
CPU Scheduling

Arnaud Legrand, CNRS, University of Grenoble

LIG laboratory, arnaud.legrand@imag.fr

November 9, 2009

A. Legrand (CNRS-LIG) INRIA-MESCAL CPU Scheduling 1 / 49

arnaud.legrand@imag.fr


Outline

1 Setting

2 Optimizing max-flow

3 Optimizing average response time

4 Optimizing average stretch

5 Optimizing max-stretch

6 Non-clairvoyant setting

7 Conclusion

A. Legrand (CNRS-LIG) INRIA-MESCAL CPU Scheduling 2 / 49



Outline

1 Setting

2 Optimizing max-flow

3 Optimizing average response time

4 Optimizing average stretch

5 Optimizing max-stretch

6 Non-clairvoyant setting

7 Conclusion

A. Legrand (CNRS-LIG) INRIA-MESCAL CPU Scheduling Setting 3 / 49



Matrix Product: Sequential Version

Remember last week’s introductory example.

{ To compute C ← C +A×B }1

for i = 1 to n do2

for j = 1 to n do3

for k = 1 to n do4

Ci,j ← Ci,j +Ai,k ×Bk,j5

A1,1 A1,2

A2,2A2,1

C1,1 C1,2

C2,1 C2,2

B2,2

B1,2B1,1

B2,1
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Sequential Programs

Sequential programs are generally a succession of CPU burst and
I/O burst.

I A CPU-bound program has long CPU-burst.

I An I/O-bound program has short CPU-burst.
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CPU scheduling

I One objective of multi-programming is to maximize CPU uti-
lization i.e. to have process running at all time.

I Scheduling of this kind is a fundamental OS function and has
to be fast (otherwise you will waste useful CPU cycles) and fair
(somehow).

I By cleverly mixing I/O bound and CPU bound process, we could
achieve an “optimal” resource utilization.

CPU
I/O
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Let us forget about I/O for this talk

Let us consider that all our tasks or process are only CPU-bound.
Can you propose a scheduling problem for this setting using the
Graham notation?

I Sequential jobs

I A single CPU

I Short-Term scheduler

I Preemption is allowed

I Online: jobs (tasks/process/requests) arrive one after the other
in the system

〈1|rj , pmtn|...〉

Preemption has a cost but we will ignore it. Does the CPU utilization
metric still makes sense ?
In the remainder of this talk, we will study this problem for different
performance criteria, try to get some intuition and design the optimal
strategy.
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Let’s play with a small example

We wish to find a schedule (possibly using preemption) that has the
smallest possible max flow (maxiCi − ri).

First-Come First-Served seems to be optimal.
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FCFS is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the FCFS policy, i.e. rB < rA and CA < CB.

I By scheduling B before A, we do not increase max(CA −
rA, CB − rB).

I Therefore, by scheduling A and B according to the FCFS policy,
we get a new schedule σ′ that is still optimal.

I By proceeding similarly for all pairs of jobs, we prove that FCFS
is optimal. �

rB rA CA CB

A. Legrand (CNRS-LIG) INRIA-MESCAL CPU Scheduling Optimizing max-flow 9 / 49



FCFS is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the FCFS policy, i.e. rB < rA and CA < CB.

I By scheduling B before A, we do not increase max(CA −
rA, CB − rB).

I Therefore, by scheduling A and B according to the FCFS policy,
we get a new schedule σ′ that is still optimal.

I By proceeding similarly for all pairs of jobs, we prove that FCFS
is optimal. �

rB rA CACB

A. Legrand (CNRS-LIG) INRIA-MESCAL CPU Scheduling Optimizing max-flow 9 / 49



FCFS is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the FCFS policy, i.e. rB < rA and CA < CB.

I By scheduling B before A, we do not increase max(CA −
rA, CB − rB).

I Therefore, by scheduling A and B according to the FCFS policy,
we get a new schedule σ′ that is still optimal.

I By proceeding similarly for all pairs of jobs, we prove that FCFS
is optimal. �

rB rA CACB

A. Legrand (CNRS-LIG) INRIA-MESCAL CPU Scheduling Optimizing max-flow 9 / 49



FCFS is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the FCFS policy, i.e. rB < rA and CA < CB.

I By scheduling B before A, we do not increase max(CA −
rA, CB − rB).

I Therefore, by scheduling A and B according to the FCFS policy,
we get a new schedule σ′ that is still optimal.

I By proceeding similarly for all pairs of jobs, we prove that FCFS
is optimal. �

rB rA CACB

A. Legrand (CNRS-LIG) INRIA-MESCAL CPU Scheduling Optimizing max-flow 9 / 49



FCFS is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the FCFS policy, i.e. rB < rA and CA < CB.

I By scheduling B before A, we do not increase max(CA −
rA, CB − rB).

I Therefore, by scheduling A and B according to the FCFS policy,
we get a new schedule σ′ that is still optimal.

I By proceeding similarly for all pairs of jobs, we prove that FCFS
is optimal. �

We do not even need to preempt jobs! Note that when you have
more than one processor, things are more complicated:

Bad News NP-complete with no preemption.

Good news Polynomial algorithm with preemption but it is much
more complicated than FCFS.
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Interesting properties

I The FCFS scheduling policy is non-clairvoyant, easy to imple-
ment, and does not use preemption.

I The FCFS policy is optimal for minimizing maxFi. It minimizes
the response time!

I Still, nobody would say it is a “reactive” scheduling algorithm.

I Maybe focusing on the worst case (i.e. max) is a bad idea. . .
We would accept to sacrifice some jobs to get something more
“reactive”.
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Let’s play with a small example

We wish to find a schedule (possibly using preemption) that has the
smallest possible sum flow (

∑
iCi − ri).

Shortest Remaining Processing Timer first seems to be optimal.
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SRPT is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the SRPT policy, i.e. CA < CB and at some point there
were more work to finish A than to finish B.

I By scheduling B before A, we strictly decrease CA + CB and
thus we strictly decrease the total flow.

I Therefore, the original schedule was not optimal! The only
optimal schedule is thus SRPT. �

Decision CA CB
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SRPT is optimal: sketch of the proof

I Let us consider an optimal schedule σ. Let us assume that
there are two jobs A and B that are not scheduled according
to the SRPT policy, i.e. CA < CB and at some point there
were more work to finish A than to finish B.

I By scheduling B before A, we strictly decrease CA + CB and
thus we strictly decrease the total flow.

I Therefore, the original schedule was not optimal! The only
optimal schedule is thus SRPT. �

Here, preemption is required!

Bad News NP-complete for multiple processors or with no preemp-
tion.

Good News Algorithm with logarithmic competitive ratio on multi-
ple processors exists.
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Comments

I Scheduling small jobs first is good for “reactivity” but it requires
to know the size of the jobs (i.e. clairvoyant).

I Scheduling small jobs first is good for the average response time
but some jobs may be left behind. . .

I Do you know an algorithm where job cannot starve?
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FCFS is ∆-competitive for
∑
Fi

∆: ratio of the sizes of the largest and smallest job.
Let’s prove FCFS is at most ∆-competitive.

FCFS is at exactly ∆-competitive. Proof details .
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Optimizing the average response time with no starvation?

Theorem 1.

Consider any online algorithm whose competitive ratio for average
flow minimization satisfies %(∆) < ∆.

There exists for this algorithm a sequence of jobs leading to star-
vation, and for which the maximum flow can be as far as we want
from the optimal maximum flow. Proof details

The starvation issue is inherent to the optimization of the average
response time.
Still, we would like something “reactive” and we like the idea that
short jobs have a higher priority.
It probably means that the “response time” is not the right metric.
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Let’s play with a small example

We wish to find a schedule (possibly using preemption) that has the
smallest possible sum stretch (

∑
i
Ci−ri
pi

).

Shortest Remaining Processing Timer first seems to be optimal
again.
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i
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8 ≈ 5.625).
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SRPT is 2-competitive

Let’s prove SRPT is at most 2-competitive.

SSSRPT = 1 + n(1 + α)

SSopt =
l + n

l
+ n = 1 + n

(
1 +

1
l

)
%SRPT (n) >

1 + n(1 + α)
1 + n(1 + 1/l)

−−−−−→
n→+∞

1 + α

1 + 1/l
−−−−→
l→+∞
α→1−

2
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SRPT is 2-competitive

Let’s prove SRPT is at most 2-competitive.

                      
n

 l

αSRPT is at exactly 2-competitive. The proof is more complicated
though.
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Comments

I One might want to adapt SRPT to this new criteria ; SWRPT:
always schedule the task with the smallest (remaining process-
ing time)×(processing time).

I SWRPT is not optimal either. It is exactly 2-competitive. How-
ever one can prove that it is optimal when there are only two
distinct job sizes!

I Actually, the complexity (P vs. NP-complete, the offline set-
ting) of this problem is still open.

I In the online setting SRPT and SWRPT are the algorithms
with the best competitive ratio but again they both may lead
to starvation.

I Do you know an algorithm where job cannot starve?
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Optimizing the average stretch with no starvation?

One can easily prove that FCFS is ∆2 competitive.

Theorem 2.

Consider any online algorithm whose competitive ratio for average
stretch minimization satisfies %(∆) < ∆2.

There exists for this algorithm a sequence of jobs leading to starva-
tion, and for which the maximum stretch can be as far as we want
from the optimal stretch flow. Proof details

Again the starvation issue is inherent to the optimization of the
average stretch.
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FCFS competitiveness

Competitive ratio: 1+∆−ε
1+∆

∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ > ∆− ε.

Theorem 3.

FCFS is ∆ competitive for maximum stretch minimization.
Proof details
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Let’s play with a small example

We wish to find a schedule (possibly using preemption) that has the
smallest possible max stretch (maxi Ci−ripi

).

Ensuring a given max-stretch defines deadlines. . .
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Deadline scheduling

I Assume that each job is given a deadline di.

I There is a very simple way to know whether it is possible to
respect these deadlines:

always schedule the job with the earliest deadline first (EDF).

I Assume that we want to know whether it is possible to achieve
a given max-stretch S. Then we have

Ci − ri
pi

6 S ⇔ Ci 6 ri + S.pi, hence di = ri + S.pi.

I By doing a dichotomy on S, we have a polynomial (offline)
algorithm to minimize the max-stretch.
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Going Online

I The previous scheduling algorithm is simple but it requires to
have an estimate of the max-stretch, i.e. if you know what you
aim at, then you know how to do it.

I Bender, Chahrabarti, and Muthukrishnan (1998).
Each time a job arrives:

I Compute the off-line max-stretch S.
I Jobs are scheduled earliest deadline first with the deadlines de-

fined by
√

∆× S.

This online algorithm is
√

∆-competitive.
I Bender, Muthukrishnan, and Rajaraman (2002)

For each job Jj , we define a pseudo-stretch Ŝj(t):

Ŝj(t) =

{ t−rj√
∆

if 1 6 pj 6
√

∆,
t−rj

∆ if
√

∆ < pj 6 ∆.

The jobs are scheduled by non increasing pseudo-stretch.
This online algorithm is also

√
∆-competitive and is much faster

than the previous one.
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Ŝj(t) =

{ t−rj√
∆

if 1 6 pj 6
√

∆,
t−rj

∆ if
√

∆ < pj 6 ∆.

The jobs are scheduled by non increasing pseudo-stretch.
This online algorithm is also

√
∆-competitive and is much faster

than the previous one.

A. Legrand (CNRS-LIG) INRIA-MESCAL CPU Scheduling Optimizing max-stretch 26 / 49



Going Online

I The previous scheduling algorithm is simple but it requires to
have an estimate of the max-stretch, i.e. if you know what you
aim at, then you know how to do it.

I Bender, Chahrabarti, and Muthukrishnan (1998).
Each time a job arrives:

I Compute the off-line max-stretch S.
I Jobs are scheduled earliest deadline first with the deadlines de-

fined by
√

∆× S.

This online algorithm is
√

∆-competitive.
I Bender, Muthukrishnan, and Rajaraman (2002)

For each job Jj , we define a pseudo-stretch Ŝj(t):
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Bound on the competitive ratio

Actually, it is hard to have a better guarantee of this type.

Theorem 4.

On one processor, any online scheduling algorithm with preemption
minimizing the max-stretch has a competitive ratio greater than
1
2∆
√

2−1, if the system receives at least jobs of three different sizes,
and if ∆ is the ratio between the size of the largest and the smallest
job.

Proof principle: by contradiction we assume that there exists an
algorithm and we build a sequence of jobs and a scenario to make
the algorithm fail. Proof details
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Conclusion

Minimizing the average stretch

I Off-line case: looks difficult.

I Online case: rather easy.

Minimizing the max-stretch

I Off-line case: in polynomial time.

I Online: very difficult.

and in practice ?
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A non guaranteed heuristic

The Bender98 has two drawbacks:

I It never forgets anything: it computes the optimal offline max
stretch from the very beginning ; slower and slower.

I It focus on optimizing the max-stretch and does not do anything
to optimize the second max-stretch, the third max-stretch, and
so on.

We have proposed the following heuristic instead.
Each time a job arrives:

1 Preempt the running job (if any).

2 Compute the best achievable max-stretch, S, taking into ac-
count the already taken decisions.

3 With the deadlines and time intervals defined by the max-
stretch S, solve a Pseudo-approximation of a rational relaxation
of sum-stretch (a linear program).

No guarantee !
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Simulation results (on one processor)

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.0413 0.0593 1.6735
SWRPT 1.1316 0.2071 3.1643 1.0001 0.0009 1.0398

SRPT 1.1242 0.2003 3.0753 1.0139 0.0212 1.2576
Bender98 1.1200 0.1766 2.5428 1.0194 0.0279 1.4466
Bender03 3.5422 2.4870 21.4819 2.9872 1.9599 15.0019
Heuristic 1.0016 0.0149 1.6344 1.0549 0.0893 1.8134

MCT 8.7762 9.1900 80.7465 6.8979 7.7409 88.2449
RAND 11.3059 11.1981 125.3726 5.8227 6.3942 68.0009

Aggregate statistics for a single machine on various “realistic”
workloads.
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Conclusion

I The theory claims that optimizing max-stretch is easy in the
off-line setting and hard in the online setting.

I The theory claims that optimizing sum-stretch is hard in the
off-line setting and rather easy in the online setting.

I The theory claims that optimizing both sum-stretch and max-
stretch is impossible.
More precisely, it is not possible to have worst-case guarantees.

I In practice, optimizing max-stretch online is not that hard and
also gives very good results for the average stretch.

I Having good worst-case guarantees does not prevent to perform
bad on the average (Bender03).

I Sum-Stretch does not seem a pertinent metric.

I Trying to optimize “recursively” the max-stretch is a good idea
and “simple” algorithms can do that.
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Fair Sharing

All previous algorithms (Online, SRPT, SWRPT, . . . ) need to know
the processing time of the jobs.

What kind of algorithm could we come up with in a
non-clairvoyant setting ?

Fair Sharing At each time-step, fairly share the resource between
the jobs .

It is not really efficient though...
In the previous algorithms, we have never produced a schedule
with . . . A . . . B . . . A . . . B . . . . Intuitively alternating jobs is not
a good idea.
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Pareto optimality

The cost (here the completion time) of a user can not be improved
without degrading the cost of another user.
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The Pareto max-stretch (1)

Dates d’arrivées

3 4 50 1 2

Schedule 1 and Schedule 2 are Pareto optimal

Schedule 2 is the min-max solution
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The Pareto max-stretch (2)

3 4 50 1 2 6 7 8 9

Computation of the optimal max-stretch: 2.
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The Pareto max-stretch (2)

d d dd d

3 4 50 1 2 6 7 8 9

Computation of the optimal max-stretch: 2.

Defining a deadline per job.

Jobs are scheduled Earliest deadline first.
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The Pareto max-stretch (2)

d d dd d

3 4 50 1 2 6 7 8 9

Jobs are scheduled Earliest deadline first.

If completion time = deadline, whatever the schedule, the stretch
of this job is equal to the maximum stretch.

We set the jobs that cannot be optimized, and we call recursively
the process.
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3 4 50 1 2 6 7 8 9

We set the jobs that cannot be optimized, and we call recursively
the process.

Max-stretch of remaining jobs : 1,5.
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Fair Sharing

The fair sharing approach produces very Pareto-inefficient solutions.

Being fair does not mean “giving the same to everyone”.

When looking at E[Ci] instead of Ci, we get a different cost set.

E
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D

D
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C

B

B

A

A

3 4 50 1 2
C2

4

3

2

1

1 2 3 4 C1

Points pareto optimaux

It is better to stick to a choice and to update the balance next time.
Preemption should be used to react to unexpected events, not to
try to be “fair”.
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Multi-level Queue

The ready queue is partitioned into separate queues:

I foreground queue (interactive or small jobs)

I background queue (batch jobs)

Each queue may have its own scheduling algorithm (e.g., Fair Shar-
ing for the foreground queue and FCFS for the background queue).
Scheduling must be done between the queues:

I Fixed priority scheduling (i.e. foreground first, then background)
; potential starvation

I Time slice: each queue gets a certain amount of CPU which it
can distribute among its processes (e.g., 80% for the foreground
queue).

In a non-clairvoyant setting, it may be hard to know in which queue
should go a process.
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Multi-Level Feedback

Three (or more queues):
I Queue 0: Fair-Sharing with small granularity (e.g., round-robin

with time quantum 8 miliseconds).
I Queue 1: Fair-Sharing with larger granularity (e.g., round-robin

with time quantum 16 milliseconds)
I Queue 2: FCFS

Scheduling:
I When a job enters the system, it goes into Queue 0.
I If it does not finish within a few 8ms time quantum, it is moved

to Queue 1.
I If it still does not finish within a few 16ms time quantum, it is

moved to Queue 2.

The rationale behind this algorithm is to try to detect small jobs
and do some kind of SRPT without knowing the processing time.
Larger jobs are served FCFS so there is no starvation.

MLF has reactivity, no starvation, and... no guarantee of any kind.
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Conclusion

We have presented and studied many scheduling problems with a
“simple” tool: an adversary.
Trying to find bad situations and to trick your algorithms is the
best way to understand how to improve them and whether some
parameters are important or not.
Theoretical analysis and results help you formalize and understand
important scheduling issues:

I What it a relevant objective?

I Can I have a guarantee on how my algorithm behaves in the
worst case?

I Is there potential starvation?

I Are common thoughts (like “I’m fair because I give the same
to everyone”) really true?
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FCFS is ∆-competitive for
∑
Fi

Let’s prove FCFS is at least ∆-competitive.

I FΘ(I) will denote the sum-flow achieved by the schedule Θ on instance I.

I F∗(I) will denote the optimal sum-flow for instance I.

I We show by recurrence on n that for any instance I = {J1 =
(r1, p1), ..., Jn = (rn, pn)}: FFCFS(I) 6 ∆F∗(I).

I This property obviously holds for n = 1. Let us assume that it has been
proved for n and prove that it holds true for n +1.
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FCFS is ∆-competitive for
∑
Fi

I Let us consider I = {J1 = (r1, p1), ..., Jn+1 = (rn+1, pn+1)} an instance
with n+ 1 jobs (and w.l.o.g minj pj = 1).

I We may only consider priority list based schedules. Thus let Θ denote the
optimal priority list for I.

I We denote by A1 the set of jobs that have a lower priority than Jn+1 and
A2 the set of jobs that have a higher priority than Jn+1.

I %Θ(Jk) denotes the remaining processing time of Jk at time rn+1 under
scheduling Θ.

I Thus we have:
FΘ(J1, . . . , Jn+1) =

FΘ(J1, . . . , Jn) + pn+1 +
∑
k∈A1

%Θ(k)︸ ︷︷ ︸
The flow of Jn+1

+
∑
k∈A2

pn+1︸ ︷︷ ︸
The cost incurred by Jn+1
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FCFS is ∆-competitive for
∑
Fi

We also have:

FFCFS(J1, . . . , Jn+1) = FFCFS(J1, . . . , Jn) + pn+1 +
∑
k6n

%FCFS(k)︸ ︷︷ ︸
The flow of Jn+1

6 ∆F∗(J1, . . . , Jn) + pn+1 +
∑
k6n

%FCFS(k) (by recurrence hypothesis)

6 ∆FΘ(J1, . . . , Jn) + pn+1 +
∑
k6n

%FCFS(k)

= ∆FΘ(J1, . . . , Jn) + pn+1 +
∑
k6n

%Θ(k)

Indeed, for a priority-based scheduling, at any given time step, the remaining
processing time of jobs is independent of the priorities.
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FCFS is ∆-competitive for
∑
Fi

Therefore, we have:

FFCFS(J1, . . . , Jn+1) 6 ∆FΘ(J1, . . . , Jn) + pn+1 +
∑
k∈A1

%Θ(k) +
∑
k∈A2

%Θ(k)

As we have %Θ(k) 6 ∆ 6 ∆pn+1, we get

FFCFS(J1, . . . , Jn+1) 6 ∆FΘ(J1, . . . , Jn) + pn+1 +
∑
k∈A1

%Θ(k) +
∑
k∈A2

∆pn+1

6 ∆FΘ(J1, . . . , Jn) + ∆pn+1 + ∆
∑
k∈A1

%Θ(k)+

∆
∑
k∈A2

pn+1

6 ∆FΘ(J1, . . . , Jn+1) = ∆F∗(J1, . . . , Jn+1) �
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Max-Stretch and Sum-Stretch are incompatible :
demonstration (1)

I By contradiction, ∃∆ > 1, ∃ε > 0, ∃ algorithm A s.t.

%A(∆) < ∆2 − ε.

I Adversary:

I Let α ∈ N∗ s.t. 1+α∆
1+ α

∆
> ∆2 − ε

2

I At date 0 arrives α jobs of size ∆, J1, ..., Jα.
I k ∈ N∗. ∀t ∈ [0, k − 1], job Jα+t+1 of size 1 arrives at time t.
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Max-Stretch and Sum-Stretch are incompatible :
demonstration (2)

0

∆

α

k jobs of size 1

A possible schedule: each of the k unit jobs at its release date, and
then the α ∆-units jobs.

sum-stretch = k×1+
k + ∆

∆
+...+

k + α∆
∆

=
α(α+ 1)

2
+k
(

1 +
α

∆

)
.

max-stretch = α+
k

∆
.

May not be optimal (just an upper-bound) and induces starvation.
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Max-Stretch and Sum-Stretch are incompatible :
demonstration (2)

0

∆

α

k jobs of size 1

Otherwise, at a date t1 < k+α∆ the ∆ size jobs are all completed.
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Max-Stretch and Sum-Stretch are incompatible :
demonstration (2)

0

∆

α

t1k1

k jobs of size 1

Otherwise, at a date t1 < k+α∆ the ∆ size jobs are all completed.
k1 unit size jobs were completed before t1.
Best achievable sum-stretch:

k1 × 1 +
k1 + ∆

∆
+ ...+

k1 + α∆
∆

+ (k − k1)(1 + α∆) =(
α(α+ 1)

2
+
αk1

∆

)
+ k1 + (k − k1)(1 + α∆).
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Max-Stretch and Sum-Stretch are incompatible :
demonstration (3)

Hypothesis: A is %A(∆)-competitive

(
α(α+ 1)

2
+
αk1

∆

)
+ k1 + (k − k1)(1 + α∆)

6 %A(∆)
(
α(α+ 1)

2
+ k

(
1 +

α

∆

))
⇔

− α∆k1 +
α(α+ 1)

2
(1− %A(∆)) +

αk1

∆
6 k

(
%A(∆)

(
1 +

α

∆

)
− (1 + α∆)

)
.

Must hold for any k, thus:(
%A(∆)

(
1 +

α

∆

)
− (1 + α∆)

)
> 0⇒ ∆2 − ε > 1 + α∆

1 + α
∆

.
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FCFS competitiveness: at worst ∆ competitive

I An instance J1, ..., Jn.
Θ∗: an optimal schedule for max-stretch.
Cj : completion time of Jj under FCFS (C∗j under Θ∗).
Sj : stretch of Jj under FCFS (S∗j under Θ∗).

I Any job Jl s.t. Sl > S∗l .

t last time before Cl s.t. the processor was idle under FCFS.
t is the release date ri of some job Ji.
During the time interval [ri, Cl], FCFS exactly executes Ji,
Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i 6 k 6 l − 1 s.t. C∗k > Cl.
Then:

max
j
S∗j > S∗k =

C∗k − rk
pk

>
Cl − rl
pk

=
Cl − rl
pl

pl
pk
> Sl ×

1
∆

∀l,Sl > S∗l ⇒ S∗ > Sl ×
1
∆
.
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The adversary

0

δ

δ 2δ

Achievable stretch:
2δ − 0
δ

= 2.
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The adversary

k

0

δ

δ 2δ

2δ − k
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

The job T2+j arrives at time 2δ + (j − 2)k.
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

The job T2+j arrives at time 2δ + (j − 2)k.

Achievable stretch:
(2δ + jk)− (2δ + (j − 2)k)

k
= 2.
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

In practice: we do not know what happens after 2δ − k.
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date.
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date.

The algorithm being 1
2∆
√

2−1-competitive, T1 and T2 must be com-

pleted at the latest at time: 2 · 1
2

∆
√

2−1 · δ = 2 · 1
2

(
δ

k

)√2−1

· δ
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∆
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We let α = d1 +k− 2δ
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

k + 1

We want to forbid this case (each size-k job being executed at its
release date.

The algorithm being 1
2∆
√

2−1-competitive, T1 and T2 must be com-

pleted at the latest at time: 2 · 1
2

∆
√

2−1 · δ = 2 · 1
2

(
δ

k

)√2−1

· δ

We let α = d1 +k− 2δ
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

The job T2+α+j arrives at time 2δ + (α− 1)k + (j − 1).
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

Achievable stretch (off-line)

Stretch of each job of size k or 1 : 1.

Stretch of T1 or T2:
2δ + αk + β

δ

Optimal stretch 6
2δ + αk + β

δ
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

Achievable stretch (online)
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

Achievable stretch (online)

The last completed job is of size k.

Stretch >
(2δ + αk + β)− (2δ + (α− 2)k)

k
= 2 +

β

k
.
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

Achievable stretch (online)

The last completed job is of size 1.

Stretch >
(2δ + αk + β)− (2δ + (α− 1)k + (β − 1))

1
= k + 1.
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The adversary

0

δ

δ 2δ

2δ − k

α tâches de taille k

2δ + (α− 2)k

β tâches de taille 1

2δ + αk + β

Achievable stretch (online)

Stretch > min
{

2 +
β

k
, k + 1

}
We let: β = dk(k − 1)e

Then: stretch > k + 1.
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The adversary: summing things up

α =
⌈

1 + k − 2δ
k

⌉

β = dk(k − 1)e

Optimal stretch 6
2δ + αk + β

δ

Achieved stretch > k + 1.

We let k = δ2−
√

2

Therefore k + 1 >
(

1
2
δ
√

2−1

)(
2δ + αk + β

δ

)
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