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What is a regression?

Regression analysis is the most widely used statistical tool for understanding
relationships among variables. Several possible objectives including:

1 Prediction of future observations. This includes extrapolation since we
all like connecting points by lines when we expect things to be
continuous

2 Assessment of the e�ect of, or relationship between, explanatory
variables on the response

3 A general description of data structure (generally expressed in the
form of an equation or a model connecting the response or dependent
variable and one or more explanatory or predictor variable)

4 De�ning what you should "expect" as it allows you to de�ne and
detect what does not behave as expected

The linear relationship is the most commonly found one

we will illustrate how it works

it is very general and is the basis of many more advanced tools
(polynomial regression, ANOVA, . . . )
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Starting With a Simple Data Set

Descriptive statistics provides simple summaries about the sample and
about the observations that have been made.

How could we summarize the following data set ?

x y

1 1.00 3.00
2 2.00 1.00
3 3.00 5.00
4 5.00 2.00
5 7.00 6.00
6 9.00 4.00
7 11.00 7.00
8 13.00 9.00
9 14.00 8.00
10 15.00 5.00
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Eyeball Method
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A straight line drawn through the maximum number of points on a
scatter plot balancing about an equal number of points above and
below the line
Some points are rather far from the line. Maybe we should instead try
to minimize some kind of distance to the line
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Least Squares Line (1): What to minimize?
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Intuitively, a large error is much more important than a small one. We could

try to minimize F (α, β) =
∑
i

(yi − α− βxi )︸ ︷︷ ︸
ei

2, the size of all residuals:

If they were all zero we would have a perfect line
Trade-o� between moving closer to some points and at the same time
moving away from other points
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Least Squares Line (2): Simple Formula

F (α, β) =
n∑

i=1

(yi − α− βxi )2

F is quadratic in α and in β so if we simply di�erentiate F by α and by β,
we can obtain a closed form for the minimum:

β̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1 xiyi −

1
n

∑n
i=1 xi

∑n
j=1 yj∑n

i=1(x2i )− 1
n

(
∑n

i=1 xi )
2

=
xy − x̄ ȳ

x2 − x̄2
=

Cov[x , y ]

Var[x ]
= rxy

sy

sx

α̂ = ȳ − β̂ x̄ , where:
x̄ and ȳ are the sample mean of x and y

rxy is the sample correlation coe�cient between x and y

sx and sy are the sample standard deviation of x and y

Also has a good geometric interpretation (orthogonal projection)
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Least Squares Line (3): y as a function of x or the opposite?
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OK, do we have less asymetrical options?
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Least Distances Line (a.k.a. Deming Regression)
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Note that somehow, this makes sense only if we have a square plot,
i.e., if x and y have the same units
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Least Rectangles Line
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Minimize E (α, β) =
∑n

i=1

∣∣∣xi − yi−α
β

∣∣∣ · |yi − α− βxi |
This leads to the regression line y =

sy
sx

(x − x̄) + ȳ .
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Least Squares (in Both Directions) Line
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Minimize D(α, β) =
∑n

i=1

(
xi − yi−α

β

)2
+ (yi − α− βxi )2

Has to be computed analytically

14 / 44



Which line to choose?
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What does correspond to each line?

Eyeball: AFAIK nothing

Least Squares: classical linear regression y ∼ x

Least Squares in both directions: I don't know

Deming: equivalent to Principal Component Analysis

Rectangles: may be used when one variable is not "explained" by the
other, but are inter-dependent

This is not just a geometric problem. You need a model of to decide which
one to use
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The Simple Linear Regression Model

We need to invest in a probability model
Y = a + bX + ε

Y is the response variable

X is a continuous explanatory variable

a is the intercept

b is the slope

ε is some noise
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a + bX represents the �true line�, the part of Y that depends on X

The error term ε is independent �idosyncratic noise�, i.e., the part of
Y not associated with X

Gauss-Markov Theorem

Under a few assumptions, the least squares regression is the best linear
unbiased estimate

E(β̂) = b and E(α̂) = a Var(β̂) and Var(α̂) are minimal
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Multiple explanatory variables

The same results hold true when there are several explanatory
variables:

Y = a + b(1)X (1) + b(2)X (2) + b(1,2)X (1)X (2) + ε

The least squares regressions are good estimators of a, b(1), b(2),
b(1,2)

We can use an arbitrary linear combination of variables, hence

Y = a + b(1)X + b(2) 1
X

+ b(3)X 3 + ε

is also a linear model

Obviously the closed-form formula are much more complicated but
softwares like R handle this very well
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Important Hypothesis (1)

Weak exogeneity The predictor variables X can be treated as �xed values,
rather than random variables: the X are assumed to be error-free, i.e.,
they are not contaminated with measurement errors
Although not realistic in many settings, dropping this assumption leads
to signi�cantly more di�cult errors-in-variables models

Linearity the mean of the response variable is a linear combination of the
parameters (regression coe�cients) and the predictor variables
Since predictor variables themselves can be arbitrarily transformed, this
is not that restrictive. This trick is used, for example, in polynomial
regression, but beware of over�tting

Independance of Errors if several responses Y1 and Y2 are �t, ε1 and ε2
should be independant
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Other Very Important Hypothesis

Constant variance (a.k.a. homoscedasticity)
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Variance is independant of X
If several responses Y1 and Y2 are �t, ε1 and ε2 should have the
same variance
Either normalize Y or use an other estimator
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Other Classical Hypothesis (3)

Normal and iid errors This is not an assumption of the Gauss Markov
Theorem. Yet, it is quite convenient to build con�dence intervals of the
regression

Arrangement of the predictor variables X it has a major in�uence on the
precision of estimates of β (remember Anscombe's quartet).
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This is part of your design of experiments:
If you want to test linearity, X should be uniformly distributed
If you want the best estimation, you should use extreme values of X
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Linearity: Residuals vs. Explanatory Variable
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When there are several factors, you have to check for every dimension. . .
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Homoscedasticity: Residuals vs. Fitted values
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Normality: qqplots
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A quantile-quantile plot is a graphical method for comparing two
probability distributions by plotting their quantiles against each other
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Model Formulae in R

The structure of a model is speci�ed in the formula like this:

response variable ~ explanatory variable(s)

~ reads "is modeled as a function of " and lm(y~x) means y = α+βx + ε

On the right-hand side, on should specify how the explanatory variables are
combined. The symbols used here have a di�erent meaning than in
arithmetic expressions

+ indicates a variable inclusion (not an addition)

- indicates a variable deletion (not a substraction)

* indicates inclusion of variables and their interactions

: means an interaction

Therefore

z~x+y means z = α + β1x + β2y + ε

z~x*y means z = α + β1x + β2y + β3xy + ε

z~(x+y)^2 means the same

log(y)~I(1/x)+x+I(x^2) means z = α + β1 × 1
x

+ β2x + β3x
2 + ε
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Checking the model with R

reg <- lm(data=df[df$type=="heteroscedastic",],y~x)

par(mfrow=c(2,2)); plot(reg); par(mfrow=c(1,1))
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Decomposing the Variance

How well does the least squares line explain variation in Y ?
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Remember that Y = Ŷ + ε (Ŷ is the "true mean").
Since Ŷ and ε are uncorrelated, we have

Var(Y ) = Var(Ŷ + ε) = Var(Ŷ ) + Var(ε)

1

n − 1

n∑
i=1

(Yi − Ȳ )2 =
1

n − 1

n∑
i=1

(Ŷi − ¯̂
Y )2 +

1

n − 1

n∑
i=1

(εi − ε̄)2

Since ε̄ = 0 and Ȳ = ¯̂
Y , we have

n∑
i=1

(Yi − Ȳ )2︸ ︷︷ ︸
Total Sum of Squares

=
n∑

i=1

(Ŷi − Ȳ )2︸ ︷︷ ︸
Regression SS

+
n∑

i=1

ε̄2︸ ︷︷ ︸
Error SS

SSR = Variation in Y explained by the regression line
SSE = Variation in Y that is left unexplained

SSR = SST ⇒ perfect �t
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(Yi − Ȳ )2︸ ︷︷ ︸
Total Sum of Squares

=
n∑

i=1
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A Goodness of Fit Measure: R2

The coe�cient of determination, denoted by R2, measures goodness of �t:

R2 =
SSR

SST
= 1− SSE

SST

0 6 R2 6 1

The closer R2 is to 1, the better the �t

Warning:

A not so low R2 may mean important noise or bad model

As you add parameters to a model, you inevitably improve the �t.
There is a trade-o� beteween model simplicity and �t. Strive for
simplicity!
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Illustration with R (homoscedastic data)
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reg <- lm(data=df[df$type=="homoscedastic",],y~x)

summary(reg)

Call:

lm(formula = y ~ x, data = df[df$type == "homoscedastic", ])

Residuals:

Min 1Q Median 3Q Max

-4.1248 -1.3059 -0.0366 1.0588 3.9965

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.56481 0.33165 13.76 <2e-16 ***

x 0.50645 0.01154 43.89 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.816 on 48 degrees of freedom

Multiple R-squared: 0.9757, Adjusted R-squared: 0.9752

F-statistic: 1926 on 1 and 48 DF, p-value: < 2.2e-16
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Illustration with R (heteroscedastic data)
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reg <- lm(data=df[df$type=="heteroscedastic",],y~x)

summary(reg)

Call:

lm(formula = y ~ x, data = df[df$type == "heteroscedastic", ])

Residuals:

Min 1Q Median 3Q Max

-25.063 -3.472 0.663 3.707 19.327

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.98800 1.41061 3.536 0.000911 ***

x 0.56002 0.04908 11.411 2.83e-15 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 7.722 on 48 degrees of freedom

Multiple R-squared: 0.7306, Adjusted R-squared: 0.725

F-statistic: 130.2 on 1 and 48 DF, p-value: 2.83e-15
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Illustration with R (quadratic data)
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reg <- lm(data=df[df$type=="quadratic",],y~x)

summary(reg)

Call:

lm(formula = y ~ x, data = df[df$type == "quadratic", ])

Residuals:

Min 1Q Median 3Q Max

-11.759 -5.847 -2.227 3.746 17.346

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.05330 1.41238 4.994 8.23e-06 ***

x 0.65517 0.04914 13.333 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 7.732 on 48 degrees of freedom

Multiple R-squared: 0.7874, Adjusted R-squared: 0.783

F-statistic: 177.8 on 1 and 48 DF, p-value: < 2.2e-16
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Illustration with R (quadratic data, polynomial regression)
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df$x2=df$x^2

reg_quad <- lm(data=df[df$type=="quadratic",],y~x+x2)

summary(reg_quad)

Call:

lm(formula = y ~ x + x2, data = df[df$type == "quadratic", ])

Residuals:

Min 1Q Median 3Q Max

-4.7834 -0.8638 -0.0480 1.1312 3.9913

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.3065389 0.3348067 15.850 <2e-16 ***

x 0.0036098 0.0252807 0.143 0.887

x2 0.0164635 0.0005694 28.913 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.803 on 47 degrees of freedom

Multiple R-squared: 0.9887, Adjusted R-squared: 0.9882

F-statistic: 2053 on 2 and 47 DF, p-value: < 2.2e-16
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Making Predictions

xv <- seq(-20,60,.5)

yv <- predict(reg_quad,list(x=xv,x2=xv^2))

ggplot(data=df[df$type=="quadratic",]) + theme_bw() +

geom_hline(yintercept=0) + geom_vline(xintercept=0) +

geom_point(aes(x=x,y=y),color="blue") +

geom_line(data=data.frame(x=xv,y=yv),aes(x=x,y=y),color="red",size=1)
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Con�dence interval

Remember that

β̂ =

∑n
i=1 xiyi −

1
n

∑n
i=1 xi

∑n
j=1 yj∑n

i=1(x2i )− 1
n

(
∑n

i=1 xi )
2

α̂ = ȳ − β̂ x̄
β̂ and α̂ are sums of the εi 's and it is thus possible to compute con�dence
intervals assuming:

the linear model holds true

either the errors in the regression are normally distributed

or the number of observations is su�ciently large so that the actual
distribution of the estimators can be approximated using the central
limit theorem
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Illustration with R

The Anscombe quartet

head(a,10)

idx set x y

1 1 1 10 8.04

2 1 2 10 9.14

3 1 3 10 7.46

4 1 4 8 6.58

5 2 1 8 6.95

6 2 2 8 8.14

7 2 3 8 6.77

8 2 4 8 5.76

9 3 1 13 7.58

10 3 2 13 8.74

Con�dence intervals with ggplot

ggplot(data=a,aes(x=x,y=y)) + theme_bw() +

facet_wrap(~set,nrow=1) + geom_point(color="blue") +

geom_smooth(method='lm',color="red")
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Conclusion

1 You need a model to perform your regression

2 You need to check whether the underlying hypothesis of this model are
reasonable or not

This model will allow you to:

1 Assess and quantify the e�ect of parameters on the response

2 Extrapolate within the range of parameters you tried

3 Detect outstanding points (those with a high residual and/or with a
high lever)

This model will guide on how to design your experiments:

e.g., the linear model assumes some uniformity of interest over the
parameter space range

if your system is heteroscedastic, you will have to perform more
measurements for parameters that lead to higher variance
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