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Interactive parallel computation?

I Any application is “parallel”:
I composition of several programs/library procedures (possibly con-

current)
I each procedure written independently and also possibly parallel

itself

I Example:
I Interactive distributed simulation

3D-reconstruction, simulation, rendering
[B. Raffin & E. Boyer]
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New parallel supports

I Parallel chips & multi-core architectures:
I MPSoCs (Multi-Processor Systems on Chips)
I GPU : graphics processors
I Multi-core processors (Intel, AMD)
I Heterogeneous multi-cores: CPUs+GPUs+DSPs+FPGAs (Cell)

I Numa machines

I Clusters

I Grids
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The problem

To design a single algorithm that computes efficiently a function on
an arbitrary dynamic architecture

Best existing algorithms

I sequential

I parallel, p = 2

I parallel, p = 100

I parallel, p = max

How to choose the best one for:

I an heterogeneous cluster

I an multi-user SMP server

I an part (not dedicated) of an existing grid

Dynamic architecture is the key

non-fixed number of resources, variable speeds, etc.
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The graal : Processor-oblivious algorithms

Non-fixed number of resources, variable speeds, etc.
motivates the design of � processor-oblivious � parallel algorithm
that:

I is independent from the underlying architechture
I no reference to p nor to Πi(t) (speed of processor i at time t)

nor . . .

I on a given architecture, has performance guarantees
I behaves as well as an optimal (off-line, non-oblivious) one

In some cases, work-stealing can archive these goals
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Processor speeds are assumed to change arbitrarily and adversarially:	

model [Bender,Rabin 02] Πi(t) = instantaneous speed of processor i at time t   

                           (in #unit operations per second ) 
              Assumption :  Maxi,t { Πi(t) } < constant . Mini,t { Πi(t) }  

Def: for a computation with duration T 

•  total  speed:    Πtot = (  Σi=0,..,P Σt=0,..,T Πi(t) ) / T  

•  average speed per processor:  Πave = Πtot / P  

Heterogeneous processors, work and depth 

“Work” W = #total number operations performed 

“Depth” D =  #operations on a critical path 

  (~parallel “time” on  ∞ resources) 

For any greedy maximum utilization schedule: 
       [Graham69, Jaffe80, Bender-Rabin02]  

                 makespan 

€ 

≤
W
p.Πave

+ 1− 1
p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

D
   Πave

Courtesy of Jean-Louis Roch
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The work stealing algorithm 

  A distributed and randomized algorithm that 
computes a greedy schedule : 
   Each processor manages a local task (depth-first execution) 

P0 P2 P1 P3 

Courtesy of Jean-Louis Roch
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P0 P2 P1 P3 

  When idle, a processor steals the topmost task on a remote -non idle- victim processor 
       (randomly chosen) 

  Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]  

   #steals = O(p.D)    and  execution time 

  Interest:  
      if W independent of p  and  D is small, work stealing achieves near-optimal schedule    

     

steal 

The work stealing algorithm 

  A distributed and randomized algorithm that 
computes a greedy schedule : 
   Each processor manages a local stack (depth-first execution) 

€ 

≤
W
p.Πave

+O D
Πave

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Courtesy of Jean-Louis Roch
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Back on greedy list scheduling (Coffman result)

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗
max(p) + p.C∗

max(p) = (2p− 1)C∗
max(p)
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Back on greedy list scheduling (Coffman result)

Proof.

p

Cmax(σp)

By definition of D, w(Φ) ≤ D
Hence,

p.Cmax(σp) = Idle+ Seq 6 (p− 1)D +W

Tp 6
W

p
+O(D)
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Warning: work-stealing is not greedy list scheduling

Even if the bound on execution time is the same, the hypothesis are
not the same:

I in WS, a processor can be idle (trying to steal)

I the result for WS is “with a high probability”

I WS also gives a bound on the number of steal:

#Steal requests = O (p.D) w.h.p.

I WS works with heterogeneous processors:

Tp ≤
W

p.Πave
+O

(
D

Πave

)
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Work stealing implementation   

Difficult in general (coarse grain) 
But easy if D is small [Work-stealing] 

        Execution time           

         (fine grain) 

Expensive in general (fine grain) 
But small overhead if a small 
number of tasks 

                        (coarse grain)  

Scheduling 
efficient policy  

(close to optimal) 
control of the policy  

(realisation) 

If D is small, a work stealing algorithm performs a small number of steals 

=> Work-first principle: “scheduling overheads should be borne by the critical path 
of the computation”  [Frigo 98]     

Implementation: since all tasks but a few are executed in the local stack, overhead 
of task creation should be as close as possible as sequential function call 

At any time on any non-idle processor,  
   efficient local degeneration of the parallel program in a sequential execution  

€ 

≤
W
p.Πave

+O D
Πave
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Courtesy of Jean-Louis Roch
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17 
Work-stealing implementations following 
the work-first principle : Cilk 
  Cilk-5  http://supertech.csail.mit.edu/cilk/ : C extension 

  Spawn  f (a) ;  sync (serie-parallel programs) 
  Requires a shared-memory machine  
  Depth-first execution with synchronization (on sync) with the end of a task : 

-  Spawned tasks are pushed in double-ended queue  
  “Two-clone” compilation strategy  [Frigo-Leiserson-Randall98] :  

•  on a successfull steal, a thief executes the continuation on the topmost ready task ;  
•  When the continuation hasn’t been stolen, “sync” = nop ; else synchronization with its  thief 

  won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2, 
SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium] 

01 cilk int fib (int n)  
02 {  
03     if (n < 2) return n;  
04     else  
05     {  
06        int x, y;  
07   
08        x = spawn fib (n-1);  
09        y = spawn fib (n-2);  
10   
11        sync;  
12   
13        return (x+y);  
14     }  
15 }"

Courtesy of Jean-Louis Roch
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18 
Work-stealing implementations following 
the work-first principle :   KAAPI 
  Kaapi / Athapascan  http://kaapi.gforge.inria.fr : C++ library 

  Fork<f>()(a, …)  with access mode  to parameters (value;read;write;r/w;cw) specified 
in f prototype (macro dataflow programs) 

  Supports distributed and shared memory machines; heterogeneous processors  
  Depth-first (reference order) execution with synchronization on data access : 

•  Double-end queue (mutual exclusion with compare-and-swap) 
•  on a successful steal, one-way data communication (write&signal)  

•   

  Kaapi won the 2006 award “Prix special du Jury”  for the best performance at NQueens contest, Plugtests- 
Grid&Work’06, Nice,  Dec.1, 2006 [Gautier-Guelton] on Grid’5000  1458 processors with different speeds. 

  1  struct sum {  
  2     void operator()(Shared_r < int > a, "
  3                     Shared_r < int > b, "
  4                     Shared_w < int > r )  "
  5     { r.write(a.read() + b.read()); }"
  6   } ;"
  7"
  8   struct fib {"
  9    void operator()(int n, Shared_w<int> r) "
 10    { if (n <2) r.write( n );"
 11      else "
 12      { int r1, r2;"
 13        Fork< fib >() ( n-1, r1 ) ;"
 14        Fork< fib >() ( n-2, r2 ) ;"
 15        Fork< sum >() ( r1, r2, r ) ;"
 16      } "
 17    } "
 18  } ;!

Courtesy of Jean-Louis Roch
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19 Experimental results on SOFA  
       [Allard 06] 

[CIMIT-ETZH-INRIA] 

Kaapi (C++, ~500 lines)	
 Cilk (C, ~240 lines)	


Preliminary results on GPU NVIDIA 8800 GTX	

•  speed-up ~9 on Bar 10x10x46 to Athlon64 2.4GHz	


• 128 “cores” in 16 groups	

• CUDA SDK : “BSP”-like, 16 X [16 .. 512] threads	

• Supports most operations available on CPU	

• ~2000 lines CPU-side + 1000 GPU-side	


Courtesy of Jean-Louis Roch
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Algorithm Design

Tp ≤
W

p.Πave
+O

(
D

Πave

)
I from WS theorem, optimizing the execution time by building a

parallel algorithm with both:
I W = Tseq

and
I small depth D

I Double criteria
I minimum work W : ideally Tseq
I Small depthD: ideally polylog in the work: D = O

(
logO(1)W

)
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Cascading Divide & Conquer

I W (n) ≤ a.W
(
n
K

)
+ f(n) with a > 1

I if f(n)� nlogk a then W (n) = O
(
nlogk a

)
I if f(n)� nlogk a then W (n) = O (f(n))
I if f(n) = Θ

(
nlogk a

)
then W (n) = O (f(n) log n)

I D(n) = D
(
n
K

)
+ f(n)

I if f(n) = O
(
logi n

)
then D(n) = O

(
logi+1 n

)

I D(n) = D (
√
n) + f(n)

I if f(n) = O(1) then D(n) = O (log logn)
I if f(n) = O (log n) then D(n) = O (log n)
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Example: MergeSort with Cilk

1: function MergeSort(A,i,j)
2: if i < j then
3: k ← i+j

2
4: spawn MergeSort(A,i,k)
5: MergeSort(A,k + 1,j)
6: sync
7: Merge(A,i,k,j)
8: end if
9: end function

I W (n) =

I D(n) =

I Tp(n) =
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MergeSort with Parallel Merge

I more parallelism required (in Merge)
I we take the median element of the first array
I we look its position by dichotomy in the second array
I we merge in parallel the four sub-arrays (two by two)
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MergeSort with Parallel Merge

I For the parallel merge
Let n1 and n2 the number of elements < x and > x

n = n1 + n2 + 1 and n1 ≥ n/4 and n2 ≥ n/4
I W (n) =
I D(n) =

I Back in MergeSort
I D(n) =
I Tp(n) =

I Can be improved (D(n) = Θ (log n))
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Conclusion

I Work Stealing concerns a wide-range of algorithms
I WS has some proven performances with weak hypothesis

I heterogeneous processors
but related speeds (WS model not valid for CPU/GPU)

I etc.

I Still, algorithms must be carefully designed
I how to split the work ?
I in how many parts (fraction ?, root square ?, etc.)

I Efficient implementation of WS is not trivial
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