1)(L+m b / r)$
- Then the remaining r-1 pieces arrive one after another, which takes $(r-1)(L+m b / r)$
- For a total of: $(p-2+r)(L+m b / r)$

A faster broadcast?

- The question is, what is the value of r that minimizes

$$
(p-2+r)(L+m b / r) ?
$$

- One can view the above expression as (c+ar)(d+b/r), with four constants a, b, c, d
- The non-constant part of the expression is then ad.r + cb / r, which must be minimized
- It is known that this value is minimized for
sqrt(cb / ad)
and we have

$$
r_{\mathrm{opt}}=\operatorname{sqrt}(m(p-2) b / L)
$$

with the optimal time

$$
(\operatorname{sqrt}((p-2) L)+\operatorname{sqrt}(m b))^{2}
$$

which tends to mb when m is large, which is independent of p !

Well-known Network Principle

- We have seen that if we cut a (large) message in many (small) messages, then we can send the message over multiple hops (in our case p-1) almost as fast as we can send it over a single hop
- This is a fundamental principle of IP networks
- We cut messages into IP frames
- Send them over many routers
- But really go as fast as the slowest router

Part IV

Algorithms on a Ring

Outline

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP
Version
First MP
Version
Distributing
Matrices
Second MPI
Version
Third MP4
Version
Mixed
Paraileilism
Version
Matrix
Multiplication
Stencil
Application
Principle
Greedy Version
Reducing the Granularity

LU Factorization Gaussian Elimination
(14) Matrix Vector Product

- Open MP Version
- First MPI Version
- Distributing Matrices
- Second MPI Version
- Third MPI Version
- Mixed Parallelism Version
(15) Matrix Multiplication
(16) Stencil Application
- Principle
- Greedy Version
- Reducing the Granularity
(17) LU Factorization
- Gaussian Elimination
- LU

Parallel Algorithms
A. Legrand

- How do we do this in parallel?

Section 4.1 in the book

```
int a[n][n];
int x[n];
for i = 0 to n-1 i
    y[i] = 0;
    for j = 0 to n-1
            y[i] = y[i] + a[i,j] * x[j];
}
```


- How do we do this in parallel?
- For example:
- Computations of elements of vector y are independent
- Each of these computations requires one row of matrix a and vector x
- In shared-memory:

```
#pragma omp parallel for private(i,j)
for i = 0 to n-1 i
    y[i] = 0;
    for j = 0 to n-1
        y[i] = y[i] + a[i,j] * x[j];
}
```


Parallel Matrix-Vector product

- How do we do this in parallel?
- For example:
- Computations of elements of vector y are independent
- Each of these computations requires one row of matrix a and vector x
- In shared-memory:
\#pragma omp parallel for private (i,j)
for $i=0$ to $n-1 i$
$y[i]=0$;
for $j=0$ to $n-1$ $y[i]=y[i]+a[i, j]$ * $x[j] ;$

- Therefore, the code can just be

```
load(a); load(x)
p = NUM_PROCS(); r = MY_RANK();
for (i=r*n/p; i<(r+1)*n/p; i++) {
    for (j=0;j<n;j++)
    y[i-r*n/p] = a[i][j] * x[j];
}
```

- It's embarrassingly parallel
- What about the result?

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP
First MPI Version
Distributing Matrices
Second MPI Second MPI
Version
Thitid MPI Third MPt
Version Version Mixed Parallelism Version
Matrix Multiplication

Stencil Application
Principle
Greedy Version
Reducing the Granularity

LU Factorization Gaussian Etiminarion

What about the result?

- After the processes complete the computation, each process has a piece of the result
- One probably wants to, say, write the result to a file
- Requires synchronization so that the I/O is done correctly
- For example

```
if (r != 0) f
    recv(&token,1);
}
open(file, "append");
for ( }j=0;j<n/p; j++
    write(file, y[j]);
send(&token,1);
close(file)
barrier(); // optional
```

" Could also use a "gather" so that the entire vector is returned to processor 0

- vector y fits in the memory of a single node

What if matrix a is too big?

- Matrix a may not fit in memory
- Which is a motivation to use distributed memory implementations
- In this case, each processor can store only a piece of matrix a
- For the matrix-vector multiply, each processor can just store n / p rows of the matrix
- Conceptually: $\mathrm{A}[\mathrm{n}][\mathrm{n}]$
- But the program declares $a[n / p][n]$
- This raises the (annoying) issue of global indices versus local indices

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI

Distributing Matrices


```
Global: A[5][3]
Local: a[1][3] on process P1
a[i,j] = A[(n/p)*rank +i][j]
```

- Real-world parallel code often implements actual translation functions
- GlobalToLocal()
- LocalToGlobal()
- This may be a good idea in your code, although for the ring topology the computation is pretty easy, and writing functions may be overkill
- We'll see more complex topologies with more complex associated data distributions and then it's probably better to implement such functions

Distributions of arrays

- At this point we have
- 2-D array a distributed
- 1-D array y distributed
- 1-D array x replicated
- Having distributed arrays makes it possible to partition work among processes
- But it makes the code more complex due to global/local indices translations
- It may require synchronization to load/save the array elements to file

All vector distributed?

- So far we have array x replicated
- It is usual to try to have all arrays involved in the same computation be distributed in the same way
- makes it easier to read the code without constantly keeping track of what's distributed and what's not
" e.g., "local indices for array y are different from the global ones, but local indices for array x are the same as the global ones" will lead to bugs
- What one would like it for each process to have
- N/n rows of matrix A in an array a[n/p][n]
- N/n components of vector x in an array $x[n / p]$
- N/n components of vector y in an array $y[n / p]$
- Turns out there is an elegant solution to do this

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version
Distributing
Second MPI
Version
Third MPI
Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil
Application
Principle
Greedy Version Reducing the Granularity LU Factorization Gaussian Elimination

- Principle of the Algorithm

$$
\begin{aligned}
& \begin{array}{llllll}
& P_{2} & \left.\begin{array}{lllll}
A_{40} & A_{41} & A_{42} & A_{43} & A_{44} \\
A_{50} & A_{55} & A_{46} & A_{54} & A_{52} \\
A_{53} & A_{54} & A_{55} & A_{56} & A_{5}
\end{array}\right]
\end{array} \quad\binom{x_{4}}{x_{5}} \\
& \begin{array}{llll}
\\
P_{3} & \left.\begin{array}{llll}
A_{60} & A_{61} & A_{62} & A_{63} \\
A_{70} & A_{64} & A_{65} & A_{66} \\
A_{72} & A_{72} & A_{73} & A_{74} \\
A_{75} & A_{76} & A_{7}
\end{array}\right)
\end{array}\binom{x_{6}}{x_{7}}
\end{aligned}
$$

Initial data distribution
for:

$$
\begin{aligned}
& n=8 \\
& p=4 \\
& n / p=2
\end{aligned}
$$

P_{0}	$\left(\begin{array}{llllllll}\mathrm{A}_{00} \mathrm{~A}_{01} & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \mathrm{~A}_{10} \mathrm{~A}_{11} & \bullet & \bullet & \bullet & \bullet & \bullet\end{array}\right)$	$\binom{x_{0}}{x_{1}} \longleftarrow$
P_{1}		$\binom{x_{2}}{x_{3}}$
P_{2}		$\binom{x_{4}}{x_{5}}$
P_{3}		$\binom{x_{6}}{x_{7}} \longrightarrow$

Step 0

P_{0}	$\left(\begin{array}{lllllllll}\bullet & \bullet & \bullet & \bullet & \bullet & \mathrm{A}_{06} \mathrm{~A}_{07} \\ \bullet & \bullet & \bullet & \bullet & \mathrm{~A}_{16} \mathrm{~A}_{17}\end{array}\right)$	$\binom{x_{6}}{x_{7}} \longleftrightarrow$
P_{1}	$\left(\begin{array}{llllllll}\mathrm{A}_{20} \mathrm{~A}_{21} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \mathrm{~A}_{30} \mathrm{~A}_{31} & \bullet & \bullet & \bullet & \bullet & \bullet\end{array}\right)$	$\binom{x_{0}}{x_{1}}$
P_{2}	$\left(\begin{array}{lllllllll}\bullet & \mathrm{A}_{42} & \mathrm{~A}_{43} & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \mathrm{~A}_{52} \mathrm{~A}_{53} & \bullet & \bullet & \bullet & \bullet\end{array}\right)$	$\binom{x_{2}}{x_{3}}$
P_{3}		$\binom{x_{4}}{x_{5}} \square$

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Fersion
MPI Distributing

Second MPI Version
Third MPP

Parallelism
Matrix Multiplication
Stencil
Application Principle Greedy Version Reducing the Granularity

The final exchange of vector x is not strictly necessary, but one may want to have it distributed as the end of the computation like it was distributed at the beginning.

Final state

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version Distributing Second MPI Version

Algorithm

- Uses two buffers
- tempS for sending and tempR to receiving

```
float A[n/p][n], x[n/p], y[n/p];
r}\leftarrown/
tempS \leftarrowx /* My piece of the vector (n/p elements) */
for (step=0; step<p; step++) { /* p steps */
    SEND (tempS, r)
    RECV (tempR, r)
    for (i=0; i<n/p; i++)
            for (j=0; j <n/p; j++)
            y[i] \leftarrowy[i] + a[i,(rank - step mod p) * n/p + j] * tempS[j]
        tempS \leftrightarrow tempR
}
```

- In our example, process of rank 2 at step 3 would work with the 2×2 matrix block starting at column ($(2-3)$ mod 4$) * 8 / 4$ $=3 * 8 / 4=6$;

A few General Principles

- Large data needs to be distributed among processes (running on different nodes of a cluster for instance)
- causes many arithmetic expressions for index computation
- People who do this for a leaving always end up writing local_to_global() and global_to_local() functions
- Data may need to be loaded/written before/after the computation
- requires some type of synchronization among processes
- Typically a good idea to have all data structures distributed similarly to avoid confusion about which indices are global and which ones are local
- In our case, all indices are local
- In the end the code looks much more complex than the equivalent OpenMP implementatianstresy of Heni Casanova
- There are p identical steps
- During each step each processor performs three activities: computation, receive, and sending
- Computation: r^{2} w
- w: time to perform one $+=$ * operation
- Receiving: $L+r b$
- Sending: L + rb

$$
T(p)=p\left(r^{2} w+2 L+2 r b\right)
$$

- $T(p)=p\left(r^{2} w+2 L+2 r b\right)$
- Speedup(p) $=n^{2} w / p\left(r^{2} w+2 L+2 r b\right)$

$$
=n^{2} w /\left(n^{2} w / p+2 p L+2 n b\right)
$$

- $\operatorname{Eff}(p)=n^{2} w /\left(n^{2} w+2 p^{2} L+2 p n b\right)$
- For p fixed, when n is large, Eff(p) ~ 1
- Conclusion: the algorithm is asymptotically optimal
- which:
- has the same asymptotic performance
- is a simpler algorithm
- wastes only a tiny little bit of memory
- is arguably much less elegant
- It is important to think of simple solutions and see what works best given expected matrix size, etc.

Parallel Algorithms
A. Legrand

```
float A[n/p][n], x[n/p], y[n/p];
```

$r \leftarrow n / p$
tempS $\leftarrow x \quad / *$ My piece of the vector (n / p elements) */
for (step=0; step<p; step++) \{ /* p steps */
SEND (tempS, r)
RECV (tempR, x)
for ($i=0 ; i<n / p ; i++$)
for $(j=0 ; j<n / p ; j++)$
$y[i] \leftarrow y[i]+a[i,(\operatorname{rank}-s t e p \bmod p) * n / p+j] * t e m p S[j]$
tempS \leftrightarrow tempR
\}

- In the above code, at each iteration, the SEND, the RECV, and the computation can all be done in parallel
- Therefore, one can overlap communication and computation by using non-blocking SEND and RECV if available
- MPI provides MPI_ISend() and MPI_IRecv() for this purpose

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version Distributing Matrices
Second MPI

Third MPI Version
Mixed
Parallelism Version

Matrix Multiplication

Stencil Application
Principle
Greedy Version Reducing the Granularity LU Factorization Gaussian
Elimination

Nore Concurrent Algorithm

- Notation for concurrent activities:

```
```

float A[n/p][n], x[n/p], y[n/p];

```
```

float A[n/p][n], x[n/p], y[n/p];
tempS \leftarrow x /* My piece of the vector (n/p elements) */
tempS \leftarrow x /* My piece of the vector (n/p elements) */
r}\leftarrown/
r}\leftarrown/
for (step=0; step<p; step++) { /* p steps */
for (step=0; step<p; step++) { /* p steps */
SEND (tempS,r)
SEND (tempS,r)
|| RECV(tempR,r)
|| RECV(tempR,r)
|| for (i=0; i<n/p; i++)
|| for (i=0; i<n/p; i++)
for (j=0; j <n/p; j++)
for (j=0; j <n/p; j++)
y[i] \leftarrowy[i]+a[i,(rank-step mod p)*n/p+j]*tempS[j]
y[i] \leftarrowy[i]+a[i,(rank-step mod p)*n/p+j]*tempS[j]
tempS ↔ tempR
tempS ↔ tempR
}

```
```

}

```
```

$$
T(p)=p \max \left(r^{2} w, L+r b\right)
$$

Same asymptotic performance as above, but better performance for smaller values of n

Hybrid parallelism

- We have said many times that multi-core architectures are about to become the standard
- When building a cluster, the nodes you will buy will be multi-core
- Question: how to exploit the multiple cores?
- Or in our case how to exploit the multiple processors in each node
- Option \#1: Run multiple processes per node
- Causes more overhead and more communication
- In fact will cause network communication among processes within a node!
- MPI will not know that processes are colocated

OpenMP MPI Program

- Just write your MPI program
- Add OpenMP pragmas around loops
- Let's look back at our Matrix-Vector multiplication example

Parallel Algorithms
A. Legrand

- This is called Hybrid Parallelism
- Communication via the network among nodes
- Communication via the shared memory within nodes

Outline

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP
Version
First MP
Version
Distributing
Matrices
Second MP
Version
Third MPI
Version
Mixed
Parattelism
Version

Matrix

 MultiplicationStencil
Application
Principle
Greedy Version
Reducing the Granularity

LU Factorization
Gaussian
Elimination
LU
(14) Matrix Vector Product

- Open MP Version
- First MPI Version
- Distributing Matrices
- Second MPI Version
- Third MPI Version
- Mixed Parallelism Version
(15) Matrix Multiplication
(16) Stencil Application
- Principle
- Greedy Version
- Reducing the Granularity
(17) LU Factorization
- Gaussian Elimination
- LU

IVatrix IVIultıplıcatıon on the

 A. Legrand- See Section 4.2
- Turns out one can do matrix multiplication in a way very similar to matrix-vector multiplication
- A matrix multiplication is just the computation of n^{2} scalar products, not just n
- We have three matrices, A, B, and C
- We want to compute $\mathrm{C}=\mathrm{A} * \mathrm{~B}$
- We distribute the matrices to that each processor "owns" a block row of each matrix
- Easy to do if row-major is used because all matrix elements owned by a processor are contiguous in memory

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MP Version
Distributing
Matrices
Second MPI Version
Third MPI
Version
Mixed
Parallelism Version

Matrix
Multiplication
Stencil
Application
Principle
Greedy Version
Reducing the
Granularity
LU Factorization

Elimination

Data Distribution

Parallel Algorithms
A. Legrand

Matrix Vector Product Open MP Version First MPI Version
Distributing Matrice
Second MPI Version
Third MPI Third MP
Version Mixed Parallelism

Matrix

Multiplication

Parallel Algorithms
A. Legrand

Matrix Vector Product Open MP Version First MPI Version
Distributing Matrice
Second MPI
Version
Version Mixed Parallelism

Shifting of block rows of B

$$
p=4
$$

let's look at processor P_{q}

Second step

Parallel Algorithms
A. Legrand

Matrix Vector Product Open MP Version First MPI Version
Distributing Matrice Second MPI Version
Third MP! Third MP
Version Mixed Parallelism

$$
\begin{aligned}
& \quad \mathrm{p}=4 \\
& \text { let's look at } \\
& \text { processor } \mathrm{P}_{1}
\end{aligned}
$$

LU

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version Distributing Matrices Second MP| Version Third MPI Version Mixed Parallelism Version

Algorithm

- In the end, every Ci,j block has the correct value: $\mathrm{A}_{\mathrm{i}, \mathrm{B}} \mathrm{B}_{0, \mathrm{j}}+\mathrm{A}_{\mathrm{i}, 1} \mathrm{~B}_{1, \mathrm{j}}+$...
- Basically, this is the same algorithm as for matrix-vector multiplication, replacing the partial scalar products by submatrix products (gets tricky with loops and indices)

```
float A[N/p][N], B[N/p][N], C[N/p][N];
r}\leftarrowN/
tempS \leftarrowB
q}\leftarrowMY_RANK(
for (step=0; step<p; step++) { /* p steps */
        SEND (tempS, r*N)
    || RECV(tempR,r*N)
    |/ for (l=0; l<p; 1++)
        for (i=0; i<N/p; i++)
            for (j=0; j<N/p; j++)
            for (k=0; k<N/p; k++)
                C[i,l*r+j] \leftarrowC[i,l*r+j] + A[i,r((q - step) %p) +k] * tempS[k,l*r+j]
    tempS \leftrightarrow tempR
```

\}

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version Distributing Matrices Second MPI Version Third MPI Version
Mixed Parallelism Version

Matrix Multiplication

Stencil
Application
Principle
Greedy Version
Reducing the
Granularity
LU Factorization
Gaussian
Elimination
LU

Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND (tempS, r*N)
    || RECV(tempR,r*N)
    || for (l=0; l<p; l++)
        for (i=0; i<N/p; i++)
            for (j=0; j<N/p; j++)
            for (k=0; k<N/p; k++)
                C[i,lr+j] \leftarrowC[i,lr+j] + A[i,r((rank - step) %p) +k] * tempS[k,lr+j]
        tempS }\leftrightarrow temp
}
```



```
I=0
\(\mathrm{i}=0\)
\(j=0\)
```

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MP Version Distributing Matrice
Second MPI Version Third MPI Version
Mixed
Parallelism Version

Matrix
Multiplication
Stencil
Application
Principle
Greedy Version
Reducing the
Granularity
LU Factorization
Gaussian
Elimination

Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND (tempS,r*N)
    | | RECV (tempR,r*N)
    | f for (1=0; 1<p; 1++)
        for (i=0; i<N/p; i++)
            for (j=0; j<N/p; j++)
            for (k=0;k<N/p; k++)
                C[i,1r+j] \leftarrowC[i, 1r+j] + A[i,r((rank - step)%p)+k]* tempS[k,1r+j]
        tempS }\leftrightarrow\mathrm{ tempR
}
```



```
step \(=0\)
I=0
\(\mathrm{i}=0\)
j=*
```


Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MP Version Distributing Matrice
Second MPI Version Third MPI Version
Mixed
Parallelism Version

Matrix
Multiplication
Stencil
Application
Principle
Greedy Version
Reducing the
Granularity
LU Factorization
Gaussian
Elimination LU

4algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND (tempS, r*N)
    | | RECV (tempR, r*N)
    | f for (1=0; 1<p; 1++)
        for (i=0; i<N/p; i++)
            for (j=0; j<N/p; j++)
            for (k=0;k<N/p;k++)
                C[i,lr+j]\leftarrowC[i,lr+j] + A[i,r((rank - step)%p)+k]* tempS[k,lr+j]
        tempS }\leftrightarrow\mathrm{ tempR
}
```


step $=0$
I=0
i=*
j=*

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MP Version Distributing Matrice
Second MPI Version Third MPI Version
Mixed
Parallelism Version

Matrix
Multiplication
Stencil
Application
Principle
Greedy Version
Reducing the
Granularity
LU Factorization
Gaussian
Elimination LU

Aflgorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND (tempS, r*N)
    | | RECV (tempR, r*N)
    | f for (1=0; 1<p; 1++)
        for (i=0; i<N/p; i++)
            for (j=0; j<N/p; j++)
            for (k=0;k<N/p; k++)
                C[i,lr+j]\leftarrowC[i,lr+j] + A[i,r((rank - step)%p)+k]* tempS[k,lr+j]
        tempS }\leftrightarrow\mathrm{ tempR
}
```



```
step \(=0\)
I=1
i=*
j=*
```

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version
Distributing Matrices Second MPI Version Third MPI Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil
Application
Principle
Greedy Version Reducing the Granularity

LU Factorization Gaussian Elimination LU

Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND (tempS, r*N)
    | | RECV (tempR, r*N)
    | f for (1=0; 1<p; 1++)
        for (i=0; i<N/p; i++)
            for (j=0; j<N/p; j++)
            for (k=0;k<N/p; k++)
                C[i,lr+j]\leftarrowC[i,lr+j] + A[i,r((rank - step)%p)+k]* tempS[k,lr+j]
        tempS }\leftrightarrow\mathrm{ tempR
}
```


I=*
i=*
j=*

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version
Distributing Matrices
Second MPI Version Third MPI Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil
Application
Principle
Greedy Varsion Reducing the Granularity LU Factorization Gaussian Elimination LU

Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND (tempS, r*N)
    | | RECV (tempR, r*N)
    | f for (1=0; 1<p; 1++)
        for (i=0; i<N/p; i++)
            for (j=0; j<N/p; j++)
            for (k=0;k<N/p; k++)
                C[i,lr+j]\leftarrowC[i,lr+j] + A[i,r((rank - step)%p)+k]* tempS[k,lr+j]
        tempS }\leftrightarrow\mathrm{ tempR
}
```


I=*
i=*
j =*

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version
Distributing Matrices
Second MPI
Version
Third MPI
Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil
Application
Principle
Greedy Version Reducing the Granularity

LU Factorization Gaussian Elimination LU

\pm Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND (tempS, r*N)
    | | RECV (tempR, r*N)
    | f for (1=0; 1<p; 1++)
        for (i=0; i<N/p; i++)
            for (j=0; j<N/p; j++)
            for (k=0; k<N/p; k++)
                C[i,lr+j]\leftarrowC[i,lr+j] + A[i,r((rank - step)%p)+k]* tempS[k,lr+j]
        tempS }\leftrightarrow\mathrm{ tempR
}
```


I=*
i=*
j=*

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version
Distributing Matrices
Second MPI
Version
Third MPI
Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil
Application
Principle
Greedy Version Reducing the Granularity

LU Factorization Gaussian Elimination LU

\pm Algorithm

```
for (step=0; step<p; step++) { /* p steps */
    SEND (tempS, r*N)
    | | RECV (tempR, r*N)
    | f for (1=0; 1<p; 1++)
        for (i=0; i<N/p; i++)
            for (j=0; j<N/p; j++)
            for (k=0; k<N/p; k++)
                C[i,lr+j]\leftarrowC[i,lr+j] + A[i,r((rank - step)%p)+k]* tempS[k,lr+j]
        tempS }\leftrightarrow\mathrm{ tempR
}
```


I=*
i=*
j=*

Performance

- Performance Analysis is straightforward
- p steps and each step takes time: $\max \left(n r^{2} w, L+n r b\right)$
- prxr matrix products $=\mathrm{pr}^{3}=n r^{2}$ operations
- Hence, the running time is:
$\mathrm{T}(\mathrm{p})=\mathrm{p} \max \left(\mathrm{nr}^{2} \mathrm{w}, \mathrm{L}+\mathrm{nrb}\right)$
- Note that a naive algorithm computing n Matrix-vector products in sequence using our previous algorithm would take time $\mathrm{T}(\mathrm{p})=\mathrm{p} \max \left(\mathrm{nr}^{2} \mathrm{w}, \mathrm{nL}+\mathrm{nrb}\right)$
- We just saved network latencies!

Outline

(14) Matrix Vector Product

- Open MP Version
- First MPI Version
- Distributing Matrices
- Second MPI Version
- Third MPI Version
- Mixed Parallelism Version
(15) Matrix Multiplication
(16) Stencil Application
- Principle
- Greedy Version
- Reducing the Granularity

(17) LU Factorization

- Gaussian Elimination
- LU

stencıl Applıcatıon (Section

 A. Legrand- We've talked about stencil applications in the context of shared-memory programs

0	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

new = update(old,W,N)

- We found that we had to cut the matrix in "small" blocks
- On a ring the same basic idea applies, but let's do it step-by-step

|Stencil Application

- Let us, for now, consider that the domain is of size $\mathrm{n} \times \mathrm{n}$ and that we have $\mathrm{p}=\mathrm{n}$ processors
- Classic way to first approach a problem
- Each processor is responsible for computing one row of the domain (at each iteration)
- Each processor holds one row of the domain and has the following declaration:
var A: array[0..n-1] of real
- One first simple idea is to have each processor send each cell value to its neighbor as soon as that cell value is computed
- Basic principle: do communication as early as possible to get your "neighbors" started as early as possible
- Remember that one of the goals of a parallel program is to reduce idle time on the processors
- We call this algorithm the Greedy algorithm, and seek an evaluation of its performance

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP
Version
First MPI
Version
Distributing
Matrices
Second MPI
Version
Third MPI
Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil
Application
Principle
Greedy Version
Reducing the Granularity

LU Factorization Gaussian Elimination

The Greedy Algorithm

```
q = MY_NUM()
p = NUM_PROCS
if (q== 0) then
    A[0] = Update(A[0],nil,nil)
    Send(A[0],1)
else
    Recv(v,1)
    A[0] = Update(A[0],nil,v)
endif
for j= 1 to n-1
    if (q== 0) then
        A[j] = Update(A[j], A[j-1], nil)
        Send(A[j],1)
    elsif (q == p-1) then
            Recv(v,1)
        A[j] = Update(A[j], A[j-1],v)
    else
        Send(A[j-1], 1) || Recv(v,1)
        A[j] = Update(A[j],A[j-1],v)
    endif
endfor
```

First element of the row

Other elements
note the use of "nil" for borders and corners

harreay Algorithm

- This is all well and good, but typically we have $n>p$
- Assuming that p divides n, each processor will hold n / p rows
- Good for load balancing
- The goal of a greedy algorithm is always to allow processors to start computing as early as possible
- This suggests a cyclic allocation of rows among processors

P 0
P 1
P 2
P 0
P 1
P 2
P 0
P 1
P 2

- P1 can start computing after P0 has computed its firstresy cellenri Casanova

Greedy Algorithm

- Each processor holds n/p rows of the domain
- Thus it declares:

$$
\operatorname{var} \mathrm{A}[0 . . \mathrm{n} / \mathrm{p}-1, \mathrm{n}] \text { of real }
$$

- Which is a contiguous array of rows, with these rows not contiguous in the domain
- Therefore we have a non-trivial mapping between global indices and local indices, but we'll see that they don't appear in the code
- Let us rewrite the algorithm

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version
First MPI
Version
Distributing
Matrices
Second MPI
Version
Third MPI
Version
Mixed
Parallelism
Version
Matrix Multiplication

Stencil
Application
Principle
Greedy Version
Reducing the
Granularity
LU Factorization
Gaussian
Elimination

```
p = MY_NUM()
q = NUM_PROCS
For i = 0 to n/p-1
    if (q== 0) and (i== 0) then
        A[0,0] = Update(A[0,0],nil,nil)
        Send(A[0],1)
    else
        Recv(v,1)
        A[i,0] = Update(A[i,0],nil,v)
    endif
    for j = 1 to n-1
        if (q== 0) and ( }\textrm{i}===0)\mathrm{ then
                                A[i,j] = Update(A[i,j], A[i,j-1], nil)
            Send(A[i,j],1)
        elsif (q== p-1) and ( }i=n/p-1) the
                Recv(v,1)
                    A[i,j]= Update(A[i,j],A[i-1,j],v)
        else
                    Send(A[i,j-1], 1) || Recv(v,1)
                    A[i,j] = Update(A[i,j],A[i-1,j-1], v)
        endif
    endfor
endfor
```


1 Performance Analysis

- Let $T(n, p)$ denote the computation time of the algorithm for a nxn domain and with p processors
- A each step a processor does at most three things
- Receive a cell
- Send a cell
- Update a cell
- The algorithm is "clever" because at each step k, the sending of messages from step k is overlapped with the receiving of messages at step $k+1$
- Therefore, the time needed to compute one algorithm step is the sum of
- Time to send/receive a cell: L + b
- Time to perform a cell update: w
- So, if we can count the number of steps, we can simply multiply and get the overall execution time

|Performance Analysis

- It takes p-1 steps before processor $\mathrm{P}_{\mathrm{p}-1}$ can start computing its first cell
- Thereafter, this processor can compute one cell at every step
- The processor holds $n * n / p$ cells
- Therefore, the whole program takes: $\mathrm{p}-1+\mathrm{n} * \mathrm{n} / \mathrm{p}$ steps
- And the overall execution time:

$$
T(n, p)=\left(p-1+n^{2} / p\right)(w+L+b)
$$

- The sequential time is: $n^{2} w$
- The Speedup, $S(n, p)=n^{2} w / T(n, p)$
- When n gets large, $T(n, p) \sim n^{2} / p(w+L+b)$
- Therefore, Eff(n,p) ~ w / (w + L + b)
- This could be WAY below one
- In practice, and often, $L+b \gg$ w
- Therefore, this greedy algorithm is probably not a good idea at all!
- How do we improve on performance?
- What really kills performance is that we have to do so much communication
- Many bytes of data
- Many individual messages
- So we we want is to augment the granularity of the algorithm
" Our "tasks" are not going to be "update one cell" but instead "update multiple cells"
- This will allow us to reduce both the amount of data communicated and the number of messages exchanged

Reducing the Granularity

- A simple approach: have a processor compute k cells in sequence before sending them
- This is in conflict with the "get processors to compute as early as possible" principle we based our initial greedy algorithm on
- So we will reduce communication cost, but will increase idle time
- Let use assume that k divides n
- Each row now consists of n / k segments
- If k does not divide n we have left over cells and it complicates the program and the performance analysis and as usual doesn't change the asymptotic performance analysis

- The algorithm computes segment after segment
- The time before P1 can start computing is the time for P0 to compute a whole segment
- Therefore, it will take longer until $\mathrm{P}_{\mathrm{p}-1}$ can start computing

Keducıng the Granularıty

 More- So far, we've allocated non-contiguous rows of the domain to each processor
- But we can reduce communication by allocating processors groups of contiguous rows
- If two contiguous rows are on the same processors, there is no communication involved to update the cells of the second row
- Let us use say that we allocate blocks of rows of size r to each processor
- We assume that r*p divides n
- Processor Pi holds rows j such that $\mathrm{i}=\mathrm{floor}(\mathrm{j} / \mathrm{r}) \bmod \mathrm{p}$
- This is really a "block cyclic" allocation

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP
Version
First MPI
Version
Matrices
Second MPI
Version
Third MPI
Third MPI
Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil
Application
Principle

Reducing the Granularity

Idle Time?

- One question is: does any processor stay idle?
- Processor P_{0} computes all values in its first block of rows in n / k algorithm steps
- After that, processor P_{0} must wait for cell values from processor P_{p-1}
- But $\mathrm{P}_{\mathrm{p}-1}$ cannot start computing before p steps
- Therefore:
- If $p>=n / k, P_{0}$ is idle
- If $p<n / k, P_{1}$ is not idle
- If $p<n / k$, then processors had better be able to buffer received cells while they are still computing
- Possible increase in memorv consumbtion

Performance Analysis

- It is actually very simple
- At each step a processor is involved at most in
- Receiving k cells from its predecessor
- Sending k cells to its successor
- Updating k*r cells
- Since sending and receiving are overlapped, the time to perform a step is $\mathrm{L}+\mathrm{kb}+\mathrm{kr}$ w
- Question: How many steps?
- Answer: It takes p-1 steps before Pp-1 can start doing any thing. Pp-1 holds $\mathrm{n}^{2} /(\mathrm{pkr})$ blocks
- Execution time:

$$
T(n, p, r, k)=\left(p-1+n^{2} /(p k r)\right)(L+k b+k r w)
$$

1 Performance Analysis

- Our naïve greedy algorithm had asymptotic efficiency equal to $w /(w+L+b)$
- This algorithm does better: Assympt. Eff $=\mathrm{w} /(\mathrm{w}+\mathrm{L} / \mathrm{rk}+$ b/r)
- Divide n²w by p T(n,p,r,k)
- And make n large
- In the formula for the efficiency we clearly see the effect of the granularity increase
- Asymptotic efficiency is higher
- But not equal to 1
- Therefore, this is a "difficult" application to parallelize
- We can try to do the best we can by increasing r and k, but it's never going to be perfect
- One can compute the optimal values of r and k using numerical solving
- See the book for details

Outline

(14) Matrix Vector Product

- Open MP Version
- First MPI Version
- Distributing Matrices
- Second MPI Version
- Third MPI Version
- Mixed Parallelism Version
(15) Matrix Multiplication
(16) Stencil Application
- Principle
- Greedy Version
- Reducing the Granularity
(17) LU Factorization
- Gaussian Elimination
- LU

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MP Version Distributing Matrice Second MPI Version
Third MPI Third N
Version Mixed Parallelism Version Matrix Multiplieation

Solving Linear Systems of Eq.

- Method for solving Linear Systems
- The need to solve linear systems arises in an estimated 75% of all scientific computing problems [Dahlquist 1974]
- Gaussian Elimination is perhaps the most well-known method
- based on the fact that the solution of a linear system is invariant under scaling and under row additions
- One can multiply a row of the matrix by a constant as long as one multiplies the corresponding element of the right-hand side by the same constant
- One can add a row of the matrix to another one as long as one adds the corresponding elements of the right-hand side
- Idea: scale and add equations so as to transform matrix A in an upper triangular matrix:

Gaussian Elimination

1	1	1		
1	-2	2		
1	2	-1	$X=$	0
:---				
4				
2				

1	1	1		
0	-3	1		
0	1	-2	$\quad X=$	0
:---				
4				
2				

Subtract row 1 from rows 2 and 3

1	1	1		
0	-3	1		
0	0	-5	$\quad X=$	0
:---:				
4				
1				

Multiple row 3 by 3 and add row 2

Solving equations in
$\square_{3 x_{2}+x_{3}=4 \quad-5 x_{3}=10}^{3 x_{2}} \quad \square_{3}=-2$ reverse order (backsolving) $x_{1}+x_{2}+x_{3}=0$

$$
x_{1}=4
$$

Gaussian Elimination

- The algorithm goes through the matrix from the top-left corner to the bottom-right corner
- the ith step eliminates non-zero sub-diagonal elements in column i , substracting the ith row scaled by $\mathrm{a}_{\mathrm{jj}} / \mathrm{a}_{\mathrm{ij}}$ from row j , for $\mathrm{j}=\mathrm{i}+1, \ldots, \mathrm{n}$.

sequential Gaussian

 EliminationSimple sequential algorithm

```
// for each column i
// zero it out below the diagonal by adding
// multiples of row i to later rows
for i = 1 to n-1
    // for each row j below row i
    for j = i+1 to n
        // add a multiple of row i to row j
        for k}=i\mathrm{ to }
            A(j,k) = A(j,k) - (A(j,i)/A(i,i)) * A(i,k)
```

and one speaks of an augmented matrix

- Compute the $A(i, j) / A(i, i)$ term outside of the loop

|pivoting: Motivation

- A few pathological cases | 0 | 1 |
| :---: | :---: |
| 1 | 1 |
- Division by small numbers \rightarrow round-off error in computer arithmetic
- Consider the following system

$$
\begin{aligned}
& 0.0001 x_{1}+x_{2}=1.000 \\
& x_{1} \quad+x_{2}=2.000
\end{aligned}
$$

- exact solution: $x_{1}=1.00010$ and $x 2=0.99990$
- say we round off after 3 digits after the decimal point
- Multiply the first equation by 10^{4} and subtract it from the second equation
- ($1-1) x_{1}+\left(1-10^{4}\right) x_{2}=2-10^{4}$
- But, in finite precision with only 3 digits:

$$
\begin{aligned}
& \text { - } 1-10^{4}=-0.9999 \mathrm{E}+4 \sim-0.999 \mathrm{E}+4 \\
& \text { - } 2-10^{4}=-0.9998 \mathrm{E}+4 \sim-0.999 \mathrm{E}+4
\end{aligned}
$$

- Therefore, $x_{3}=1$ and $x_{1}=0$ (from the first equation)

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP
Version
First MPI
Version
Distributing
Matrices
Second MPI
Version
Third MPI
Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil Application
Principle
Greedy Version
Reducing the
Granularity
iU Factorizaition
Gaussian
Elimination

|Partial Pivoting

- One can just swap rows

$$
x_{1} \quad+x_{2}=2.000
$$

$0.0001 x_{1}+x_{2}=1.000$

- Multiple the first equation my 0.0001 and subtract it from the second equation gives:
(1-0.0001) $\times 2=1-0.0001$
$0.9999 x_{2}=0.9999=>x_{2}=1$
and then $x_{1}=1$
- Final solution is closer to the real solution. (Magical?)
- Partial Pivoting
- For numerical stability, one doesn't go in order, but pick the next row in rows i to n that has the largest element in row i
- This row is swapped with row i (along with elements of the right hand side) before the subtractions
" the swap is not done in memory but rather one keeps an indirection array
- Total Pivoting
- Look for the greatest element ANYWHERE in the matrix
- Swap columns
- Swap rows

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version
Distributing
Matrices
Second MPI
Version
Third MPI
Version
Mixed
Parallelism
Version
Matrix Multiplication

Stencil
Application
Principle
Greedy Version
Reducing the
Granularity
LU Factorization
Gaussian
Elimination

Parallel Gaussian

 Elimination?- Assume that we have one processor per matrix element

Every update needs the scaling factor and the element from the pivot row

Independent computations

Parallel Algorithms
A. Legrand Product
Open MP Version First MP Version Distributing Matrice Second MPI Version Third MPI Version Mixed Parallelism Version Matrix Multiplication

Stencil Application Principle Greedy Version Reducing the Granularity

Solving Linear Systems of Eq.

- Method for solving Linear Systems
- The need to solve linear systems arises in an estimated 75% of all scientific computing problems [Dahlquist 1974]
- Gaussian Elimination is perhaps the most well-known method
- based on the fact that the solution of a linear system is invariant under scaling and under row additions
- One can multiply a row of the matrix by a constant as long as one multiplies the corresponding element of the right-hand side by the same constant
- One can add a row of the matrix to another one as long as one adds the corresponding elements of the right-hand side
- Idea: scale and add equations so as to transform matrix A in an upper triangular matrix:

1	1	1		
0	-3	1		
0	0	-5	$\quad X=$	0
:---:				
4				
1				

Solving equations in
$\square_{3 x_{2}+x_{3}=4 \quad \square_{2}^{-5 x_{3}=10}=-2}^{x_{3}=-2}$ reverse order (backsolving) $x_{1}+x_{2}+x_{3}=0$

$$
x_{1}=4
$$

Gaussian Elimination

- The algorithm goes through the matrix from the top-left corner to the bottom-right corner
- the ith step eliminates non-zero sub-diagonal elements in column i, substracting the ith row scaled by $\mathrm{a}_{\mathrm{jj}} / \mathrm{a}_{\mathrm{ij}}$ from row j , for $\mathrm{j}=\mathrm{i}+1, \ldots, \mathrm{n}$.

sequential Gaussian

 EliminationSimple sequential algorithm

```
// for each column i
// zero it out below the diagonal by adding
// multiples of row i to later rows
for i = 1 to n-1
    // for each row j below row i
    for j = i+1 to n
        // add a multiple of row i to row j
        for k = i to n
            A(j,k)=A(j,k)-(A(j,i)/A(i,i)) * A(i,k)
```


|pivoting: Motivation

- A few pathological cases | 0 | 1 |
| :---: | :---: |
| 1 | 1 |
- Division by small numbers \rightarrow round-off error in computer arithmetic
- Consider the following system

$$
\begin{aligned}
& 0.0001 x_{1}+x_{2}=1.000 \\
& x_{1} \quad+x_{2}=2.000
\end{aligned}
$$

- exact solution: $x_{1}=1.00010$ and $\times 2=0.99990$
- say we round off after 3 digits after the decimal point
- Multiply the first equation by 10^{4} and subtract it from the second equation
- ($1-1) x_{1}+\left(1-10^{4}\right) x_{2}=2-10^{4}$
- But, in finite precision with only 3 digits:
- $1-10^{4}=-0.9999 \mathrm{E}+4 \sim-0.999 \mathrm{E}+4$
- 2-104 $=-0.9998 \mathrm{E}+4 \sim-0.999 \mathrm{E}+4$
- Therefore, $x_{3}=1$ and $x_{1}=0$ (from the first equation)

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP
Version
First MPI
Version
Distributing
Matrices
Second MP|
Version
Third MPI
Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil
Application
Principle
Greedy Version
Reducing the Granularity

LU Factrorization
Gaussian
Elimination
LU

\downarrow Partial Pivoting

- One can just swap rows
$\mathrm{x}_{1} \quad+\mathrm{x}_{2}=2.000$
$0.0001 x_{1}+x_{2}=1.000$
- Multiple the first equation my 0.0001 and subtract it from the second equation gives:
(1-0.0001) $\times 2=1-0.0001$
$0.9999 x_{2}=0.9999=>x_{2}=1$
and then $x_{1}=1$
- Final solution is closer to the real solution. (Magical?)
- Partial Pivoting
- For numerical stability, one doesn't go in order, but pick the next row in rows i to n that has the largest element in row i
- This row is swapped with row i (along with elements of the right hand side) before the subtractions
- the swap is not done in memory but rather one keeps an indirection array
- Total Pivoting
- Look for the greatest element ANYWHERE in the matrix
- Swap columns
- Swap rows
- Numerical stability is really a difficult field

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version
Distributing
Matrices
Second MPI
Version
Third MPI
Version
Mixed
Parallelism
Version
Matrix Multiplication

Stencil
Application
Principle
Greedy Version
Reducing the Granularity

LU Factorization Gaussian Elimination LU

ParaIIel Gaussıan

 Elimination?- Assume that we have one processor per matrix element

Every update needs the scaling factor and the element from the pivot row

Independent computations

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MPI Version Distributing Matrice Second MPI Version Third MPI Version Mixed Parallelism Version

Matrix Multiplication Stencil Application
Principle
Greedy Version Reducing the Granularity

LU Factorization Gaussian LU

\$LU Factorization (Section 4.4)

- Gaussian Elimination is simple but
- What if we have to solve many $A x=b$ systems for different values of b ?
* This happens a LOT in real applications
- Another method is the "LU Factorization"
- $A x=b$
- Say we could rewrite $A=L U$, where L is a lower triangular matrix, and U is an upper triangular matrix $O\left(n^{3}\right)$
- Then $A x=b$ is written $L U x=b$
- Solve $L y=b \quad O\left(n^{2}\right)$
- Solve $U x=y \quad O\left(n^{2}\right)$
triangular system solves are easy

1	2	-		
4	3	1		
2	2	3		gaussiann
:---				
elimination				

1	2	-
0	-	5
2	z	3

1	2	-
4	-	5
2	2	3

gaussian elimination

	gaussian		
elimination savethe scaling factor	1	2	-1
	4	-5	5
		$2 / 5$	3

$L=$| 1 | 0 | 0 |
| :---: | :---: | :---: |
| 4 | 1 | 0 |
| 2 | $2 / 5$ | 1 |

$$
U=\begin{array}{|c|c|c|}
\hline 1 & 2 & -1 \\
\hline 0 & -5 & 5 \\
\hline 0 & 0 & 3 \\
\hline
\end{array}
$$

- Magically, $A=L \times U$!
- Should be done with pivoting as well
- It works just like the Gaussian Elimination, but instead of zeroing out elements, one "saves" scaling coefficients.
(Gaussian

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MP Version Distributing Matrice Second MPI Version Third MPI Version
Mixed
Parallelism Version

Matrix Multiplication

Stencil
Application
Principle
Greedy Varsion Reducing the Granularity

LU Factorization Gaussian LU

- We're going to look at the simplest possible version
- No pivoting:just creates a bunch of indirections that are easy but make the code look complicated without changing the overall principle

```
stores the scaling factors
```

```
LU-sequential (A,n) {
```

LU-sequential (A,n) {
for k}=0\mathrm{ to n-2 {
// preparing column k
for i = k+1 to n-1
a}\mp@subsup{a}{ik}{}\leftarrow-\mp@subsup{a}{ik}{}/\mp@subsup{a}{kk}{
for j = k+1 to n-1
// Task T Tkj update of column j
for i=k+1 to n-1
aij}\leftarrow\mp@subsup{a}{ij}{}+\mp@subsup{a}{ik}{}*\mp@subsup{a}{kj}{
}
}

```




Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version First MP Version Distributing Matrices:
Second MPI Version Third MPI Version Mixed
- We're going to look at the simplest possible version
- No pivoting:just creates a bunch of indirections that are easy but make the code look complicated without changing the overall principle
LU-sequential ( \(A, n\) ) \(f\)
for \(k=0\) to \(n-2 i\)
// preparing column \(k\)
for \(i=k+1\) to \(n-1\)
\(a_{i k} \leftarrow-a_{i k} / a_{k k}\)
for \(j=k+1\) to \(n-1\)
// Task \(T_{k j}\) : update of column \(j\)
for \(i=k+1\) to \(n-1\)
\(a_{i j} \leftarrow a_{i j}+a_{i k} * a_{k j}\)
\}
\}


\section*{Parallel LU on a ring}
- Since the algorithm operates by columns from left to right, we should distribute columns to processors
- Principle of the algorithm
- At each step, the processor that owns column \(k\) does the "prepare" task and then broadcasts the bottom part of column \(k\) to all others
- Annoying if the matrix is stored in row-major fashion
- Remember that one is free to store the matrix in anyway one wants, as long as it's coherent and that the right output is generated
- After the broadcast, the other processors can then update their data.
- Assume there is a function alloc(k) that returns the rank of the processor that owns column \(k\)
- Basically so that we don't clutter our program with too many global-to-local index translations
- In fact, we will first write everything in terms of globataby of Henri Casanova

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP
Version
First MPI
Version
Distributing
Matrices
Second MPI
Version
Third MPI
Third MP
Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil
Application
Principle
Greedy Version

LU Factorization Gaussian
LU

\section*{Dealing with local indices}
- Assume that p divides n
- Each processor needs to store \(r=n / p\) columns and its local indices go from 0 to \(r\) - 1
- After step k, only columns with indices greater than \(k\) will be used
- Simple idea: use a local index, I, that everyone initializes to 0
- At step k, processor alloc(k) increases its local index so that next time it will point to its next local column

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP Version
First MPI Version
Distributing
Matrices
Second MPI
Second MPI
Version
Third MPI
Version
Mixed
Parallelism Version

Matrix
Multiplication
Stencil
Application
Principle
Greedy Version Reducing the Granularity

LU Factorization Gaussian LU

\section*{vvnat about the Alloc} function?
- One thing we have left completely unspecified is how to write the alloc function: how are columns distributed among processors
- There are two complications:
- The amount of data to process varies throughout the algorithm's execution
- At step k, columns k+1 to n-1 are updated
- Fewer and fewer columns to update
- The amount of computation varies among columns
- e.g., column \(n-1\) is updated more often than column 2
- Holding columns on the right of the matrix leads to much more work
- There is a strong need for load balancing
- All processes should do the same amount of work

Parallel Algorithms
A. Legrand

Matrix Vector Product
Open MP Version
First MP
Version
Distributing
Matrices
Second MPI
Second MPI
Version
Third NiPI
Version
Mixed
Parallelism
Version
Matrix
Multiplication
Stencil
Application
Principle
Greedy Versior Reducing the Granularity

LU Factorization Gaussian
Elimination


\section*{Cyclic distribution}

\section*{Proot that Ioad balancing is}
A. Legrand
- The computation consists of two types of operations
- column preparations
- matrix element updates
- There are many more updates than preparations, so we really care about good balancing of the preparations
- Consider column j
- Let's count the number of updates performed by the processor holding column j
- Column j is updated at steps \(\mathrm{k}=0, \ldots, \mathrm{j}-1\)
- At step k , elements \(\mathrm{i}=\mathrm{k}+1, \ldots, \mathrm{n}-1\) are updates
- indices start at 0
- Therefore, at step \(k\), the update of column \(j\) entails n-k-1 updates
- The total number of updates for column j in the execution is:
\[
\sum_{k=0}^{j-1}(n-k-1)=j(n-1)-\frac{j(j-1)}{2}
\]

\section*{Proot that Ioad balancing is} good
- Consider processor \(P_{i}\), which holds columns \(I p+i\) for \(I=0, \ldots, n / p-1\)
- Processor \(P_{i}\) needs to perform this many updates:
\[
\sum_{l=0}^{n / p-1}\left((l p+i)(n-1)-\frac{(l p+i)(l p+i-1)}{2}\right)
\]
- Turns out this can be computed
- separate terms
- use formulas for sums of integers and sums of squares
- What it all boils down to is:
\[
\frac{n^{3}}{3 p}+O\left(n^{2}\right)
\]
- This does not depend on i !!
- Therefore it is (asymptotically) the same for all \(P_{i}\) processors
- Therefore we have (asymptotically) perfect load balanciृa)flesy of Henri Casanova

Parallel
Algorithms
A. Legrand

Matrix Vector Product
Open MP Version
First MPI Version
Distributing
Distribut Matrices
Second MPI
Version
Third MPI
Third MPI
Version
Mixed
Parallelism Version

Matrix
Multiplieation
Stencil
Application
Principle
Greedy Version Reducing the Granularity

LU Factorization Gaussian
Eliminatio LU

\section*{Performance Analysis}
- How long does this code take to run?
- This is not an easy question because there are many tasks and many communications
- A little bit of analysis shows that the execution time is the sum of three terms
- n -1 communications: \(\mathrm{nL}+\left(\mathrm{n}^{2} / 2\right) \mathrm{b}+\mathrm{O}(1)\)
- n -1 column preparations: ( \(\mathrm{n}^{2} / 2\) ) w' \(+\mathrm{O}(1)\)
- column updates: ( \(n^{3} / 3 p\) ) w \(+0\left(n^{2}\right)\)
- Therefore, the execution time is \(\sim\left(n^{3} / 3 p\right)\) w
- Note that the sequential time is: \(\left(n^{3} / 3\right)\) w
- Therefore, we have perfect asymptotic efficiency!
- This is good, but isn't always the best in practice
- How can we improve this algorithm?
- So far, the algorithm we've used a simple broadcast
- Nothing was specific to being on a ring of processors and it's portable
- in fact you could just write raw MPI that just looks like our pseudo-code and have a very limited, inefficient for small n, LU factorization that works only for some number of processors
- But it's not efficient
- The n-1 communication steps are not overlapped with computations
- Therefore Amdahl's law, etc.
- Turns out that on a ring, with a cyclic distribution of the columns, one can interleave pieces of the broadcast with the computation
- It almost looks like inserting the source code frGeprteqyl他Henri Casanova

\section*{Part V}

A Complete Example on an Heterogeneous Ring

\section*{The Context: Distributed Heterogeneous Platforms}

Parallel
Algorithms
A. Legrand

The Problem
Fuly
Homogeneous Network
Heterogencous Network (Complete) Heterogeneous Network (General Gase)

How to embed a ring in a complex network [LRRV04]. Sources of problems
- Heterogeneity of processors (computational power, memory, etc.)
- Heterogeneity of communications links.
- Irregularity of interconnection network.

\section*{Targeted Applications: Iterative Algorithms}
- A set of data (typically, a matrix)
- Structure of the algorithms:
(1) Each processor performs a computation on its chunk of data
(2) Each processor exchange the "border" of its chunk of data with its neighbor processors
(3) We go back at Step 1

\section*{Targeted Applications: Iterative Algorithms}

The Problem
Fuly Network
Heterogeneous Network (Gomplete) Heterogeneous Network (General Case)
- A set of data (typically, a matrix)
- Structure of the algorithms:
(1) Each processor performs a computation on its chunk of data
(2) Each processor exchange the "border" of its chunk of data with its neighbor processors
(3) We go back at Step 1

Question: how can we efficiently execute such an algorithm on such a platform?

\section*{The Questions}

Parallel
Algorithms
A. Legrand

The Problem
Full
Homogencous
Network
Heterogencous
Network
(Complete)
Heteroge
Network
- Which processors should be used ?
- What amount of data should we give them ?
- How do we cut the set of data ?

\section*{First of All, a Simplification: Slicing the Data}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous
Network
Heterogeneous
Network
(Complete)
Heterogeneous
Network
(General Case)
- Data: a 2-D array


\section*{First of All, a Simplification: Slicing the Data}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous
Network
Network
Heterogencous
Networik
(Complete)
Heterogeneous
Network
(General Case)
- Data: a 2-D array

\(P_{4}\)
- Unidimensional cutting into vertical slices

\section*{First of All, a Simplification: Slicing the Data}

Parallel
Algorithms
A. Legrand

The Problem Fully
Homogencous
Network
Heterogencous Network (Complete) Heterogeneous Network (General Case)
- Data: a 2-D array


- Unidimensional cutting into vertical slices
- Consequences:

\section*{First of All, a Simplification: Slicing the Data}

Parallel
Algorithms
A. Legrand

The Problem Fully
Homogeneous Network
Heterogencous Network (Complete) Heterogeneous Network (General Gase)
- Data: a 2-D array


\[
\stackrel{\bullet}{P_{4}}
\]
- Unidimensional cutting into vertical slices
- Consequences:
(1) Borders and neighbors are easily defined

\section*{First of All, a Simplification: Slicing the Data}

The Problem Fully
Homogeneous Network
Heterogencous
Network
(Complete)
Heterogeneous
Network
(General Case)
- Data: a 2-D array

- Unidimensional cutting into vertical slices
- Consequences:
(1) Borders and neighbors are easily defined
(2) Constant volume of data exchanged between neighbors: \(D_{c}\)

\section*{First of All, a Simplification: Slicing the Data}
A. Legrand

The Problem
Fully
Homogeneous Network
Heterogencous Network (Complete) Heterogeneous Network (General Case)
- Data: a 2-D array


- Unidimensional cutting into vertical slices
- Consequences:
(1) Borders and neighbors are easily defined
(2) Constant volume of data exchanged between neighbors: \(D_{c}\)
(3) Processors are virtually organized into a ring

\section*{Notations}
- Processors: \(P_{1}, \ldots, P_{p}\)
- Processor \(P_{i}\) executes a unit task in a time \(w_{i}\)
- Overall amount of work \(D_{w}\); Share of \(P_{i}: \alpha_{i} . D_{w}\) processed in a time \(\alpha_{i} . D_{w} . w_{i}\) \(\left(\alpha_{i} \geqslant 0, \sum_{j} \alpha_{j}=1\right)\)
- Cost of a unit-size communication from \(P_{i}\) to \(P_{j}: c_{i, j}\)
- Cost of a sending from \(P_{i}\) to its successor in the ring: \(D_{c} \cdot c_{i, \operatorname{succ}(i)}\)

\section*{Communications: 1-Port Model (Full-Duplex)}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous Network
Heterogencous Network (Complete) Heterogeneous Network (General Gase)

A processor can:
- send at most one message at any time;
- receive at most one message at any time;
- send and receive a message simultaneously.

\section*{Objective}

Parallel
Algorithms
A. Legrand

The Problem Fully
Homogeneous Network
Heterogencous Network (Complete) Heterogeneous Network (General Case)
(1) Select \(q\) processors among \(p\)

\section*{Objective}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous Network
Heterogencous
Network
(Complete)
Heterogeneous Network (General Case)
(1) Select \(q\) processors among \(p\)
(2) Order them into a ring

\section*{Objective}

Parallel
Algorithms
A. Legrand

The Problem Fully
Homogeneous Network
Heterogencous
Network
(Complete)
Heterogeneous Network (General Gase)
(1) Select \(q\) processors among \(p\)
(2) Order them into a ring
(3) Distribute the data among them

\section*{Objective}
(1) Select \(q\) processors among \(p\)
(2) Order them into a ring
(3) Distribute the data among them

So as to minimize:
\[
\max _{1 \leqslant i \leqslant p} \mathbb{I}\{i\}\left[\alpha_{i} \cdot D_{w} \cdot w_{i}+D_{c} \cdot\left(c_{i, \operatorname{pred}(i)}+c_{i, \operatorname{succ}(i)}\right)\right]
\]

Where \(\mathbb{I}\{i\}[x]=x\) if \(P_{i}\) participates in the computation, and 0 otherwise

\section*{Special Hypotheses}

Parallel
Algorithms
A. Legrand

Fully
Homogeneous Network
Heterogencous Network (Complete) Heterogeneous Network (General Gase)
(1) There exists a communication link between any two processors
(2) All links have the same capacity \(\left(\exists c, \forall i, j c_{i, j}=c\right)\)


\section*{Consequences}

Parallel
Algorithms
A. Legrand
- Either the most powerful processor performs all the work, or all the processors participate

\section*{Consequences}

Parallel
Algorithms
A. Legrand
- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously

\section*{Consequences}

Parallel
Algorithms
A. Legrand
- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultane\(\operatorname{ously}\left(\exists \tau, \quad \alpha_{i} \cdot D_{w} \cdot w_{i}=\tau\right.\), so \(\left.1=\sum_{i} \frac{\tau}{D_{w} \cdot w_{i}}\right)\)

\section*{Consequences}
- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultane\(\operatorname{ously}\left(\exists \tau, \quad \alpha_{i} \cdot D_{w} \cdot w_{i}=\tau\right.\), so \(\left.1=\sum_{i} \frac{\tau}{D_{w} \cdot w_{i}}\right)\)
- Time of the optimal solution:
\[
T_{\text {step }}=\min \left\{D_{w} \cdot w_{\min }, D_{w} \cdot \frac{1}{\sum_{i} \frac{1}{w_{i}}}+2 \cdot D_{c} \cdot c\right\}
\]

\section*{Special hypothesis}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous
Heterogeneous Network (Complete) Network (General Case)
(1) There exists a communication link between any two processors


\section*{All the Processors Participate: Study (1)}

Parallel Algorithms
A. Legrand

The Problem
Fully
Homogeneous
Network
Heterogeneous Network (Complete)


All processors end simultaneously

\section*{All the Processors Participate: Study (2)}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous
Heterogeneous Network (Complete)
- All processors end simultaneously

\section*{All the Processors Participate: Study (2)}

Parallel
Algorithms
A. Legrand
- All processors end simultaneously
\[
\begin{gathered}
T_{\text {step }}=\alpha_{i} \cdot D_{w} \cdot w_{i}+D_{c} \cdot\left(c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}\right) \\
\sum_{i=1}^{p} \alpha_{i}=1 \Rightarrow \sum_{i=1}^{p} \frac{T_{\text {step }}-D_{c} \cdot\left(c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}\right)}{D_{w} \cdot w_{i}}=1 . \text { Thus } \\
\frac{T_{\text {step }}}{D_{w} \cdot w_{\text {cumul }}}=1+\frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}}{w_{i}} \\
\text { where } w_{\text {cumul }}=\frac{1}{\sum_{i} \frac{1}{w_{i}}}
\end{gathered}
\]

\section*{All the Processors Participate: Interpretation}

Parallel
Algorithms
A. Legrand

The Problem


Heterogeneous Network (Complete)
\[
\frac{T_{\text {step }}}{D_{w} \cdot w_{\text {cumul }}}=1+\frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}}{w_{i}}
\]

\section*{All the Processors Participate: Interpretation}

Parallel Algorithms
A. Legrand

The Problem
Fully
Homogeneous
Network
Heterogeneous Network (Complete)
\[
\frac{T_{\text {step }}}{D_{w} \cdot w_{\text {cumul }}}=1+\frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}}{w_{i}}
\]
\(T_{\text {step }}\) is minimal when \(\sum_{i=1}^{p} \frac{c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}}{w_{i}}\) is minimal

\section*{All the Processors Participate: Interpretation}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous
Heterogeneous Network (Complete)
\[
\frac{T_{\text {step }}}{D_{w} \cdot w_{\text {cumul }}}=1+\frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}}{w_{i}}
\]
\(T_{\text {step }}\) is minimal when \(\sum_{i=1}^{p} \frac{c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}}{w_{i}}\) is minimal
Look for an hamiltonian cycle of minimal weight in a graph where the edge from \(P_{i}\) to \(P_{j}\) has a weight of \(d_{i, j}=\frac{c_{i, j}}{w_{i}}+\frac{c_{j, i}}{w_{j}}\)

\section*{All the Processors Participate: Interpretation}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous
Heterogeneous Network (Complete)
\[
\frac{T_{\text {step }}}{D_{w} \cdot w_{\text {cumul }}}=1+\frac{D_{c}}{D_{w}} \sum_{i=1}^{p} \frac{c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}}{w_{i}}
\]
\(T_{\text {step }}\) is minimal when \(\sum_{i=1}^{p} \frac{c_{i, \text { succ }(i)}+c_{i, \text { pred }(i)}}{w_{i}}\) is minimal
Look for an hamiltonian cycle of minimal weight in a graph where the edge from \(P_{i}\) to \(P_{j}\) has a weight of \(d_{i, j}=\frac{c_{i, j}}{w_{i}}+\frac{c_{j, i}}{w_{j}}\)

NP-complete problem

\section*{All the Processors Participate: Linear Program}

Parallel Algorithms

\author{
A. Legrand
}
\[
\operatorname{Minimize} \sum_{i=1}^{p} \sum_{j=1}^{p} d_{i, j} \cdot x_{i, j}
\]
\[
\begin{aligned}
& \begin{cases}\text { (1) } \sum_{j=1}^{p} x_{i, j}=1 & 1 \leqslant i \leqslant p \\
\text { (2) } \sum_{i=1}^{p} x_{i, j}=1 & 1 \leqslant j \leqslant p \\
\text { (3) } x_{i, j} \in\{0,1\} & 1 \leqslant i, j \leqslant p \\
\text { (4) } u_{i}-u_{j}+p . x_{i, j} \leqslant p-1 & 2 \leqslant i, j \leqslant p, i \neq j \\
\text { (5) } u_{i} \text { integer, } u_{i} \geqslant 0 & 2 \leqslant i \leqslant p\end{cases} \\
& x_{i, j}=1 \text { if, and only if, the edge from } P_{i} \text { to } P_{j} \text { is used }
\end{aligned}
\]

\section*{General Case: Linear program}

Parallel Algorithms
A. Legrand

\section*{Best ring made of \(q\) processors}

Minimize \(T\) SATISFYing The (IN)EQUATIONS
(1) \(x_{i, j} \in\{0,1\}\)
\(1 \leqslant i, j \leqslant p\)
(2) \(\sum_{i=1}^{p} x_{i, j} \leqslant 1\)
\(1 \leqslant j \leqslant p\)
(3) \(\sum_{i=1}^{p} \sum_{j=1}^{p} x_{i, j}=q\)
(4) \(\sum_{i=1}^{p} x_{i, j}=\sum_{i=1}^{p} x_{j, i} \quad 1 \leqslant j \leqslant p\)
(5) \(\sum_{i=1}^{p} \alpha_{i}=1\)
(6) \(\alpha_{i} \leqslant \sum_{j=1}^{p} x_{i, j}\)
\(1 \leqslant i \leqslant p\)
(7) \(\alpha_{i} \cdot w_{i}+\frac{D_{c}}{D_{w}} \sum_{j=1}^{p}\left(x_{i, j} c_{i, j}+x_{j, i} c_{j, i}\right) \leqslant T\)
\(1 \leqslant i \leqslant p\)
(8) \(\sum_{i=1}^{p} y_{i}=1\)
(9) \(-p . y_{i}-p . y_{j}+u_{i}-u_{j}+q \cdot x_{i, j} \leqslant q-1\)
\(1 \leqslant i, j \leqslant p, i \neq j\)
(10) \(y_{i} \in\{0,1\}\)
\(1 \leqslant i \leqslant p\)
(11) \(u_{i}\) integer, \(u_{i} \geqslant 0\)

\section*{Linear Programming}
- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
- Problems with integer variables: solved in exponential time in the worst case.
- No relaxation in rationals seems possible here. . .

\section*{And, in Practice ?}

Parallel
Algorithms
A. Legrand

The Problem
Fully.
Homogeneous
Heterogeneous Network (Complete)

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one)

\section*{And, in Practice ?}

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one) No guarantee, but excellent results in practice.

\section*{And, in Practice ?}

\section*{General case.}
(1) Exhaustive search: feasible until a dozen of processors...
(2) Greedy heuristic: initially we take the best pair of processors; for a given ring we try to insert any unused processor in between any pair of neighbor processors in the ring. . .

\section*{New Difficulty: Communication Links Sharing}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous Network
Heterogeneous
Network
Heterogeneous
Network
(General Case)


Heterogeneous platform


Virtual ring

\section*{New Difficulty: Communication Links Sharing}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous Network
Heterogencous
Network
Heterogeneous
Network
(General Case)


Virtual ring

\section*{New Difficulty: Communication Links Sharing}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous Network
Heterogencous
Network
Heterogeneous
Network
(General Case)


Heterogeneous platform


Virtual ring

\section*{New Difficulty: Communication Links Sharing}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous Homogen
Network
Heterogencous
Network
Heterogeneous
Network
(General Case)


Virtual ring

We must take communication link sharing into account.

\section*{New Notations}
- A set of communications links: \(e_{1}, \ldots, e_{n}\)
- Bandwidth of link \(e_{m}: b_{e_{m}}\)
- There is a path \(\mathcal{S}_{i}\) from \(P_{i}\) to \(P_{\text {succ }(i)}\) in the network
- \(\mathcal{S}_{i}\) uses a fraction \(s_{i, m}\) of the bandwidth \(b_{e_{m}}\) of link \(e_{m}\)
- \(P_{i}\) needs a time \(D_{c} \cdot \frac{1}{\min _{e_{m} \in \mathcal{S}_{i}} s_{i, m}}\) to send to its successor a message of size \(D_{c}\)
- Constraints on the bandwidth of \(e_{m}: \sum_{1 \leqslant i \leqslant p} s_{i, m} \leqslant b_{e_{m}}\)
- Symmetrically, there is a path \(\mathcal{P}_{i}\) from \(P_{i}\) to \(P_{\text {pred }(i)}\) in the network, which uses a fraction \(p_{i, m}\) of the bandwidth \(b_{e_{m}}\) of link \(e_{m}\)

\section*{Toy Example: Choosing the Ring}

- 7 processors and 8 bidirectional communications links
- We choose a ring of 5 processors: \(P_{1} \rightarrow P_{2} \rightarrow P_{3} \rightarrow P_{4} \rightarrow P_{5}\) (we use neither \(Q\), nor \(R\) )

\section*{Toy Example: Choosing the Ring}

- 7 processors and 8 bidirectional communications links
- We choose a ring of 5 processors: \(P_{1} \rightarrow P_{2} \rightarrow P_{3} \rightarrow P_{4} \rightarrow P_{5}\) (we use neither \(Q\), nor \(R\) )

\section*{Toy Example: Choosing the Paths}

Parallel
Algorithms
A. Legrand

The Problem
Fully.
Homogeneous
Network
Heterogencous
Network
(Complete)
Heterogeneous
Network
(General Case)


\section*{Toy Example: Choosing the Paths}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous
Network
Heterogencous
Network
(Complete)
Heterogeneous
Network
(General Case)


From \(P_{1}\) to \(P_{2}\), we use the links \(a\) and \(b: \mathcal{S}_{1}=\{a, b\}\).

\section*{Toy Example: Choosing the Paths}

Parallel
Algorithms
A. Legrand

The Problem
Fully.
Homogeneous
Network
Heterogencous
Network
Heterogeneous
Network
(General Case)


From \(P_{1}\) to \(P_{2}\), we use the links \(a\) and \(b: \mathcal{S}_{1}=\{a, b\}\). From \(P_{2}\) to \(P_{1}\), we use the links \(b, g\) and \(h: \mathcal{P}_{2}=\{b, g, h\}\).

\section*{Toy Example: Choosing the Paths}

Parallel Algorithms
A. Legrand

The Problem
Fully
Homogeneous Network
Heterogencous
Network
(Complete)
Heterogeneous
Network
(General Case)


From \(P_{1}\) to \(P_{2}\), we use the links \(a\) and \(b: \mathcal{S}_{1}=\{a, b\}\). From \(P_{2}\) to \(P_{1}\), we use the links \(b, g\) and \(h: \mathcal{P}_{2}=\{b, g, h\}\).

> From \(P_{1}\) : to \(P_{2}, \mathcal{S}_{1}=\{a, b\}\) and to \(P_{5}, \mathcal{P}_{1}=\{h\}\)
> From \(P_{2}\) : to \(P_{3}, \mathcal{S}_{2}=\{c, d\}\) and to \(P_{1}, \mathcal{P}_{2}=\{b, g, h\}\)
> From \(P_{3}\) : to \(P_{4}, \mathcal{S}_{3}=\{d, e\}\) and to \(P_{2}, \mathcal{P}_{3}=\{d, e, f\}\)
> From \(P_{4}\) : to \(P_{5}, \mathcal{S}_{4}=\{f, b, g\}\) and to \(P_{3}, \mathcal{P}_{4}=\{e, d\}\)
> From \(P_{5}\) : to \(P_{1}, \mathcal{S}_{5}=\{h\}\) and to \(P_{4}, \mathcal{P}_{5}=\{g, b, f\}\)

\section*{Toy Example: Bandwidth Sharing}

Parallel
Algorithms
A. Legrand

The Problem
Fully
Homogeneous Network
Heterogencous Network
(Complete)
Heterogeneous
Network
(General Case)

From \(P_{1}\) to \(P_{2}\) we use links \(a\) and \(b: c_{1,2}=\frac{1}{\min \left(s_{1, a}, s_{1, b}\right)}\). From \(P_{1}\) to \(P_{5}\) we use the link \(h: c_{1,5}=\frac{1}{p_{1, h}}\).

\section*{Toy Example: Bandwidth Sharing}

Parallel Algorithms
A. Legrand

The Problem
Fully
Homogeneous Network
Heterogencous Network
(Complete)
Heterogeneous
Network
(General Case)

From \(P_{1}\) to \(P_{2}\) we use links \(a\) and \(b: c_{1,2}=\frac{1}{\min \left(s_{1, a}, s_{1}, b\right)}\). From \(P_{1}\) to \(P_{5}\) we use the link \(h: c_{1,5}=\frac{1}{p_{1, h}}\).

\section*{Set of all sharing constraints:}
```

Lien a : $s_{1, a} \leqslant b_{a}$
Lien $b: s_{1, b}+s_{4, b}+p_{2, b}+p_{5, b} \leqslant b_{b}$
Lien $c: s_{2, c} \leqslant b_{c}$
Lien $d: s_{2, d}+s_{3, d}+p_{3, d}+p_{4, d} \leqslant b_{d}$
Lien $e: s_{3, e}+p_{3, e}+p_{4, e} \leqslant b_{e}$
Lien $f: s_{4, f}+p_{3, f}+p_{5, f} \leqslant b_{f}$
Lien $g: s_{4, g}+p_{2, g}+p_{5, g} \leqslant b_{g}$
Lien $h: s_{5, h}+p_{1, h}+p_{2, h} \leqslant b_{h}$

```

\section*{Toy Example: Final Quadratic System}

Parallel Algorithms
A. Legrand

IINIMIZE \(\max _{1 \leqslant i \leqslant 5}\left(\alpha_{i} \cdot D_{w} \cdot w_{i}+D_{c} \cdot\left(c_{i, i-1}+c_{i, i+1}\right)\right)\) UNDER THE CONSTRAINTS
\(\sum_{i=1}^{5} \alpha_{i}=1\)
\(s_{1, a} \leqslant b_{a}\)
\(s_{2, d}+s_{3, d}+p_{3, d}+p_{4, d} \leqslant b_{d}\)
\(s_{4, g}+p_{2, g}+p_{5, g} \leqslant b_{g}\)
\(s_{1, a} \cdot c_{1,2} \geqslant 1\)
\(s_{2, c} \cdot c_{2,3} \geqslant 1\)
\(p_{2, g} \cdot c_{2,1} \geqslant 1\)
\(s_{3, e} \cdot c_{3,4} \geqslant 1\)
\(p_{3, f} \cdot c_{3,2} \geqslant 1\)
\(s_{4, g} \cdot c_{4,5} \geqslant 1\)
\(s_{5, h} \cdot c_{5,1} \geqslant 1\)
\(p_{5, f} \cdot c_{5,4} \geqslant 1\)
\[
\begin{array}{ll}
s_{1, b}+s_{4, b}+p_{2, b}+p_{5, b} \leqslant b_{b} & s_{2, c} \leqslant b_{c} \\
s_{3, e}+p_{3, e}+p_{4, e} \leqslant b_{e} & s_{4, f}+p_{3, f}+p_{5, f} \leqslant b_{f} \\
s_{5, h}+p_{1, h}+p_{2, h} \leqslant b_{h} & \\
s_{1, b} \cdot c_{1,2} \geqslant 1 & p_{1, h} \cdot c_{1,5} \geqslant 1 \\
s_{2, d} \cdot c_{2,3} \geqslant 1 & p_{2, b} \cdot c_{2,1} \geqslant 1 \\
p_{2, h} \cdot c_{2,1} \geqslant 1 & s_{3, d} \cdot c_{3,4} \geqslant 1 \\
p_{3, d} \cdot c_{3,2} \geqslant 1 & p_{3, e} \cdot c_{3,2} \geqslant 1 \\
s_{4, f} \cdot c_{4,5} \geqslant 1 & s_{4, b} \cdot c_{4,5} \geqslant 1 \\
p_{4, e} \cdot c_{4,3} \geqslant 1 & p_{4, d} \cdot c_{4,3} \geqslant 1 \\
p_{5, g} \cdot c_{5,4} \geqslant 1 & p_{5, b} \cdot c_{5,4} \geqslant 1
\end{array}
\]

\section*{Toy Example: Conclusion}

Parallel
Algorithms
A. Legrand

The Problem
Fully.
Homogeneous Homoge
Network
Heterogencous Network

Heterogeneous Network
(General Case)

The problem sums up to a quadratic system if
(1) The processors are selected;
(2) The processors are ordered into a ring;
(3) The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

\section*{Toy Example: Conclusion}

The problem sums up to a quadratic system if
(1) The processors are selected;
(2) The processors are ordered into a ring;
(3) The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.
If the ring is known:
- Complete graph: closed-form expression;
- General graph: quadratic system.

\section*{And, in Practice ?}

We adapt our greedy heuristic:
(1) Initially: best pair of processors
(2) For each processor \(P_{k}\) (not already included in the ring)
- For each pair \(\left(P_{i}, P_{j}\right)\) of neighbors in the ring
(1) We build the graph of the unused bandwidths (Without considering the paths between \(P_{i}\) and \(P_{j}\) )
(2) We compute the shortest paths (in terms of bandwidth) between \(P_{k}\) and \(P_{i}\) and \(P_{j}\)
(3) We evaluate the solution
(3) We keep the best solution found at step 2 and we start again + refinements (max-min fairness, quadratic solving).

\section*{Is This Meaningful ?}
- No guarantee, neither theoretical, nor practical
- Simple solution:
(1) we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
(2) we apply the heuristic for complete graphs
(3) we allocate the bandwidths

\section*{Example: an Actual Platform (Lyon)}

Parallel Algorithms
A. Legrand

The Problem
Fully
Homogeneous
Network
Heterogencous
Network
(Complete)
Heterogeneous
Network
(General Case)


Topology
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline\(P_{0}\) & \(P_{1}\) & \(P_{2}\) & \(P_{3}\) & \(P_{4}\) & \(P_{5}\) & \(P_{6}\) & \(P_{7}\) & \(P_{8}\) \\
\hline 0.0206 & 0.0206 & 0.0206 & 0.0206 & 0.0291 & 0.0206 & 0.0087 & 0.0206 & 0.0206 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(P_{9}\) & \(P_{10}\) & \(P_{11}\) & \(P_{12}\) & \(P_{13}\) & \(P_{14}\) & \(P_{15}\) & \(P_{16}\) \\
\hline 0.0206 & 0.0206 & 0.0206 & 0.0291 & 0.0451 & 0 & 0 & 0 \\
\hline
\end{tabular}

Processors processing times (in seconds par megaflop)

\section*{Results}

Parallel Algorithms
A. Legrand

First heuristic building the ring without taking link sharing into account
Second heuristic taking into account link sharing (and with quadratic programing)
\begin{tabular}{|c|c|c|c|}
\hline Ratio \(D_{c} / D_{w}\) & H1 & H2 & Gain \\
\hline 0.64 & 0.008738 (1) & 0.008738 (1) & 0\% \\
\hline 0.064 & 0.018837 (13) & 0.006639 (14) & 64.75\% \\
\hline 0.0064 & 0.003819 (13) & 0.001975 (14) & 48.28\% \\
\hline Ratio \(D_{c} / D_{w}\) & H1 & H2 & Gain \\
\hline 0.64 & 0.005825 (1) & 0.005825 (1) & 0 \% \\
\hline 0.064 & 0.027919 (8) & 0.004865 (6) & 82.57\% \\
\hline 0.0064 & 0.007218 (13) & 0.001608 (8) & 77.72\% \\
\hline
\end{tabular}

Table: \(T_{\text {step }} / D_{w}\) for each heuristic on Lyon's and Strasbourg's platforms (the numbers in parentheses show the size of the rings built).

\section*{Conclusion}

Even though this is a very basic application, it illustrates many difficulties encountered when:
- Processors have different characteristics
- Communications links have different characteristics
- There is an irregular interconnection network with complex bandwidth sharing issues.
We need to use a realistic model of networks... Even though a more realistic model leads to a much more complicated problem, this is worth the effort as derived solutions are more efficient in practice.

\section*{Part VI}

Distribution

\section*{Algorithms on a Grid}

\section*{Outline}

Parallel Algorithms
A. Legrand

Communications
Matrix
(18) Communications

Multiplication
Outer Product
Grid Rocks!
Cannon
Fox
(19) Matrix Multiplication
- Outer Product
- Grid Rocks!
- Cannon
- Fox
- Snyder
- Data Distribution

- Consider \(p=q^{2}\) processors
- We can think of them arranged in a square grid
- A rectangular grid is also possible, but we'll stick to square grids for most of our algorithms
- Each processor is identified as \(\mathrm{P}_{\mathrm{i}, \mathrm{j}}\)
- i: processor row
- J: processor column

Parallel
Algorithms
A. Legrand

- Wrap-around links from edge to edge
- Each processor belongs to 2 different rings
- Will make it possible to reuse algorithms we develop for the ring topology
- Mono-directional links OR Bi-directional links
- Depending on what we need the algorithm to do and on what makes sense for the physical platform

\section*{Concurrency of Comm. and Comp.}
- When developing performance models we will assume that a processor can do all three activities in parallel
- Compute
- Send
- Receive
- What about the bi-directional assumption?
- Two models
- Half-duplex: two messages on the same link going in opposite directions contend for the link's bandwidth
- Full-duplex: it's as if we had two links in between each neighbor processors
- The validity of the assumption depends on the platform

\section*{Multiple concurrent communications?}
- Now that we have 4 (logical) links at each processor, we need to decide how many concurrent communications can happen at the same time
- There could be 4 sends and 4 receives in the bi-directional link model
- If we assume that 4 sends and 4 receives can happened concurrently without loss of performance, we have a multi-port model
- If we only allow 1 send and 1 receive to occur concurrently we have a single-port model

\section*{So what?}
- We have many options:
- Grid or torus
- Mono- or bi-directional
- Single-or multi-port
- Half- or full-duplex
- We'll mostly use the torus, bi-directional, fullduplex assumption
- We'll discuss the multi-port and the single-port assumptions
- As usual, it's straightforward to modify the performance analyses to match with whichever assumption makes sense for the physical platform

\section*{How realistic is a grid}

\section*{topology?}
- Some parallel computers are built as physical grids (2-D or 3-D)
- Example: IBM's Blue Gene/L
- If the platform uses a switch with all-to-all communication links, then a grid is actually not a bad assumption
- Although the full-duplex or multi-port assumptions may not hold
- We will see that even if the physical platform is a shared single medium (e.g., a non-switched Ethernet), it's sometimes preferable to think of it as a grid when developing algorithms!

\section*{Communication on a Grid}
- As usual we won't write MPI here, but some pseudo code
- A processor can call two functions to known where it is in the grid:
- My_Proc_Row()
- My_Proc_Col()
- A processor can find out how many processors there are in total by:
- Num_Procs()
- Recall that here we assume we have a square grid
- In programming assignment we may need to use a rectangular grid

\section*{Communication on the Grid}
- We have two point-to-point functions
- Send(dest, addr, L)
- Recv(src, addr, L)
- We will see that it's convenient to have broadcast algorithms within processor rows or processor columns
- BroadcastRow(i, j, srcaddr, dstaddr, L)
- BroadcastCol(i, j, srcaddr, dstaddr, L)
- We assume that a a call to these functions by a processor not on the relevant processor row or column simply returns immediately
- How do we implement these broadcasts?

\section*{RRow and Col Broadcasts?}
- If we have a torus
- If we have mono-directional links, then we can reuse the broadcast that we developed on a ring of processors
- Either pipelined or not
- It we have bi-directional links AND a multi-port model, we can improved performance by going both-ways simultaneously on the ring
- We'll see that the asymptotic performance is not changed
- If we have a grid
- If links are bi-directional then messages can be sent both ways from the source processor
- Either concurrently or not depending on whether we have a one-port or multi-port model
- If links are mono-directional, then we can't implement the broadcasts at all

\section*{Outline}

Parallel
Algorithms
A. Legrand

\section*{Matrix}

Multiplication
Outer Product
Grid Rocks!
Cannon
Fox
Snyder
Data
Distribution
(18) Communications
(19) Matrix Multiplication
- Outer Product
- Grid Rocks!
- Cannon
- Fox
- Snyder
- Data Distribution

\section*{IVIatrix IVlultıplıcatıon on a}
A. Legrand
- Matrix multiplication on a Grid has been studied a lot because
- Multiplying huge matrices fast is always important in many, many fields
- Each year there is at least a new paper on the topic
- It's a really good way to look at and learn many different issues with a grid topology
- Let's look at the natural matrix distribution scheme induced by a grid/torus

Parallel Algorithms
A. Legrand

\section*{\#2-D Matrix Distribution}

- We denote by \(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\) an element of the matrix - We denote by \(\mathrm{A}_{\mathrm{i}, \mathrm{j}}\left(\operatorname{or} \mathrm{A}_{\mathrm{ij}}\right.\) ) the block of the matrix allocated to \(\mathrm{P}_{\mathrm{i}, \mathrm{j}}\)
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{A}_{00}\) & \(\mathrm{~A}_{01}\) & \(\mathrm{~A}_{02}\) & \(\mathrm{~A}_{03}\) \\
\hline \(\mathrm{~A}_{10}\) & \(\mathrm{~A}_{11}\) & \(\mathrm{~A}_{12}\) & \(\mathrm{~A}_{13}\) \\
\hline \(\mathrm{~A}_{20}\) & \(\mathrm{~A}_{21}\) & \(\mathrm{~A}_{22}\) & \(\mathrm{~A}_{23}\) \\
\hline \(\mathrm{~A}_{30}\) & \(\mathrm{~A}_{31}\) & \(\mathrm{~A}_{32}\) & \(\mathrm{~A}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{33}\) \\
\hline
\end{tabular}

\section*{How do Matrices Get Distributed? (Sec. 4.7)}
A. Legrand
- Data distribution can be completely ad-hoc
- But what about when developing a library that will be used by others?
- There are two main options:

Matrix
Multiplication
- Centralized
- when calling a function (e.g., matrix multiplication)
" the input data is available on a single "master" machine (perhaps in a file)
- the input data must then be distributed among workers
" the output data must be undistributed and returned to the "master" machine (perhaps in a file)
- More natural/easy for the user
- Allows for the library to make data distribution decisions transparently to the user
- Prohibitively expensive if one does sequences of operations
- and one almost always does so
- Distributed
- when calling a function (e.g., matrix multiplication)
- Assume that the input is already distributed
- Leave the output distributed
" May lead to having to "redistribute" data in between calls so that distributions match, which is harder for the user and may be costly as well
- For instance one may want to change the block size between calls, or go from a non-cyclic to a cyclic distribution
- Most current software adopt the distributed approach
- more work for the user
- more flexibility and control
- We'll always assume that the data is magically already distributed Ggutpqe fftenri Casanova

\section*{Four Matrix Multiplication} Algorithms
- We'll look at four algorithms
- Outer-Product
- Cannon
- Fox
- Snyder
- The first one is used in practice
- The other three are more "historical" but are really interesting to discuss
- We'll have a somewhat hand-wavy discussion here, rather than look at very detailed code

\section*{The Outer-Product Algorithm}
- Consider the "natural" sequential matrix multiplication algorithm
\[
\begin{aligned}
& \text { for } \mathrm{i}=0 \text { to } \mathrm{n}-1 \\
& \qquad \text { for } \mathrm{j}=0 \text { to } \mathrm{n}-1 \\
& \qquad \text { for } k=0 \text { to } n-1 \\
& \qquad c_{\mathrm{i}, \mathrm{j}}+=\mathrm{a}_{\mathrm{i}, \mathrm{k}} * b_{\mathrm{k}, \mathrm{j}}
\end{aligned}
\]
- This algorithm is a sequence of inner-products (also called scalar products)
- We have seen that we can switch loops around
- Let's consider this version

\section*{for \(\mathrm{k}=0\) to \(\mathrm{n}-1\)}
\[
\begin{aligned}
& \text { for } \mathrm{i}=0 \text { to } \mathrm{n}-1 \\
& \qquad \text { for } \mathrm{j}=0 \text { to } \mathrm{n}-1 \\
& \qquad c_{\mathrm{i}, \mathrm{j}}+=\mathrm{a}_{\mathrm{i}, \mathrm{k}} * \mathrm{~b}_{\mathrm{k}, \mathrm{j}}
\end{aligned}
\]
- This algorithm is a sequence of outer-products!


Parallel Algorithms
A. Legrand

\section*{The outer-product algorithm}
- Why do we care about switching the loops around to view the matrix multiplication as a sequence of outer products?
- Because it makes it possible to design a very simple parallel algorithm on a grid of processors!
- First step: view the algorithm in terms of the blocks assigned to the processors
\[
\begin{aligned}
& \text { for } k=0 \text { to } q-1 \\
& \text { for } \mathrm{i}=0 \text { to } q-1 \\
& \text { for } j=0 \text { to } q-1 \\
& \qquad C_{i, j}+=A_{i, k} * B_{k, j}
\end{aligned}
\]
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{A}_{00}\) & \(\mathrm{~A}_{01}\) & \(\mathrm{~A}_{02}\) & \(\mathrm{~A}_{03}\) \\
\hline \(\mathrm{~A}_{10}\) & \(\mathrm{~A}_{11}\) & \(\mathrm{~A}_{12}\) & \(\mathrm{~A}_{13}\) \\
\hline \(\mathrm{~A}_{20}\) & \(\mathrm{~A}_{21}\) & \(A_{22}\) & \(A_{23}\) \\
\hline \(\mathrm{~A}_{30}\) & \(\mathrm{~A}_{31}\) & \(\mathrm{~A}_{32}\) & \(\mathrm{~A}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{\text {edautes }}\) & \(\mathrm{B}_{33 \mathrm{f}}\) \\
\hline
\end{tabular}

\section*{The Outer-Product Algorithm}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline\(A_{00}\) & \(A_{01}\) & \(A_{02}\) & \(A_{03}\) \\
\hline\(A_{10}\) & \(A_{11}\) & \(A_{12}\) & \(A_{13}\) \\
\hline\(A_{20}\) & \(A_{21}\) & \(A_{22}\) & \(A_{23}\) \\
\hline\(A_{30}\) & \(A_{31}\) & \(A_{32}\) & \(A_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{0}\) & \(\mathrm{~B}_{0}\) & \(\mathrm{~B}_{0}\) & \(\mathrm{~B}_{0}\) \\
\hline \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{1}\) \\
\hline \(\mathrm{~B}_{2}\) & \(\mathrm{~B}_{2}\) & \(\mathrm{~B}_{2}\) & \(\mathrm{~B}_{2}\) \\
\hline \(\mathrm{~B}_{3}\) & \(\mathrm{~B}_{3}\) & \(\mathrm{~B}_{3}\) & \(\mathrm{~B}_{3}\) \\
\hline 0 & 1 & \multicolumn{2}{|c|}{3} \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { for } k=0 \text { to } q-1 \\
& \text { for } i=0 \text { to } q-1 \\
& \text { for } j=0 \text { to } q-1 \\
& \qquad C_{i, j}+=A_{i, k} * B_{k, j}
\end{aligned}
\]
- At step k , processor \(\mathrm{P}_{\mathrm{i}, \mathrm{j}}\) needs \(\mathrm{A}_{\mathrm{i}, \mathrm{k}}\) and \(\mathrm{B}_{\mathrm{k}, \mathrm{j}}\)
- If \(k=j\), then the processor already has the needed block of \(A\)
- Otherwise, it needs to get it from \(\mathrm{P}_{\mathrm{i}, \mathrm{k}}\)
- If \(k=I\), then the processor already has the needed block of B
- Otherwise, it needs to get it from \(P_{k, j}\)

\section*{The Outer-Product Algorithm}
- Based on the previous statements, we can now see how the algorithm works
- At step k
- Processor \(\mathrm{P}_{\mathrm{i}, \mathrm{k}}\) broadcasts its block of matrix A to all processors in processor row i
- True for all i
- Processor \(\mathrm{P}_{\mathrm{k}, \mathrm{j}}\) broadcasts its block of matrix B to all processor in processor column j
- True for all \(j\)
- There are q-1 steps

\section*{The Outer Product Algorithm}


Step k=1 of the algorithm

Parallel Algorithms
A. Legrand

\section*{The Outer-Product Algorithm}

Communications
```

//m = n/q
var A, B, C: array[0..m-1, 0..m-1] of real
var bufferA, bufferB: array[0..m-1, 0..m-1] of real
var myrow, mycol
myrow = My_Proc_Row()
mycol = My_Proc_Col()
for k=0 to q-1
// Broadcast A along rows
for i = 0 to q-1
BroadcastRow(i,k,A,bufferA,m*m)
// Broadcast B along columns
for j=0 to q-1
BroadcastCol(k,j,B,bufferB,m*m)
// Multiply Matrix blocks (assuming a convenient MatrixMultiplyAdd()
function)
if (myrow == k) and (mycol == k)
MatrixMultiplyAdd(C,A,B,m)
else if (myrow == k)
MatrixMultiplyAdd(C,bufferA,B,m)
else if (mycol == k)
MatrixMultiplyAdd(C, A, bufferB, m)
else

```
            MatrixMultiplyAdd(C, bufferA, bufferB, m)

\section*{1 Performance Analysis}
- The performance analysis is straightforward
- With a one-port model:
- The matrix multiplication at step k can occur in parallel with the broadcasts at step \(\mathrm{k}+1\)
- Both broadcasts happen in sequence
- Therefore, the execution time is equal to:
\(\mathrm{T}(\mathrm{m}, \mathrm{q})=2\) Tbcast \(+(\mathrm{q}-1) \max \left(2\right.\) Tbcast, \(\left.\mathrm{m}^{3} \mathrm{w}\right)+\mathrm{m}^{3} \mathrm{w}\)
- w: elementary \(+=\) * operation
- Tbcast: time necessary for the broadcast
- With a multi-port model:
- Both broadcasts can happen at the same time
\(\mathrm{T}(\mathrm{m}, \mathrm{q})=\) Tbcast \(+(\mathrm{q}-1) \max \left(\right.\) Tbcast, \(\left.\mathrm{m}^{3} \mathrm{w}\right)+\mathrm{m}^{3} \mathrm{w}\)
- The time for a broadcast, using the pipelined broadcast:

Tbcast \(=\left(\operatorname{sqrt}((q-2) L)+\operatorname{sqrt}\left(m^{2} b\right)\right)^{2}\)
- When \(n\) gets large: \(T(m, q) \sim q m^{3}=n^{3} / q^{2}\)
- Thus, asymptotic parallel efficiency is 1 !

\section*{So what?}
- On a ring platform we had already given an asymptotically optimal matrix multiplication algorithm on a ring in an earlier set of slides
- So what's the big deal about another asymptotically optimal algorithm?
- Once again, when n is huge, indeed we don't care
- But communication costs are often non-negligible and do matter
- When \(n\) is "moderate"
- When w/b is low
- It turns out, that the grid topology is advantageous for reducing communication costs!

\section*{Ring vs. Grid}
- When we discussed the ring, we found that the communication cost of the matrix multiplication algorithm was: \(n^{2} b\)
- A each step, the algorithm sends \(\mathrm{n}^{2} / \mathrm{p}\) matrix elements among neighboring processors
- There are p steps
- For the algorithm on a grid:
- Each step involves 2 broadcasts of \(n^{2} / p\) matrix elements
" Assuming a one-port model, not to give an "unfair" advantage to the grid topology
- Using a pipelined broadcast, this can be done in approximately the same time as sending \(\mathrm{n}^{2} / \mathrm{p}\) matrix elements between neighboring processors on each ring (unless n is really small)
- Therefore, at each step, the algorithm on a grid spends twice as much time communicating as the algorithm on a ring
- But it does sqrt(p) fewer steps!
- Conclusion: the algorithm on a grid spends at least sqrt(p) less time in communication than the algorithm on a ring

\section*{Grid vs. Ring}
- Why was the algorithm on a Grid much better?
- Reason: More communication links can be used in parallel
- Point-to-point communication replaced by broadcasts
- Horizontal and vertical communications may be concurrent
- More network links used at each step
- Of course, this advantage isn't really an advantage if the underlying physical platform does not really look like a grid
- But, it turns out that the 2-D distribution is inherently superior to the 1-D distribution, no matter what the underlying platform is!

\section*{Grid vs. Ring}
- On a ring
- The algorithm communicates p matrix block rows that each contain \(\mathrm{n}^{2} / \mathrm{p}\) elements, p times
- Total number of elements communicated: \(\mathrm{pn}^{2}\)
- On a grid
- Each step, 2sqrt(p) blocks of n²/p elements are sent, each to sqrt(p)-1 processors, sqrt(p) times
- Total number of elements communicated: 2sqrt(p)n²
- Conclusion: the algorithm with a grid in mind inherently sends less data around than the algorithm on a ring
- Using a 2-D data distribution would be better than using a 1-D data distribution even if the underlying platform were a non-switched Ethernet for instance!
- Which is really 1 network link, and one may argue is closer to a ring ( \(p\) comm links) than a grid ( \(p^{2}\) comm links)
- Writing algorithms on a grid topology is a little bit more complicated than in a ring topology
- But there is often a payoff in practice and grid topologies are very popular

Parallel Algorithms
A. Legrand

\section*{2-D Matrix Distribution}

\section*{Communications}

Matrix
Multiplication
Outer Product
Cannon
Fox
Snyder
Snyaer
Data
Distribution

- We denote by \(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\) an element of the matrix - We denote by \(\mathrm{A}_{\mathrm{i}, \mathrm{j}}\left(\operatorname{or} \mathrm{A}_{\mathrm{ij}}\right.\) ) the block of the matrix allocated to \(\mathrm{P}_{\mathrm{i}, \mathrm{j}}\)
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{A}_{00}\) & \(\mathrm{~A}_{01}\) & \(\mathrm{~A}_{02}\) & \(\mathrm{~A}_{03}\) \\
\hline \(\mathrm{~A}_{10}\) & \(\mathrm{~A}_{11}\) & \(\mathrm{~A}_{12}\) & \(\mathrm{~A}_{13}\) \\
\hline \(\mathrm{~A}_{20}\) & \(\mathrm{~A}_{21}\) & \(\mathrm{~A}_{22}\) & \(\mathrm{~A}_{23}\) \\
\hline \(\mathrm{~A}_{30}\) & \(\mathrm{~A}_{31}\) & \(\mathrm{~A}_{32}\) & \(\mathrm{~A}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{3}\) & \(\mathrm{~B}_{33}\) \\
\hline
\end{tabular}

\section*{The Cannon Algorithm}
- This is a very old algorithm
- From the time of systolic arrays
- Adapted to a 2-D grid
- The algorithm starts with a redistribution of matrices \(A\) and \(B\)
" Called "preskewing"
- Then the matrices are multiplied
- Then the matrices are reredistributed to match the initial distribution
" Called "postskewing"

\section*{Cannon's Preskewing}
- Matrix A: each block row of matrix A is shifted so that each processor in the first processor column holds a diagonal block of the matrix
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{A}_{00}\) & \(\mathrm{~A}_{01}\) & \(\mathrm{~A}_{02}\) & \(\mathrm{~A}_{03}\) \\
\hline \(\mathrm{~A}_{10}\) & \(\mathrm{~A}_{11}\) & \(\mathrm{~A}_{12}\) & \(\mathrm{~A}_{13}\) \\
\hline \(\mathrm{~A}_{20}\) & \(\mathrm{~A}_{21}\) & \(\mathrm{~A}_{22}\) & \(\mathrm{~A}_{23}\) \\
\hline \(\mathrm{~A}_{30}\) & \(\mathrm{~A}_{31}\) & \(\mathrm{~A}_{32}\) & \(\mathrm{~A}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{A}_{00}\) & \(\mathrm{~A}_{01}\) & \(\mathrm{~A}_{02}\) & \(\mathrm{~A}_{03}\) \\
\hline \(\mathrm{~A}_{11}\) & \(\mathrm{~A}_{12}\) & \(\mathrm{~A}_{13}\) & \(\mathrm{~A}_{14}\) \\
\hline \(\mathrm{~A}_{22}\) & \(\mathrm{~A}_{23}\) & \(\mathrm{~A}_{20}\) & \(\mathrm{~A}_{21}\) \\
\hline \(\mathrm{~A}_{33}\) & \(\mathrm{~A}_{30}\) & \(\mathrm{~A}_{31}\) & \(\mathrm{~A}_{32}\) \\
\hline
\end{tabular}

\section*{Cannon's Preskewing}
- Matrix B: each block column of matrix B is shifted so that each processor in the first processor row holds a diagonal block of the matrix
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{00}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{33}\) \\
\hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{23}\) \\
\hline
\end{tabular}

\section*{Cannon's Computation}
- The algorithm proceeds in q steps
- At each step each processor performs the multiplication of its block of \(A\) and \(B\) and adds the result to its block of C
- Then blocks of \(A\) are shifted to the left and blocks of B are shifted upward
- Blocks of C never move
- Let's see it on a picture

Parallel Algorithms
A. Legrand
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline\(A_{00}\) & \(A_{01}\) & \(A_{02}\) & \(A_{03}\) \\
\hline\(A_{11}\) & \(A_{12}\) & \(A_{13}\) & \(A_{10}\) \\
\hline\(A_{22}\) & \(A_{23}\) & \(A_{20}\) & \(A_{21}\) \\
\hline\(A_{33}\) & \(A_{30}\) & \(A_{31}\) & \(A_{32}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{00}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{33}\) \\
\hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{23}\) \\
\hline
\end{tabular}
local
computation on proc \((0,0)\)

Shifts

\section*{Cannon's Steps}
\begin{tabular}{|l|l|l|l|}
\hline\(A_{01}\) & \(A_{02}\) & \(A_{03}\) & \(A_{00}\) \\
\hline\(A_{12}\) & \(A_{13}\) & \(A_{10}\) & \(A_{11}\) \\
\hline\(A_{23}\) & \(A_{20}\) & \(A_{21}\) & \(A_{22}\) \\
\hline\(A_{30}\) & \(A_{31}\) & \(A_{32}\) & \(A_{33}\) \\
\hline \hline\(A_{01}\) & \(A_{02}\) & \(A_{03}\) & \(A_{00}\) \\
\hline\(A_{12}\) & \(A_{13}\) & \(A_{10}\) & \(A_{11}\) \\
\hline\(A_{23}\) & \(A_{20}\) & \(A_{21}\) & \(A_{22}\) \\
\hline\(A_{30}\) & \(A_{31}\) & \(A_{32}\) & \(A_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{10}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{2 \emptyset}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{39}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{00}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{33}\) \\
\hline \hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{00}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{33}\) \\
\hline
\end{tabular}

\section*{The Algorithm}

Participate in preskewing of \(A\) Partitipate in preskweing of \(B\) For \(k=1\) to \(q\)

Local \(C=C+A * B\)
Vertical shift of \(B\)
Horizontal shift of \(A\)
Participate in postskewing of \(A\)
Partitipate in postskewing of \(B\)

\section*{Performance Analysis}
- Let's do a simple performance analysis with a 4-port model
- The 1-port model is typically more complicated
- Symbols
- n: size of the matrix
- \(q \times q\) : size of the processor grid
- \(\mathrm{m}=\mathrm{n} / \mathrm{q}\)
- L: communication start-up cost
- w: time to do a basic computation (+=.*.)
- b: time to communicate a matrix element
- T(m,q) = Tpreskew + Tcompute + Tpostskew

\section*{Pre/Post-skewing times}
- Let's consider the horizontal shift
- Each row must be shifted so that the diagonal block ends up on the first column
- On a mono-directional ring:
- The last row needs to be shifted ( \(q-1\) ) times
- All rows can be shifted in parallel
- Total time needed: \((q-1)\left(L+m^{2} b\right)\)
- On a bi-directional ring, a row can be shifted left or right, depending on which way is shortest!
- A row is shifted at most floor(q/2) times
- All rows can be shifted in parallel
- Total time needed: floor(q/2) (L + m² b)
- Because of the 4-port assumption, preskewing of A and B can occur in parallel (horizontal and vertical shifts do not interfere)
- Therefore: Tpreskew \(=\) Tpostskew \(=\) floor(q/2) \(\left(L+m^{2} b\right)\)

\section*{Time for each step}
- At each step, each processor computes an mxm matrix multiplication
- Compute time: m³ w
- At each step, each processor sends/receives a mxm block in its processor row and its processor column
- Both can occur simultaneously with a 4-port model
- Takes time L+ m²b
- Therefore, the total time for the q steps is: Tcompute \(=q \max \left(L+m^{2} b, m^{3} w\right)\)

\section*{Cannon Performance Model}
- \(T(m, n)=2^{*}\) floor(q/2) \(\left(L+m^{2} b\right)+\) \(q \max \left(m^{3} w, L+m^{2} b\right)\)
- This performance model is easily adapted
- If one assumes mono-directional links, then the "floor(q/2)" above becomes " \((q-1)\) "
- If one assumes 1-port, there is a factor 2 added in front of communication terms
- If one assumes no overlap of communication and computation ate afor Hemic Casanva

\section*{The Fox Algorithm}
- This algorithm was originally developed to run on a hypercube topology
- But in fact it uses a grid, embedded in the hypercube
- This algorithm requires no pre- or postskewing
- It relies on horizontal broadcasts of the diagonals of matrix A and on vertical shifts of matrix B
- Sometimes called the "multiply-broadcastroll" algorithm
- Let's see it on a picture
- Although it's a bit awkward to draw beєause 'ofi casanova

Parallel Algorithms
A. Legrand
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline\(A_{00}\) & \(A_{01}\) & \(A_{02}\) & \(A_{03}\) \\
\hline\(A_{10}\) & \(A_{11}\) & \(A_{12}\) & \(A_{13}\) \\
\hline\(A_{20}\) & \(A_{21}\) & \(A_{22}\) & \(A_{23}\) \\
\hline\(A_{30}\) & \(A_{31}\) & \(A_{32}\) & \(A_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{33}\) \\
\hline
\end{tabular}
initial
state
Fox

\section*{Execution Steps...}
Matrix
Multiplication
Outer Product
Grid Rocks!
Cannon
Fox
Snyder
Data
Distribution
\begin{tabular}{|l|l|l|l|}
\hline\(A_{00}\) & \(A_{00}\) & \(A_{00}\) & \(A_{00}\) \\
\hline\(A_{11}\) & \(A_{11}\) & \(A_{11}\) & \(A_{11}\) \\
\hline\(A_{22}\) & \(A_{22}\) & \(A_{22}\) & \(A_{22}\) \\
\hline\(A_{33}\) & \(A_{33}\) & \(A_{33}\) & \(A_{33}\) \\
\hline \hline\(A_{00}\) & \(A_{00}\) & \(A_{00}\) & \(A_{00}\) \\
\hline\(A_{11}\) & \(A_{11}\) & \(A_{11}\) & \(A_{11}\) \\
\hline\(A_{22}\) & \(A_{22}\) & \(A_{22}\) & \(A_{22}\) \\
\hline\(A_{33}\) & \(A_{33}\) & \(A_{33}\) & \(A_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{33}\) \\
\hline \hline \(\mathrm{~B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(B_{03}\) \\
\hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(B_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{21}\) & \(B_{22}\) & \(B_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(B_{32}\) & \(B_{33}\) \\
\hline
\end{tabular}

Broadcast of A's 1st diag. (stored in a Separate buffer)

Parallel Algorithms
A. Legrand
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline\(A_{00}\) & \(A_{01}\) & \(A_{02}\) & \(A_{03}\) \\
\hline\(A_{10}\) & \(A_{11}\) & \(A_{12}\) & \(A_{13}\) \\
\hline\(A_{20}\) & \(A_{21}\) & \(A_{22}\) & \(A_{23}\) \\
\hline\(A_{30}\) & \(A_{31}\) & \(A_{32}\) & \(A_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{\hat{\lambda}_{21}}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{33}\) \\
\hline \(\mathrm{~B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{03}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{33}\) \\
\hline \(\mathrm{~B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{03}\) \\
\hline \hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{33}\) \\
\hline \(\mathrm{~B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{03}\) \\
\hline
\end{tabular}

Broadcast of A's 2nd diag. (stored in a Separate buffer)
\begin{tabular}{|l|l|l|l|}
\hline\(A_{01}\) & \(A_{01}\) & \(A_{01}\) & \(A_{01}\) \\
\hline\(A_{12}\) & \(A_{12}\) & \(A_{12}\) & \(A_{12}\) \\
\hline\(A_{23}\) & \(A_{23}\) & \(A_{23}\) & \(A_{23}\) \\
\hline\(A_{30}\) & \(A_{30}\) & \(A_{30}\) & \(A_{30}\) \\
\hline
\end{tabular}

\section*{Fox's Algorithm}
// No initial data movement for \(k=1\) to \(q\) in parallel Broadcast \(A^{\prime} s k^{t h}\) diagonal Local \(C=C+A * B\) Vertical shift of \(B\)
// No final data movement
- Again note that there is an additional array to store incoming diagonal block
- This is the array we use in the A*B multiplication

\section*{Performance Analysis}
- You'll have to do it in a homework assignment
- Write pseudo-code of the algorithm in more details
- Write the performance analysis
- More complex than Cannon's or Fox's
- First transposes matrix B
- Uses reduction operations (sums) on the rows of matrix \(C\)
- Shifts matrix B

Parallel
Algorithms
A. Legrand

\section*{Execution Steps...}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline\(A_{00}\) & \(A_{01}\) & \(A_{02}\) & \(A_{03}\) \\
\hline\(A_{10}\) & \(A_{11}\) & \(A_{12}\) & \(A_{13}\) \\
\hline\(A_{20}\) & \(A_{21}\) & \(A_{22}\) & \(A_{23}\) \\
\hline\(A_{30}\) & \(A_{31}\) & \(A_{32}\) & \(A_{33}\) \\
\hline\(A_{00}\) & \(A_{01}\) & \(A_{02}\) & \(A_{03}\) \\
\hline\(A_{10}\) & \(A_{11}\) & \(A_{12}\) & \(A_{13}\) \\
\hline\(A_{20}\) & \(A_{21}\) & \(A_{22}\) & \(A_{23}\) \\
\hline\(A_{30}\) & \(A_{31}\) & \(A_{32}\) & \(A_{33}\) \\
\hline \hline\(A_{00}\) & \(A_{01}\) & \(A_{02}\) & \(A_{03}\) \\
\hline\(A_{10}\) & \(A_{11}\) & \(A_{12}\) & \(A_{13}\) \\
\hline\(A_{20}\) & \(A_{21}\) & \(A_{22}\) & \(A_{23}\) \\
\hline\(A_{30}\) & \(A_{31}\) & \(A_{32}\) & \(A_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{00}\) & \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{03}\) \\
\hline \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{13}\) \\
\hline \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{23}\) \\
\hline \(\mathrm{~B}_{30}\) & \(\mathrm{~B}_{31}\) & \(\mathrm{~B}_{32}\) & \(\mathrm{~B}_{33}\) \\
\hline
\end{tabular}
initial
state

Transpose B

Local
computation

Parallel
Algorithms
A. Legrand
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \(\mathrm{~A}_{01}\) & \(\mathrm{~A}_{02}\) & \(\mathrm{~A}_{03}\) \\
\hline \(\mathrm{~A}_{10}\) & \(\mathrm{~A}_{11}\) & \(\mathrm{~A}_{12}\) & \(\mathrm{~A}_{13}\) \\
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{~A}_{21}\) & \(\mathrm{~A}_{22}\) & \(\mathrm{~A}_{23}\) \\
\hline \(\mathrm{~A}_{30}\) & \(\mathrm{C}_{13}\) & \(\mathrm{~A}_{32}\) & \(\mathrm{~A}_{33}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{~A}_{01}\) & \(\mathrm{~A}_{02}\) & \(\mathrm{~A}_{03}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{23}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \(\mathrm{~A}_{10}\) & \(\mathrm{~A}_{11}\) & \(\mathrm{~A}_{12}\) & \(\mathrm{~A}_{13}\) \\
\hline \(\mathrm{~A}_{20}\) & \(\mathrm{~A}_{21}\) & \(\mathrm{~A}_{22}\) & \(\mathrm{~A}_{23}\) \\
\hline \(\mathrm{~A}_{30}\) & \(\mathrm{~A}_{31}\) & \(\mathrm{~A}_{32}\) & \(\mathrm{~A}_{33}\) \\
\hline \(\mathrm{~A}_{00}\) & \(\mathrm{~A}_{01}\) & \(\mathrm{~A}_{02}\) & \(\mathrm{~A}_{03}\) \\
\hline \(\mathrm{~A}_{10}\) & \(\mathrm{~A}_{11}\) & \(\mathrm{~A}_{12}\) & \(\mathrm{~A}_{13}\) \\
\hline \(\mathrm{~A}_{20}\) & \(\mathrm{~A}_{21}\) & \(\mathrm{~A}_{22}\) & \(\mathrm{~A}_{23}\) \\
\hline \(\mathrm{~A}_{30}\) & \(\mathrm{~A}_{31}\) & \(\mathrm{~A}_{32}\) & \(\mathrm{~A}_{33}\) \\
\hline
\end{tabular}


Parallel
Algorithms
A. Legrand

Snyder
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline \hline \(\mathrm{C}_{00}\) & \(\mathrm{C}_{01}\) & \(\mathrm{C}_{02}\) & \(\mathrm{C}_{03}\) \\
\hline \(\mathrm{C}_{10}\) & \(\mathrm{C}_{11}\) & \(\mathrm{C}_{12}\) & \(\mathrm{C}_{13}\) \\
\hline \(\mathrm{C}_{20}\) & \(\mathrm{C}_{21}\) & \(\mathrm{C}_{22}\) & \(\mathrm{C}_{23}\) \\
\hline \(\mathrm{C}_{30}\) & \(\mathrm{C}_{31}\) & \(\mathrm{C}_{32}\) & \(\mathrm{C}_{33}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{A}_{01}\) & \(\mathrm{A}_{02}\) & \\
\hline & & \(\mathrm{A}_{12}\) & \\
\hline & & \(\mathrm{A}_{2}\) & \\
\hline & & & \\
\hline & & & \\
\hline & & \(\mathrm{A}_{12}\) & \\
\hline & & \(\mathrm{A}_{22}\) & \\
\hline \(\mathrm{A}_{30}\) & \(\mathrm{A}_{3}\) & \(\mathrm{A}_{32}\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}_{02}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{32}\) \\
\hline \(\mathrm{~B}_{03}\) & \(\mathrm{~B}_{13}\) & \(\mathrm{~B}_{23}\) & \(\mathrm{~B}_{33}\) \\
\hline \(\mathrm{~B}_{00}\) & \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{30}\) \\
\hline \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{31}\) \\
\hline \hline \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{32}\) \\
\hline \(\mathrm{~B}_{03}\) & \(\mathrm{~B}_{13}\) & \(\mathrm{~B}_{23}\) & \(\mathrm{~B}_{33}\) \\
\hline \(\mathrm{~B}_{00}\) & \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{30}\) \\
\hline \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{31}\) \\
\hline \hline \(\mathrm{~B}_{02}\) & \(\mathrm{~B}_{12}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{32}\) \\
\hline \(\mathrm{~B}_{03}\) & \(\mathrm{~B}_{13}\) & \(\mathrm{~B}_{23}\) & \(\mathrm{~B}_{33}\) \\
\hline \(\mathrm{~B}_{00}\) & \(\mathrm{~B}_{10}\) & \(\mathrm{~B}_{20}\) & \(\mathrm{~B}_{30}\) \\
\hline \(\mathrm{~B}_{01}\) & \(\mathrm{~B}_{11}\) & \(\mathrm{~B}_{21}\) & \(\mathrm{~B}_{31}\) \\
\hline
\end{tabular}

Global sum
on the rows of C

\section*{Local} computation

\section*{The Algorithm}
\(\operatorname{var} A, B, C: \operatorname{array[0..m-1][0..m-1]}\) of real var bufferC: array[0..m-1][0..m-1] of real
Transpose B
MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shifts of B
For \(k=1\) to \(q-1\)
Global sum of bufferC on proc rows into \(\mathrm{C}_{\mathrm{i},(\mathrm{i}+\mathrm{k}-1) \% \mathrm{q}}\)
MatrixMultiplyAdd(bufferC, A, B, m)
Vertical shift of B
Global sum of bufferC on proc rows into \(\mathrm{C}_{\mathrm{i},(i+k-1) \%}\)
Transpose B

\section*{Performance Analysis}
- The performance analysis isn't fundamentally different than what we've done so far
- But it's a bit cumbersome
- See the textbook
- in particular the description of the matrix transposition (see also Exercise 5.1)

\section*{Which Data Distribution?}
- So far we've seen:
- Block Distributions
- 1-D Distributions
- 2-D Distributions
- Cyclic Distributions
- One may wonder what a good choice is for a data distribution?
- Many people argue that a good "Swiss Army knife" is the "2-D block cyclic distribution

\section*{Ine L-U DIOCK CyClic distribution}
- Goal: try to have all the advantages of both the horizontal and the vertical 1-D block cyclic distribution
- Works whichever way the computation "progresses"
- left-to-right, top-to-bottom, wavefront, etc.
- Consider a number of processors \(\mathrm{p}=\) r* c
- arranged in a rxc matrix
- Consider a 2-D matrix of size NxN
- Consider a block size b (which dividac MI)

Parallel Algorithms
A. Legrand

Communications

\section*{Matrix}

Multiplication
Outer Product
Grid Rocks!
Cannon
Fox
Data
Distribution

\section*{I he \(<\)-U bIock Cyclic distribution}

\begin{tabular}{|l|l|l|}
\hline P 0 & P 1 & P 2 \\
\hline P 3 & P 4 & P 5 \\
\hline
\end{tabular}

Parallel Algorithms
A. Legrand

Communication
Matrix
Multiplication
Outer Product
Grid Rocks!
Cannon
Fox
Data
Distribution

\section*{Ine L-U DIOCK CyClic distribution}

\begin{tabular}{|l|l|l|}
\hline P & P 1 & P 2 \\
\hline P 3 & P 4 & P 5 \\
\hline
\end{tabular}

\section*{Ine L-U bIock CyClic distribution}
\begin{tabular}{|l|l|l|}
\hline P 0 & P 1 & P 2 \\
\hline P 3 & P 4 & P 5 \\
\hline
\end{tabular}
- Slight load imbalance
- Becomes negligible with many blocks
- Index computations had better be implemented in separate functions
- Also: functions that tell a process who its neighbors are
- Overall, requires a whole infrastructure, but many think you can't go wrong with this distribution

\section*{Conclusion}
- All the algorithms we have seen in the semester can be implemented on a 2-D block cyclic distribution
- The code ends up much more complicated
- But one may expect several benefits "for free"
- The ScaLAPAK library recommends to use the 2-D block cyclic distribution
- Although its routines support all other distributions
A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman. LogGP: Incorporating long messages into the LogP model for parallel computation. Journal of Parallel and Distributed Computing, 44(1):71-79, 1997.
R D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos, K. Schauser, R. Subramonian, and T. von Eicken.

LogP: a practical model of parallel computation. Communication of the ACM, 39(11):78-85, 1996.
圊 R. W. Hockney.
The communication challenge for mpp : Intel paragon and meiko cs-2.
Parallel Computing, 20:389-398, 1994.
B. Hong and V.K. Prasanna.

Distributed adaptive task allocation in heterogeneous computing environments to maximize throughput.

In International Parallel and Distributed Processing Symposium IPDPS'2004. IEEE Computer Society Press, 2004.
A. Legrand

國 T. Kielmann, H. E. Bal, and K. Verstoep.
Fast measurement of LogP parameters for message passing platforms.
In Proceedings of the 15th IPDPS. Workshops on Parallel and Distributed Processing, 2000.
R Steven H. Low.
A duality model of TCP and queue management algorithms. IEEE/ACM Transactions on Networking, 2003.

Dong Lu, Yi Qiao, Peter A. Dinda, and Fabián E. Bustamante. Characterizing and predicting tcp throughput on the wide area network.
In Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS'05), 2005.

國 Arnaud Legrand, Hélène Renard, Yves Robert, and Frédéric Vivien.
Mapping and load-balancing iterative computations on heterogeneous clusters with shared links.
IEEE Trans. Parallel Distributed Systems, 15(6):546-558, 2004.
T Maxime Martinasso.
Analyse et modélisation des communications concurrentes dans les réseaux haute performance.
PhD thesis, Université Joseph Fourier de Grenoble, 2007.
- Laurent Massoulié and James Roberts.

Bandwidth sharing: Objectives and algorithms.
In INFOCOM (3), pages 1395-1403, 1999.
國 Loris Marchal, Yang Yang, Henri Casanova, and Yves Robert.
Steady-state scheduling of multiple divisible load applications on wide-area distributed computing platforms.

Parallel
Algorithms
A. Legrand

Communications
Matrix
Multiplication Outer Product Grid Rocks! Cannon
Fox
Snyder
Data
Distribution

Int. Journal of High Performance Computing Applications, (3), 2006.

Frédéric Wagner.
Redistribution de données à travers un réseau haut débit. PhD thesis, Université Henri Poincaré Nancy 1, 2005.```

