Work Stealing

Vincent Danjean, UJF, University of Grenoble

LIG laboratory, Vincent.Danjean@imag.fr

November 2012, 19th

- 2 Work Stealing Principle
- 3 Work Stealing Implementation

4 Algorithm Design

1 Machine model and Work Stealing

- 2 Work Stealing Principle
- 3 Work Stealing Implementation
- Algorithm Design

5 Conclusion

< @ >

Interactive parallel computation?

Any application is "parallel":

- composition of several programs/library procedures (possibly concurrent)
- each procedure written independently and also possibly parallel itself
- Example:
 - Interactive distributed simulation 3D-reconstruction, simulation, rendering [B. Raffin & E. Boyer]

< (T) >

New parallel supports

Parallel chips & multi-core architectures:

- MPSoCs (Multi-Processor Systems on Chips)
- GPU : graphics processors
- Multi-core processors (Intel, AMD)
- Heterogeneous multi-cores: CPUs+GPUs+DSPs+FPGAs (Cell)
- Numa machines
- Clusters
- Grids

< A >

The problem

To design a single algorithm that computes efficiently a function on an arbitrary dynamic architecture

Best existing algorithms

- sequential
- parallel, p = 2

- parallel, p = 100
- parallel, $p = \max$

How to choose the best one for:

- an heterogeneous cluster
- an multi-user SMP server
- an part (not dedicated) of an existing grid

Dynamic architecture is the key

non-fixed number of resources, variable speeds, etc.

< 🗗 >

Non-fixed number of resources, variable speeds, etc. motivates the design of \ll processor-oblivious \gg parallel algorithm that:

- is independent from the underlying architechture
 - ▶ no reference to p nor to Π_i(t) (speed of processor i at time t) nor ...
- on a given architecture, has performance guarantees
 - behaves as well as an optimal (off-line, non-oblivious) one

In some cases, work-stealing can archive these goals

< (17) >

Machine model and Work Stealing

3 Work Stealing Implementation

4 Algorithm Design

5 Conclusion

< @ >

Heterogeneous processors, work and depth Processor speeds are assumed to change arbitrarily and adversarially: model [Bender,Rabin 02] $\Pi_i(t)$ = instantaneous speed of processor i at time t (in #unit operations per second) Assumption : Max_{i,t}{ $\Pi_i(t)$ } < constant . Min_{i,t}{ $\Pi_i(t)$ } Def. for a computation with duration T

- · total speed:
- average speed per processor:

 $\boldsymbol{\Pi}_{tot} = \left(\sum_{i=0,\dots,P} \sum_{t=0,\dots,T} \boldsymbol{\Pi}_{i}(t) \right) / T$ $\boldsymbol{\Pi}_{ave} = \boldsymbol{\Pi}_{tot} / P$

"Work" W = #total number operations performed

"Depth" D = #operations on a critical path

(~parallel "time" on ∞ resources)

For any greedy maximum utilization schedule:

[Graham69, Jaffe80, Bender-Rabin02]

$$makespan \leq \frac{W}{p \Pi_{ave}} + \left(1 - \frac{1}{p}\right) - \frac{D}{\Pi_{ave}}$$

Courtesy of Jean-Louis Roch

0 11 0 1 1 0 1 10

V. Danjean (UJF-LIG) INRIA-MOAIS

Work Stealing

Work Stealing Principle 8 / 18

The work stealing algorithm

A distributed and randomized algorithm that computes a greedy schedule :

Each processor manages a local task (depth-first execution)

V. Danjean (UJF-LIG) INRIA-MOAIS

Work Stealing Principle 8 / 18

Back on greedy list scheduling (Coffman result)

Therefore, $Idle \leqslant (p-1).w(\Phi)$ for some Φ Hence,

$$p.C_{\max}(\sigma_p) = Idle + Seq \leq (p-1)w(\Phi) + Seq$$
$$\leq (p-1)C^*_{\max}(p) + p.C^*_{\max}(p) = (2p-1)C^*_{\max}(p)$$

Back on greedy list scheduling (Coffman result)

 $C_{\max}(\sigma_p)$

By definition of D, $w(\Phi) \leq D$ Hence,

$$p.C_{\max}(\sigma_p) = Idle + Seq \leq (p-1)D + W$$
$$T_p \leq \frac{W}{p} + O(D)$$

Even if the bound on execution time is the same, the hypothesis are not the same:

- ▶ in WS, a processor can be idle (trying to steal)
- the result for WS is "with a high probability"
- WS also gives a bound on the number of steal:

$$\#$$
Steal requests = $O(p.D)$ w.h.p.

WS works with heterogeneous processors:

$$T_p \le \frac{W}{p.\Pi_{ave}} + O\left(\frac{D}{\Pi_{ave}}\right)$$

3 Work Stealing Implementation

4 Algorithm Design

5 Conclusion

Courtesy of Jean-Louis Roch

Work-stealing implementations following the work-first principle : Cilk

- Cilk-5 http://supertech.csail.mit.edu/cilk/ : C extension
 - Spawn f (a) ; sync (serie-parallel programs)
 - Requires a shared-memory machine
 - Depth-first execution with synchronization (on sync) with the end of a task :
 - Spawned tasks are pushed in double-ended queue
 - "Two-clone" compilation strategy
 [Frigo-Leiserson-Randall98] :
 - on a successfull steal, a thief executes the continuation on the topmost ready task ;
 - · When the continuation hasn't been stolen, "sync" = nop ; else synchronization with its thief

02 { 03 if (n < 2) return n;	3 fib_frame *f; frame pointer 4 f = alloc(sizeo(*f)); allocate frame 5 f->sig = fib_sig; initialize frame
04 else 05 { 06 int x, y; 07 08 x = <u>spawn</u> fib (n-1); 09 y = <u>spawn</u> fib (n-2); 10	6 if (ac2) { 7 free(f, sizeof(*f)); free frame 8 return n; 9 } 9 } 10 else { 10 else { 11 f-venty = 1; save PC 13 f->n m; save live ears 14 e^T = f; save frame of frame of frame 15 publ(); publ frame 16 x = fib (ac-1); do C call
11 <u>sync;</u> 12	18 return 0; second spann 19 return 0; second spann 20 ; second spann
13 return (x+y); 14 }	21

SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

Courtesy of Jean-Louis Roch

Work-stealing implementations following ¹⁸ the work-first principle : KAAPI

- Kaapi / Athapascan <u>http://kaapi.gforge.inria.fr</u> : C++ library
 - Fork<f>()(a, ...) with access mode to parameters (value;read;write;r/w;cw) specified in f prototype (macro dataflow programs)
 - Supports distributed and shared memory machines; heterogeneous processors
 - Depth-first (reference order) execution with synchronization on data access :
 - · Double-end queue (mutual exclusion with compare-and-swap)

· on a successful steal, one-way data communication (write&signal)

Courtesy of Jean-Louis Roch

- 2 Work Stealing Principle
- 3 Work Stealing Implementation

4 Algorithm Design

5 Conclusion

Algorithm Design

$$T_p \le \frac{W}{p.\Pi_{ave}} + O\left(\frac{D}{\Pi_{ave}}\right)$$

from WS theorem, optimizing the execution time by building a parallel algorithm with both:

•
$$W = T_{see}$$

and

- small depth D
- Double criteria
 - minimum work W: ideally T_{seq}
 - Small depth D: ideally polylog in the work: $D = O\left(\log^{O(1)} W\right)$

Cascading Divide & Conquer

▶
$$W(n) \le a.W\left(\frac{n}{K}\right) + f(n)$$
 with $a > 1$
▶ if $f(n) \ll n^{\log_k a}$ then $W(n) = O\left(n^{\log_k a}\right)$
▶ if $f(n) \gg n^{\log_k a}$ then $W(n) = O\left(f(n)\right)$
▶ if $f(n) = \Theta\left(n^{\log_k a}\right)$ then $W(n) = O\left(f(n)\log n\right)$
▶ $D(n) = D\left(\frac{n}{K}\right) + f(n)$
▶ if $f(n) = O\left(\log^i n\right)$ then $D(n) = O\left(\log^{i+1} n\right)$

Cascading Divide & Conquer

W(n) ≤ a.W (ⁿ/_K) + f(n) with a > 1
if f(n) ≪ n^{log_k a} then W(n) = O (n^{log_k a})
if f(n) ≫ n^{log_k a} then W(n) = O (f(n))
if f(n) = O (n^{log_k a}) then W(n) = O (f(n) log n)
D(n) = D (ⁿ/_K) + f(n)
if f(n) = O (logⁱ n) then D(n) = O (logⁱ⁺¹ n)
D(n) = D (√n) + f(n)
if f(n) = O(1) then D(n) = O (log log n)
if f(n) = O (log n) then D(n) = O (log n)

- 1: function MERGESORT(A,i,j)2: if i < j then 3: $k \leftarrow \frac{i+j}{2}$ 4: spawn MERGESORT(A,i,k)5: MERGESORT(A,k+1,j)6: sync 7: MERGE(A,i,k,j)8: end if
- 9: end function
 - $\blacktriangleright W(n) =$
 - $\blacktriangleright D(n) =$
 - $\blacktriangleright T_p(n) =$

- 1: function MERGESORT(A,i,j)2: if i < j then 3: $k \leftarrow \frac{i+j}{2}$ 4: spawn MERGESORT(A,i,k)5: MERGESORT(A,k+1,j)6: sync 7: MERGE(A,i,k,j)8: end if
- 9: end function

•
$$W(n) = 2W\left(\frac{n}{2}\right) + \Theta(n) =$$

$$\blacktriangleright$$
 $D(n) =$

$$\blacktriangleright T_p(n) =$$

- 1: function MERGESORT(A,i,j)2: if i < j then 3: $k \leftarrow \frac{i+j}{2}$ 4: spawn MERGESORT(A,i,k)5: MERGESORT(A,k+1,j)6: sync 7: MERGE(A,i,k,j)8: end if
- 9: end function
- $W(n) = 2W\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n\log n)$
- $\blacktriangleright D(n) =$

$$\blacktriangleright T_p(n) =$$

- 1: function MERGESORT(A,i,j)2: if i < j then 3: $k \leftarrow \frac{i+j}{2}$ 4: spawn MERGESORT(A,i,k)5: MERGESORT(A,k+1,j)6: sync 7: MERGE(A,i,k,j)8: end if
- 9: end function
 - $W(n) = 2W\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n\log n)$

$$\blacktriangleright D(n) = D\left(\frac{n}{2}\right) + \Theta(n) =$$

$$\blacktriangleright T_p(n) =$$

- 1: function MERGESORT(A,i,j)2: if i < j then 3: $k \leftarrow \frac{i+j}{2}$ 4: spawn MERGESORT(A,i,k)5: MERGESORT(A,k+1,j)6: sync 7: MERGE(A,i,k,j)8: end if
- 9: end function
 - $W(n) = 2W\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n \log n)$

$$\blacktriangleright D(n) = D\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n)$$

$$\blacktriangleright$$
 $T_p(n) =$

- 1: function MERGESORT(A, i, j)
- 2: if i < j then
- 3: $k \leftarrow \frac{i+j}{2}$
- 4: **spawn** MERGESORT(A,i,k)
- 5: MERGESORT(A, k+1, j)
- 6: **sync**
- 7: MERGE(A,i,k,j)
- 8: end if
- 9: end function

•
$$W(n) = 2W\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n \log n)$$

• $D(n) = D\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n)$
• $T_p(n) = \Theta\left(\frac{n \log n}{p}\right) + \Theta(n)$

- 1: function MERGESORT(A,i,j)
- 2: if i < j then
- 3: $k \leftarrow \frac{i+j}{2}$
- 4: **spawn** MERGESORT(A,i,k)
- 5: MERGESORT(A, k + 1, j)
- 6: **sync**
- 7: MERGE(A, i, k, j)
- 8: end if
- 9: end function
 - $W(n) = 2W\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n\log n)$

$$\blacktriangleright D(n) = D\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n)$$

•
$$T_p(n) = \Theta\left(\frac{n\log n}{p}\right) + \Theta(n)$$

If $m > \log n$, T_p is lead by the last merge in $\Theta(n)$

more parallelism required (in Merge)

- we take the median element of the first array
- we look its position by dichotomy in the second array
- we merge in parallel the four sub-arrays (two by two)

► For the parallel merge Let n₁ and n₂ the number of elements < x and > x

$$n = n_1 + n_2 + 1$$
 and $n_1 \ge n/4$ and $n_2 \ge n/4$
 $\blacktriangleright W(n) =$
 $\flat D(n) =$

► For the parallel merge Let n₁ and n₂ the number of elements < x and > x

$$n=n_1+n_2+1$$
 and $n_1\geq n/4$ and $n_2\geq n/4$

•
$$W(n) = W(n_1) + W(n_2) + \Theta(\log n) =$$

$$\blacktriangleright D(n) =$$

► For the parallel merge Let n₁ and n₂ the number of elements < x and > x

$$n = n_1 + n_2 + 1$$
 and $n_1 \ge n/4$ and $n_2 \ge n/4$
 $\blacktriangleright W(n) = W(n_1) + W(n_2) + \Theta(\log n) = \Theta(n)$

►
$$D(n) =$$

► For the parallel merge Let n₁ and n₂ the number of elements < x and > x

$$n = n_1 + n_2 + 1$$
 and $n_1 \ge n/4$ and $n_2 \ge n/4$

•
$$W(n) = W(n_1) + W(n_2) + \Theta(\log n) = \Theta(n)$$

• $D(n) = \max(D(n_1), D(n_2)) + \Theta(\log n) =$

▶ For the parallel merge Let n₁ and n₂ the number of elements < x and > x

$$n = n_1 + n_2 + 1$$
 and $n_1 \ge n/4$ and $n_2 \ge n/4$

•
$$W(n) = W(n_1) + W(n_2) + \Theta(\log n) = \Theta(n)$$

• $D(n) = \max(D(n_1), D(n_2)) + \Theta(\log n) = \Theta(\log^2 n)$

▶ For the parallel merge Let n₁ and n₂ the number of elements < x and > x

 $n=n_1+n_2+1$ and $n_1\geq n/4$ and $n_2\geq n/4$

- $W(n) = W(n_1) + W(n_2) + \Theta(\log n) = \Theta(n)$
- $D(n) = \max(D(n_1), D(n_2)) + \Theta(\log n) = \Theta(\log^2 n)$
- Back in MergeSort
 - $\blacktriangleright D(n) =$
 - $T_p(n) =$

▶ For the parallel merge Let n₁ and n₂ the number of elements < x and > x

 $n=n_1+n_2+1$ and $n_1\geq n/4$ and $n_2\geq n/4$

- $W(n) = W(n_1) + W(n_2) + \Theta(\log n) = \Theta(n)$
- $D(n) = \max(D(n_1), D(n_2)) + \Theta(\log n) = \Theta(\log^2 n)$

Back in MergeSort

•
$$D(n) = D\left(\frac{n}{2}\right) + \Theta\left(\log^2 n\right) =$$

• $T_p(n) =$

▶ For the parallel merge Let n₁ and n₂ the number of elements < x and > x

 $n = n_1 + n_2 + 1$ and $n_1 \ge n/4$ and $n_2 \ge n/4$

- $W(n) = W(n_1) + W(n_2) + \Theta(\log n) = \Theta(n)$
- $D(n) = \max(D(n_1), D(n_2)) + \Theta(\log n) = \Theta(\log^2 n)$

Back in MergeSort

$$\blacktriangleright D(n) = D\left(\frac{n}{2}\right) + \Theta\left(\log^2 n\right) = \Theta\left(\log^3 n\right)$$

• $T_p(n) =$

▶ For the parallel merge Let n₁ and n₂ the number of elements < x and > x

 $n = n_1 + n_2 + 1$ and $n_1 \ge n/4$ and $n_2 \ge n/4$

- $W(n) = W(n_1) + W(n_2) + \Theta(\log n) = \Theta(n)$
- $D(n) = \max\left(D\left(n_1\right), D\left(n_2\right)\right) + \Theta\left(\log n\right) = \Theta\left(\log^2 n\right)$

Back in MergeSort

$$D(n) = D\left(\frac{n}{2}\right) + \Theta\left(\log^2 n\right) = \Theta\left(\log^3 n\right)$$

$$T(n) = \Theta\left(\frac{n\log n}{2}\right) + \Theta\left(\log^3 n\right)$$

•
$$T_p(n) = \Theta\left(\frac{n\log n}{p}\right) + \Theta\left(\log^3 n\right)$$

▶ For the parallel merge Let n₁ and n₂ the number of elements < x and > x

 $n=n_1+n_2+1$ and $n_1\geq n/4$ and $n_2\geq n/4$

$$\blacktriangleright W(n) = W(n_1) + W(n_2) + \Theta(\log n) = \Theta(n)$$

 $D(n) = \max\left(D\left(n_1\right), D\left(n_2\right)\right) + \Theta\left(\log n\right) = \Theta\left(\log^2 n\right)$

Back in MergeSort

$$\blacktriangleright D(n) = D\left(\frac{n}{2}\right) + \Theta\left(\log^2 n\right) = \Theta\left(\log^3 n\right)$$

•
$$T_p(n) = \Theta\left(\frac{n\log n}{p}\right) + \Theta\left(\log^3 n\right)$$

• Can be improved $(D(n) = \Theta(\log n))$

Machine model and Work Stealing

- 2 Work Stealing Principle
- 3 Work Stealing Implementation
- 4 Algorithm Design

Conclusion

- Work Stealing concerns a wide-range of algorithms
- WS has some proven performances with weak hypothesis
 - heterogeneous processors but related speeds (WS model not valid for CPU/GPU)
 - ▶ etc.
- Still, algorithms must be carefully designed
 - how to split the work ?
 - in how many parts (fraction ?, root square ?, etc.)
- Efficient implementation of WS is not trivial