Exercise on validation

Typical random access protocol to a common channel (CSMA family)

while Message not send do
 Send message
 if Collision then
 Wait some amount of time
 end if
end while

What should be the *amount of time* ?

Protocol dimensioning

Waiting time :

- Random
- Uniform on an interval [0, In]
- Length of the interval depends on the number of collisions
- Adaptive scheme $I_{n+1} = 2 \times I_n$
- *I*⁰ fixed, characteristic of the protocol

Exercise on validation

Typical random access protocol to a common channel (CSMA family)

while Message not send do
 Send message
 if Collision then
 Wait some amount of time
 end if
end while

What should be the amount of time ?

Protocol dimensioning

Waiting time :

- Random
- Uniform on an interval [0, *I_n*]
- Length of the interval depends on the number of collisions
- Adaptive scheme $I_{n+1} = 2 \times I_n$,
- *I*⁰ fixed, characteristic of the protocol

Exercise on validation

Typical random access protocol to a common channel (CSMA family)

while Message not send do
 Send message
 if Collision then
 Wait some amount of time
 end if
end while

What should be the amount of time ?

Protocol dimensioning

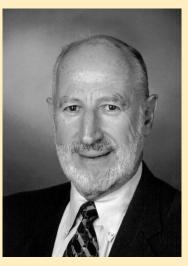
Waiting time :

- Random
- Uniform on an interval [0, *I_n*]
- Length of the interval depends on the number of collisions
- Adaptive scheme $I_{n+1} = 2 \times I_n$,
- I_0 fixed, characteristic of the protocol

Protocol history

University of Hawaii 1970

http://www.hicss.hawaii.edu/



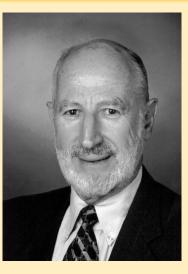
Norman Abramson et al. Use of a radio network to provide computer communications without centralization or vacations

Ancestor of CSMA/CD (ethernet), CSMA/CA (WiFi)...

Protocol history

University of Hawaii 1970

http://www.hicss.hawaii.edu/



Norman Abramson et al.

Use of a radio network to provide computer communications without centralization or vacations

Ancestor of CSMA/CD (ethernet), CSMA/CA (WiFi)...

Quantitative specification validation

Experiment

Propose an experiment to check the specification of the protocol

Estimation

How could I_0 be estimated ?

Decision

How could you conclude on the validity of the implementation of the protocol ?

Quantitative specification validation

Experiment

Propose an experiment to check the specification of the protocol

Estimation

How could I_0 be estimated ?

Decision

How could you conclude on the validity of the implementation of the protocol ?

Quantitative specification validation

Experiment

Propose an experiment to check the specification of the protocol

Estimation

How could I_0 be estimated ?

Decision

How could you conclude on the validity of the implementation of the protocol ?

Performance Evaluation

A not so Short Introduction Analyzis of experimental results and inference

Jean-Marc Vincent¹

¹Laboratoire LIG, projet Inria-Mescal UniversitéJoseph Fourier Jean-Marc.Vincent@imag.fr

2014

- **2** One Factor
- **3** Factor Selection
- 4 Trace Analysis
- **5** Conclusion

Architecture comparison

Performance characterization

Distributed protocol (consensus)

- List of benchmarks (with some parameters)
- Several types of architecture

Problem: decide which architecture is the best one

Comparison of results

Decision problem

Two hypothesis : - \mathcal{H}_0 : (null hypothesis) A is equivalent to B- \mathcal{H}_1 : (alternative hypothesis) A is better than BDecision error: type 1 error : reject \mathcal{H}_0 when \mathcal{H}_0 is true type 2 error : accept \mathcal{H}_0 when \mathcal{H}_1 is true.

According the observation find the decision function minimizing some risk criteria Rejection region : if $(x_1, \dots, x_n) \in C$ reject H_0

Danger : errors are not symmetric

Trace Analysis

Conclusion

Testing Normal Distributed Variables

Observations : $\mathcal{N}(m_0, \sigma_0^2)$) under hypothesis \mathcal{H}_0 and $\mathcal{N}(m_1, \sigma_1^2)$) under hypothesis \mathcal{H}_1 with $m_1 > m_0$

Rejection region
$$C = \left\{ \frac{1}{n} (x_1 + \cdots + x_n) \ge K \right\}.$$

Computation of the rejection region type 1 error : choose α

$$\begin{aligned} \alpha &= & \mathbb{P}_{\mathcal{H}_0}(\frac{1}{n}(X_1 + \dots + X_n) \geqslant K_{\alpha}) \\ &= & \mathbb{P}_{\mathcal{H}_0}\left(\left(\frac{\sqrt{n}}{\sigma}(\frac{1}{n}(X_1 + \dots + X_n) - m_0) \geqslant \frac{\sqrt{n}}{\sigma}(K_{\alpha} - m_0)\right) \right) \\ &= & \mathbb{P}(Y \geqslant \frac{\sqrt{n}}{\sigma}(K_{\alpha} - m_0)) \text{ with } Y \sim \mathcal{N}(0, 1). \end{aligned}$$

$$\Phi_{\alpha} = \frac{\sqrt{n}}{\sigma} (K_{\alpha} - m_0)$$
 then $K_{\alpha} = m_0 + \frac{\sigma}{\sqrt{n}} \Phi_{\alpha}$.

Factor Selection

Conclusion

Numerical example

- $\alpha = 0.05$ (a priori confidence) • $\Phi_{\alpha} = 1.64$ (read on the table of the Normal distribution)
- Under \mathcal{H}_0 , $m_0 = 6$ and $\sigma_0 = 2$ Sample size n = 100

$$K_{\alpha} = 6 + rac{2}{10}1.64 = 6.33.$$

If $\frac{1}{n}(x_1 + \cdots + x_n) \ge 6.33$ reject \mathcal{H}_0 (accept \mathcal{H}_1), else accept \mathcal{H}_0

Type 2 error: Depends on the alternative hypothesis

• $m_1 = m'$ (known) σ_1 known

$$\beta = \mathbb{P}_{\mathcal{H}_1}(\frac{1}{n}(X_1 + \cdots + X_n) \leqslant K_\alpha) = \mathbb{P}(Y \leqslant \frac{\sqrt{n}}{\sigma_1}(K_\alpha - m_1))$$

• $m_1 > m_0$ or $m_1 \neq m_0$: cannot compute

Factor Selection

Conclusion

Numerical example

- $\alpha = 0.05$ (a priori confidence) • $\Phi_{\alpha} = 1.64$ (read on the table of the Normal distribution)
- Under \mathcal{H}_0 , $m_0 = 6$ and $\sigma_0 = 2$ Sample size n = 100

$$K_{\alpha} = 6 + rac{2}{10}1.64 = 6.33.$$

If $\frac{1}{n}(x_1 + \cdots + x_n) \ge 6.33$ reject \mathcal{H}_0 (accept \mathcal{H}_1), else accept \mathcal{H}_0

Type 2 error: Depends on the alternative hypothesis

• $m_1 = m'$ (known) σ_1 known

$$\beta = \mathbb{P}_{\mathcal{H}_1}(\frac{1}{n}(X_1 + \cdots + X_n) \leqslant K_\alpha) = \mathbb{P}(Y \leqslant \frac{\sqrt{n}}{\sigma_1}(K_\alpha - m_1)).$$

• $m_1 > m_0$ or $m_1 \neq m_0$: cannot compute

Test if algorithm 1 is better than algorithm 0

- Generate *n* random inputs i_1, \dots, i_n
- Compute $A_0(i_k) A_1(i_k)$
- $x_k = A_1(i_k) A_0(i_k)$
- Reject the hypothesis m = 0 if $\frac{1}{n}(x_1 + \cdots + x_n) \ge K_{\alpha}$

Application example (2)

Test if system 1 is better than system 0

- Generate n_0 random inputs i_1, \dots, i_{n_0}
- Compute $S_0(i_k)$
- Generate n_1 random inputs i_1, \dots, i_{n_1}
- Compute $S_1(i_k)$
- Compute the mean difference
- Compute the standard deviation of the difference
- Reject the hypothesis m = 0 if $\bar{x}_1 \bar{x}_0 \ge K_{\alpha}$

Comparison of Systems

- 2 One Factor
- **3** Factor Selection
- Trace Analysis

5 Conclusion

Experiment with one factor

Evaluate complexity as a function of the size of data Response time as function of the message sizes Load of a web server function of the number of connexion etc

Observations

Couple (x, y) paired observations

- x predictor variable (known without error or noise)
- y response variable

- 1 Plot data and analyse separately x and y (histogram, central tendency,...)
- 2 Plot the cloud of points (x, y)
- Analyse the shape of the cloud
- Propose a dependence function (fix the parameters y = ax + b, $y = be^{ax}$,...)
- Give the semantic of the function
- Give an error criteria with its semantic
- Compute the parameters minimizing a criteria
- Output the confidence intervals on parameters (precision of the prediction)
- Explain the unpredicted variance (ANOVA)
- Analyse the result

What is a regression?

Regression analysis is the most widely used statistical tool for understanding relationships among variables. Several possible objectives including:

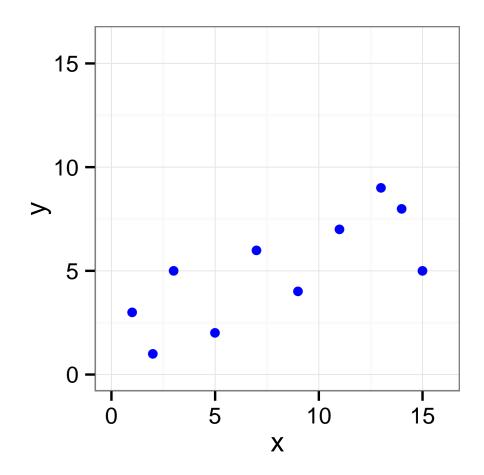
- Prediction of future observations. This includes extrapolation since we all like connecting points by lines when we *expect* things to be continuous
- Assessment of the effect of, or relationship between, explanatory variables on the response
- A general description of data structure (generally expressed in the form of an equation or a model connecting the response or dependent variable and one or more explanatory or predictor variable)
- Optimize the second second
- The linear relationship is the most commonly found one
 - we will illustrate how it works
 - it is very general and is the basis of many more advanced tools (polynomial regression, ANOVA, ...)

Starting With a Simple Data Set

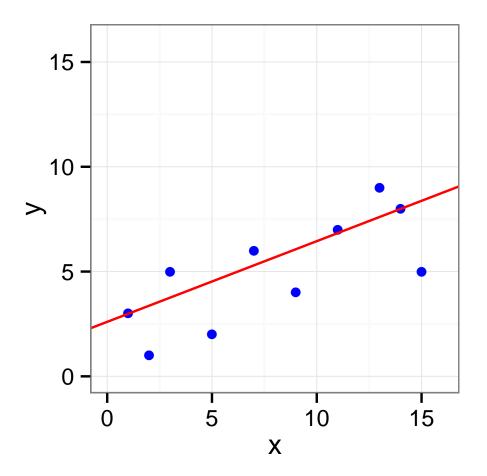
Descriptive statistics provides simple summaries about the sample and about the observations that have been made.

How could we summarize the following data set ?

	X	у
1	1.00	3.00
2	2.00	1.00
3	3.00	5.00
4	5.00	2.00
5	7.00	6.00
6	9.00	4.00
7	11.00	7.00
8	13.00	9.00
9	14.00	8.00
10	15.00	5.00

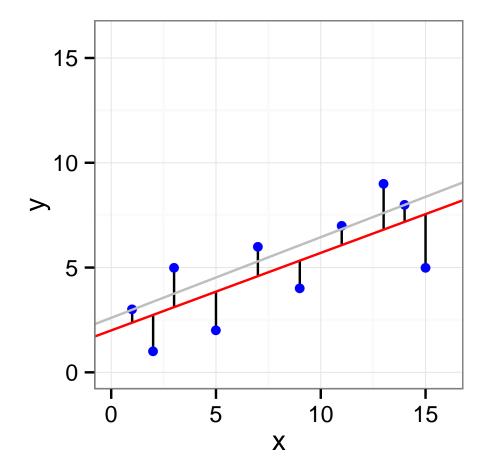


Eyeball Method

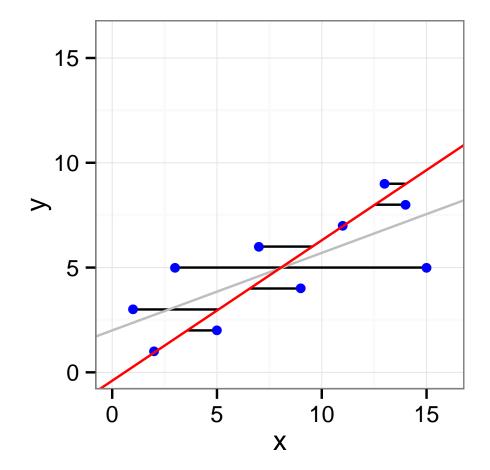


- A straight line drawn through the maximum number of points on a scatter plot balancing about an equal number of points above and below the line
- Some points are rather far from the line. Maybe we should instead try to minimize some kind of *distance to the line*

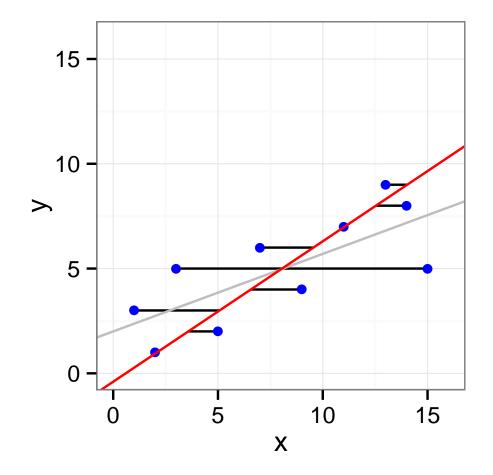
Least Squares Line (3): y as a function of x or the opposite?



Least Squares Line (3): y as a function of x or the opposite?

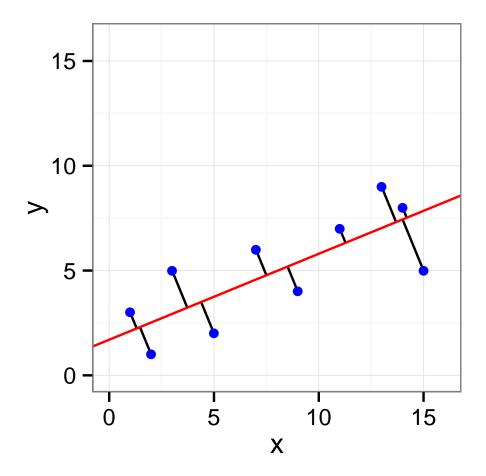


Least Squares Line (3): y as a function of x or the opposite?



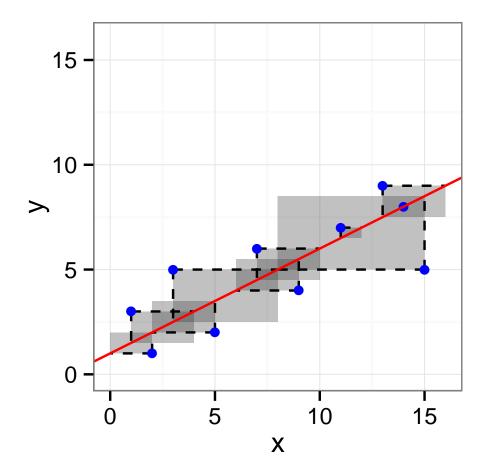
OK, do we have less asymetrical options?

Least Distances Line (a.k.a. Deming Regression)



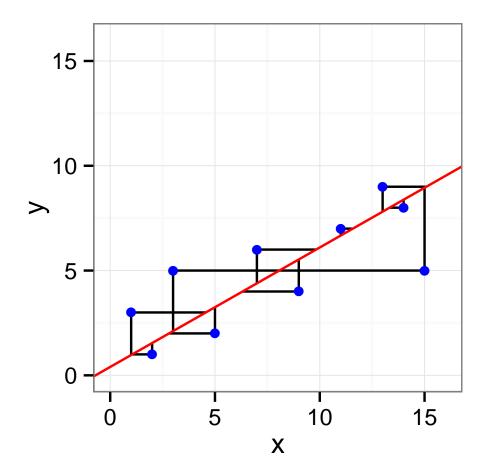
Note that somehow, this makes sense only if we have a square plot,
 i.e., if x and y have the same units

Least Rectangles Line



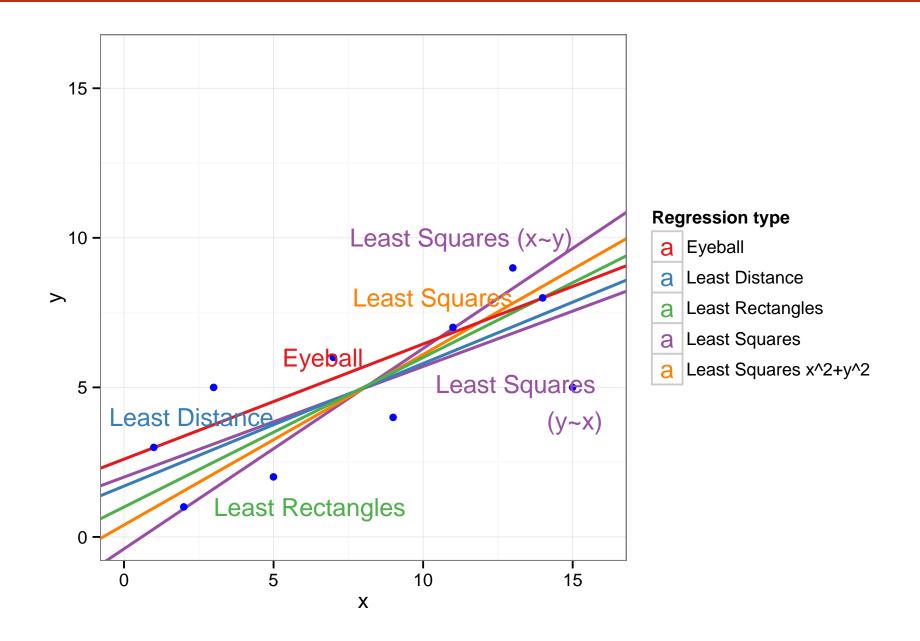
Minimize E(α, β) = ∑_{i=1}ⁿ |x_i - y_i - α | ⋅ |y_i - α - βx_i|
This leads to the regression line y = s_y/s_y(x - x̄) + ȳ.

Least Squares (in Both Directions) Line



- Minimize $D(\alpha, \beta) = \sum_{i=1}^{n} \left(x_i \frac{y_i \alpha}{\beta} \right)^2 + (y_i \alpha \beta x_i)^2$
- Has to be computed analytically

Which line to choose?



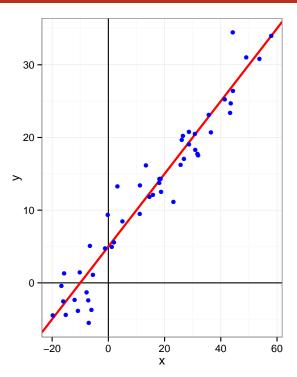
- Eyeball: AFAIK nothing
- Least Squares: classical linear regression $y \sim x$
- Least Squares in both directions: I don't know
- Deming: equivalent to Principal Component Analysis
- Rectangles: may be used when one variable is not "explained" by the other, but are inter-dependent

This is not just a geometric problem. You need a model of to decide which one to use

The Simple Linear Regression Model

We need to invest in a probability model $Y = a + bX + \varepsilon$

- Y is the response variable
- X is a continuous explanatory variable
- *a* is the intercept
- *b* is the slope
- ε is some noise

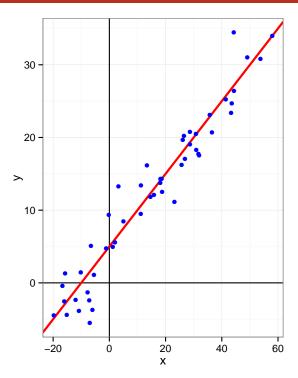


- a + bX represents the "true line", the part of Y that depends on X
- The error term ε is independent "idosyncratic noise", i.e., the part of
 Y not associated with X

The Simple Linear Regression Model

We need to invest in a probability model $Y = a + bX + \varepsilon$

- Y is the response variable
- X is a continuous explanatory variable
- *a* is the intercept
- *b* is the slope
- ε is some noise



- a + bX represents the "true line", the part of Y that depends on X
- The error term ε is independent "idosyncratic noise", i.e., the part of
 Y not associated with X

Gauss-Markov Theorem

Under a few assumptions, the least squares regression is the best linear unbiased estimate

•
$$\mathbb{E}(\hat{\beta}) = b$$
 and $\mathbb{E}(\hat{\alpha}) = a$ • $\operatorname{Var}(\hat{\beta})$ and $\operatorname{Var}(\hat{\alpha})$ are minimal

Multiple explanatory variables

• The same results hold true when there are several explanatory variables:

 $Y = a + b^{(1)}X^{(1)} + b^{(2)}X^{(2)} + b^{(1,2)}X^{(1)}X^{(2)} + \varepsilon$

The least squares regressions are good estimators of *a*, $b^{(1)}$, $b^{(2)}$, $b^{(1,2)}$

• We can use an arbitrary linear combination of variables, hence $Y = a + b^{(1)}X + b^{(2)}\frac{1}{X} + b^{(3)}X^3 + \varepsilon$

is also a linear model

 Obviously the closed-form formula are much more complicated but softwares like R handle this very well

Linear regression

Theoretical model

(X, Y) follows a correlation model

 $Y = \alpha X + \beta + \epsilon;$

with ϵ a white noise $\epsilon \sim \mathcal{N}(0, .)$

Objective function

Find estimator (\hat{a}, \hat{b}) minimizing the SSE (sum of square errors)

$$\sum_{i=1}^{n} (y_i - ax_i - b)^2 = \sum_{i=1}^{n} e_i^2.$$

 $e_i = y_i - ax_i - b$ is the error prediction when the coefficients are *a* and *b* (\hat{a}, \hat{b}) is the estimator of (α, β) minimizing SSE

Coefficients estimation

Statistics

- Empirical mean of x: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- Empirical mean of y: $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.
- Empirical variance of x: $S_X^2 = \frac{1}{n} \sum_{i=1}^n (x_i \overline{x})^2 = \overline{x^2} \overline{x}^2$.
- Empirical variance of y: $S_Y^2 = \frac{1}{n} \sum_{i=1}^n (y_i \overline{y})^2 = \overline{y^2} \overline{y}^2$.
- Empirical Covariance of (x, y): $S_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y}) = \overline{x \cdot y} \overline{x} \cdot \overline{y}$.

Estimators

$$y_{i} = \frac{S_{XY}}{S_{X}^{2}}(x_{i} - \overline{x}) + \overline{y}$$
$$\hat{a} = \frac{S_{XY}}{S_{X}^{2}} \text{ and } \hat{b} = \overline{y} - \frac{\overline{x} \cdot S_{XY}}{S_{X}^{2}} = \overline{y} - \hat{a} \cdot \overline{x}$$

Coefficients estimation

Statistics

- Empirical mean of x: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- Empirical mean of y: $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.
- Empirical variance of x: $S_X^2 = \frac{1}{n} \sum_{i=1}^n (x_i \overline{x})^2 = \overline{x^2} \overline{x}^2$.
- Empirical variance of y: $S_Y^2 = \frac{1}{n} \sum_{i=1}^n (y_i \overline{y})^2 = \overline{y^2} \overline{y}^2$.
- Empirical Covariance of (x, y): $S_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y}) = \overline{x \cdot y} \overline{x} \cdot \overline{y}$.

Estimators

0

$$y_{i} = \frac{S_{XY}}{S_{X}^{2}}(x_{i} - \overline{x}) + \overline{y}$$
$$\hat{a} = \frac{S_{XY}}{S_{X}^{2}} \text{ and } \hat{b} = \overline{y} - \frac{\overline{x} \cdot S_{XY}}{S_{X}^{2}} = \overline{y} - \hat{a} \cdot \overline{x}$$

Error analysis

Total error :

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 = SSY - SS0.$$

Prediction error:

$$SSE = \sum_{i=1}^{n} (y_i - \hat{a}x_i - \hat{b})^2 = n(\overline{y^2} - \hat{b}\overline{y} - \hat{a}\overline{x \cdot y})$$

Residual error (that has not been predicted): SSR = SST - SSEDetermination coefficient:

$$R^2 = \frac{SSR}{SST}$$

Prediction quality

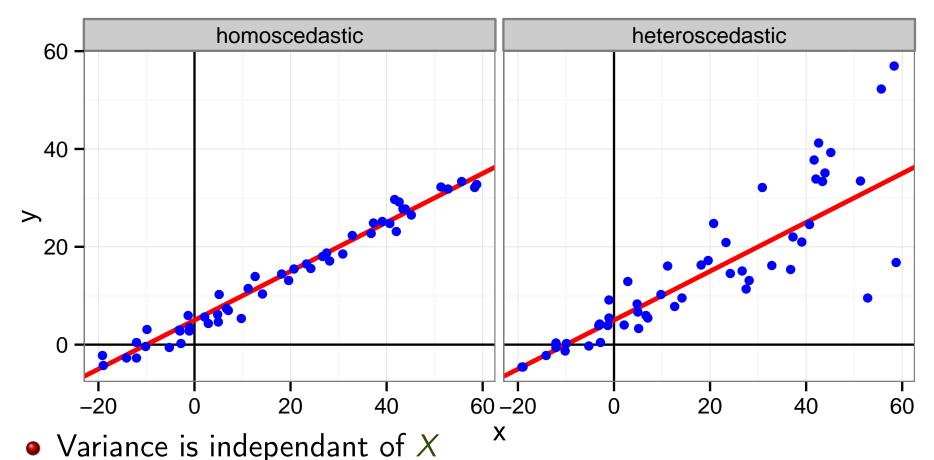
• $R^2 = 1$ perfect fit

Usually we accept the model when $R^2 \ge 0.8$

- Weak exogeneity The predictor variables X can be treated as fixed values, rather than random variables: the X are assumed to be error-free, i.e., they are not contaminated with measurement errors Although not realistic in many settings, dropping this assumption leads to significantly more difficult errors-in-variables models
- Linearity the mean of the response variable is a linear combination of the parameters (regression coefficients) and the predictor variables Since predictor variables themselves can be arbitrarily transformed, this is not that restrictive. This trick is used, for example, in polynomial regression, but beware of overfitting
- Independance of Errors if several responses Y_1 and Y_2 are fit, ε_1 and ε_2 should be independant

Other Very Important Hypothesis

Constant variance (a.k.a. homoscedasticity)

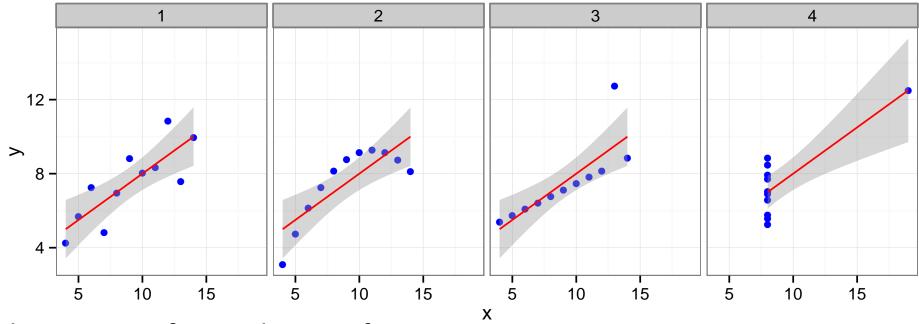


- If several responses Y_1 and Y_2 are fit, ε_1 and ε_2 should have the same variance
- Either normalize Y or use an other estimator

Other Classical Hypothesis (3)

Normal and iid errors This is not an assumption of the Gauss Markov Theorem. Yet, it is quite convenient to build confidence intervals of the regression

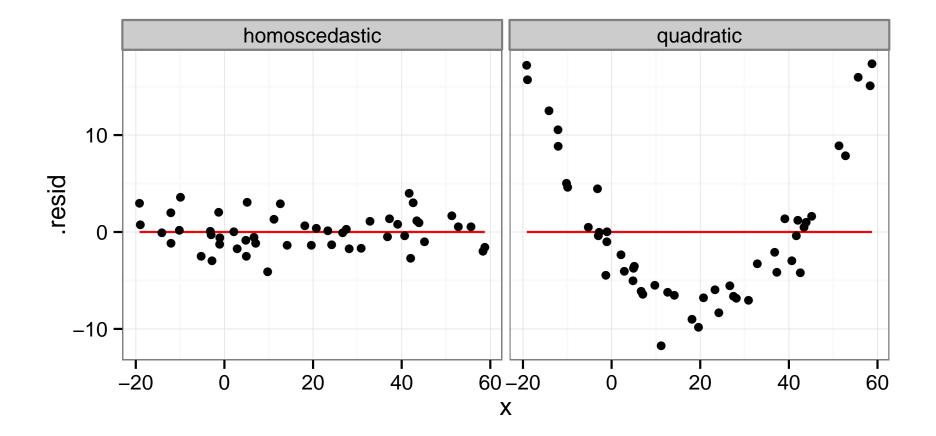
Arrangement of the predictor variables X it has a major influence on the precision of estimates of β (remember Anscombe's quartet).



This is part of your design of experiments:

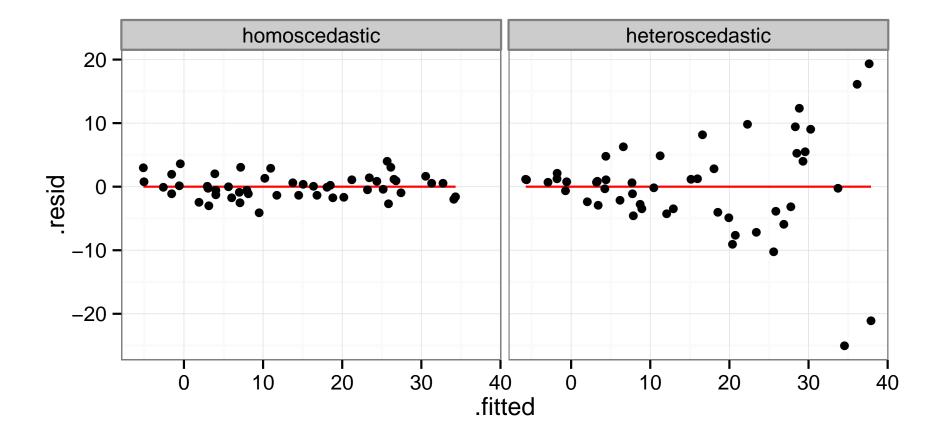
- If you want to test linearity, X should be uniformly distributed
- If you want the best estimation, you should use extreme values of X

Linearity: Residuals vs. Explanatory Variable

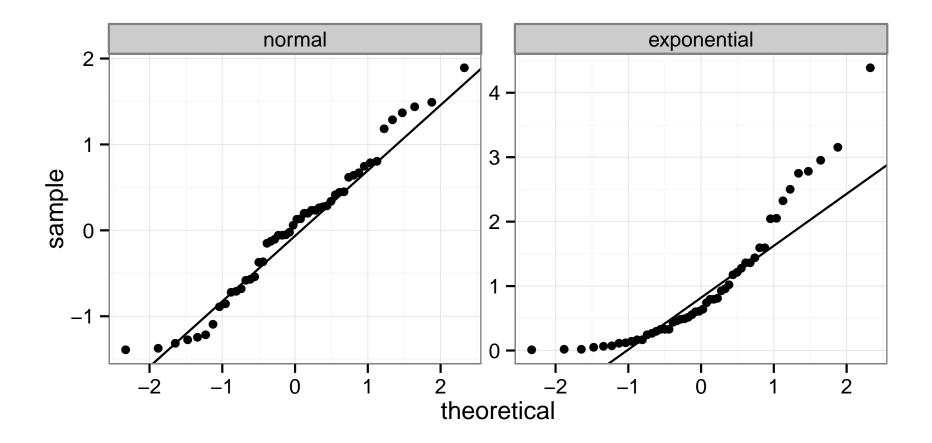


When there are several factors, you have to check for every dimension...

Homoscedasticity: Residuals vs. Fitted values



Normality: qqplots



A quantile-quantile plot is a graphical method for comparing two probability distributions by plotting their quantiles against each other

Model Formulae in R

The structure of a model is specified in the formula like this:

response variable ~ explanatory variable(s)

~ reads "is modeled as a function of " and $lm(y^x)$ means $y = \alpha + \beta x + \varepsilon$

On the right-hand side, on should specify how the explanatory variables are combined. The symbols used here have a different meaning than in arithmetic expressions

- + indicates a variable inclusion (not an addition)
- - indicates a variable deletion (not a substraction)
- * indicates inclusion of variables and their interactions
- : means an interaction

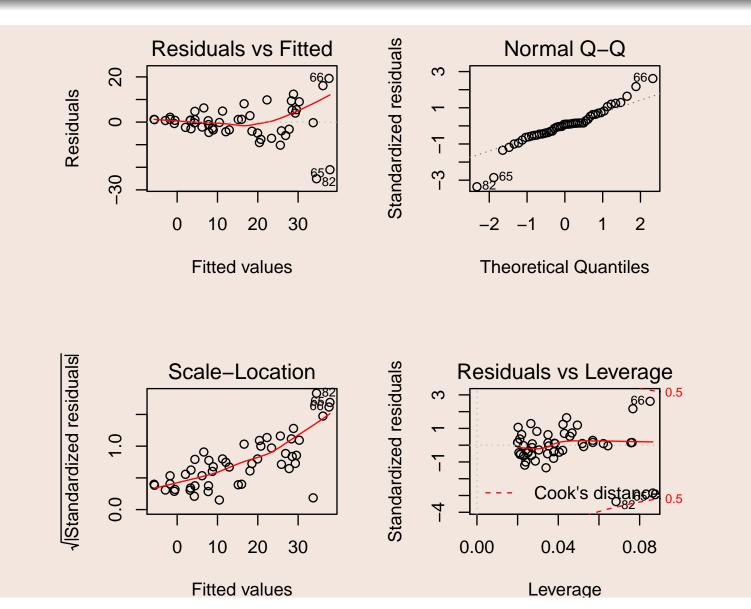
Therefore

- z~x+y means $z = \alpha + \beta_1 x + \beta_2 y + \varepsilon$
- z~x*y means $z = \alpha + \beta_1 x + \beta_2 y + \beta_3 xy + \varepsilon$
- z~(x+y)^2 means the same

• log(y)~I(1/x)+x+I(x^2) means $z = \alpha + \beta_1 \times \frac{1}{x} + \beta_2 x + \beta_3 x^2 + \varepsilon$

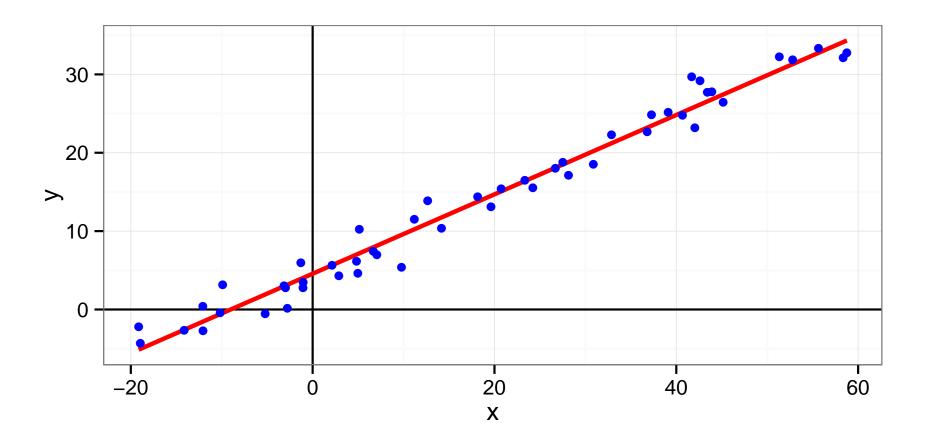
Checking the model with R

reg <- lm(data=df[df\$type=="heteroscedastic",],y~x)
par(mfrow=c(2,2)); plot(reg); par(mfrow=c(1,1))</pre>



Decomposing the Variance

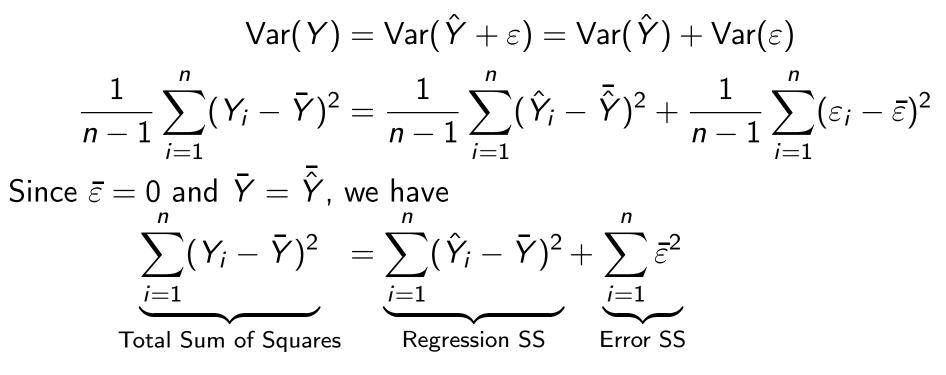
How well does the least squares line explain variation in Y?



Decomposing the Variance

How well does the least squares line explain variation in Y?

Remember that $Y = \hat{Y} + \varepsilon$ (\hat{Y} is the "true mean"). Since \hat{Y} and ε are uncorrelated, we have



SSR = Variation in Y explained by the regression line
SSE = Variation in Y that is left unexplained

 $SSR = SST \Rightarrow \text{perfect fit}$

The coefficient of determination, denoted by R^2 , measures goodness of fit:

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

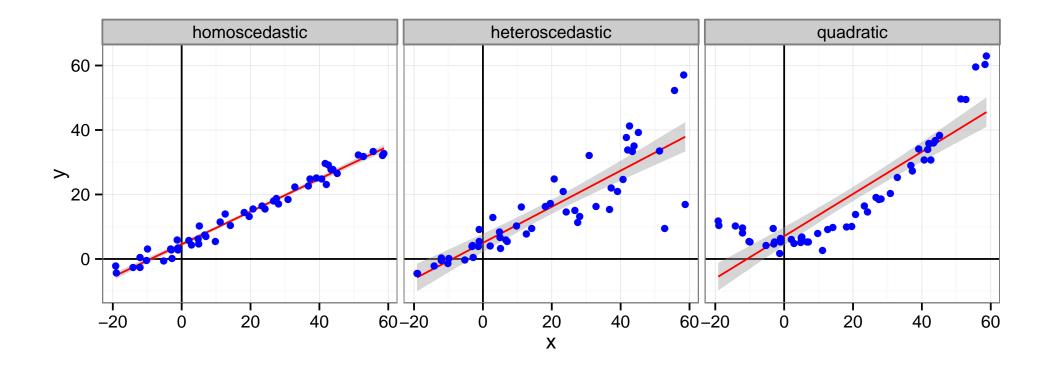
• $0 \leqslant R^2 \leqslant 1$

• The closer R^2 is to 1, the better the fit

Warning:

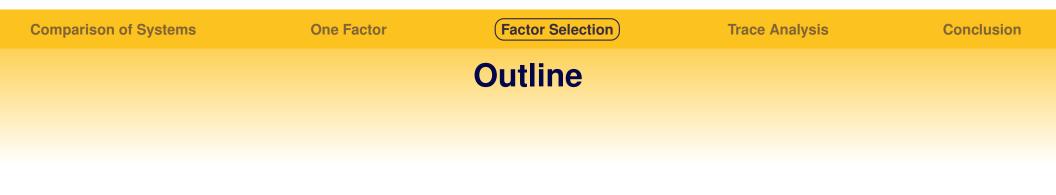
- A not so low R^2 may mean important noise or bad model
- As you add parameters to a model, you inevitably improve the fit. There is a trade-off beteween model simplicity and fit. Strive for simplicity!

Illustration with R (homoscedastic data)



Conclusion

- You need a model to perform your regression
- You need to check whether the underlying hypothesis of this model are reasonable or not
- This model will allow you to:
 - Assess and quantify the effect of parameters on the response
 - 2 Extrapolate within the range of parameters you tried
 - Oetect outstanding points (those with a high residual and/or with a high lever)
- This model will guide on how to design your experiments:
 - e.g., the linear model assumes some uniformity of interest over the parameter space range
 - if your system is heteroscedastic, you will have to perform more measurements for parameters that lead to higher variance



2 One Factor

- **3** Factor Selection
- Trace Analysis

5 Conclusion

Time dimensioning problems

Time out estimation

Distributed protocol (consensus)

- Crash of processes
- Variable communications (wireless network)
- Failure detection mechanism (parametrized)

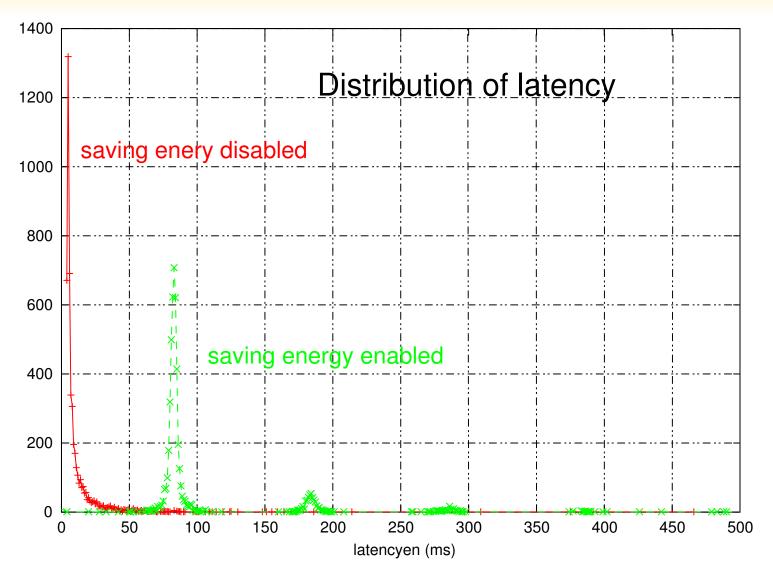
Factors

- Crash of processes
- Variable communications (wireless network)
- Failure detection mechanism (parametrized)

\Rightarrow Evaluation of the latency

Latency estimation

$PDA \rightarrow PDA$ communication (ping)



Factor Selection

Factors Analysis

Factors (a priori)

Distance

- Number of obstacles
- Number of nodes
- Network load
- Sender type
- Receiver type
- Saving energy

Tagushi analysis

1by3		-30,6348	26
(1)Charge		28,47359	
1by7		24,48856	
(7)Energie		21,64635	
(3)Emetteur		-21,6054	
3by4	<mark>-13</mark>	3,8671	
3by7	-4,78965		
2by7	-1,81536		
(2)Distance	1,394493		
4by5	1,378285		
1by6	-1,23651		
1by2 -	1,078621		
1by5	-1,06677		
5by6	-,952956		
(5)NBApps	-,859062		
4by6	,8479612		
2by6	-,76191		
1by4	,75 <mark>52644</mark>		
(6)Obstacle	-,674956		
2by5	-,629668		
2by4	,5953911		
3by6	-,45,7978		
5by7	,3952415		
2by3	-,220997		
3by5	,172,7503		

Factor Selection

Factors Analysis

Significant factors

Distance

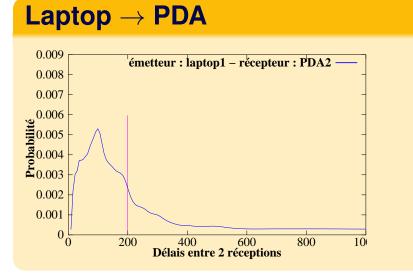
- Number of obstacles
- Number of nodes
- Network load (2)
- Sender type (4)
- Receiver type (1)
- Saving energy (3)

(4)Recepteur

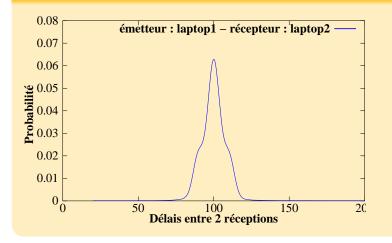
(4)Recepteur		,3926	
1by3	-30,6348		
(1)Charge	28,47359		
1by7	24,48856		
(7)Energie	21,64635		
(3)Emetteur	-21,6054		
3by4	-13,8671		
3by7	-4,78965		
2by7	-1,81536		
(2)Distance	1,394493		
4by5	1,378285		
1by6	-1,23651		
1by2	1,078621		
1by5	-1,06677		
5by6	-,952956		
(5)NBApps	-,859062		
4by6	,8479612		
2by6	-,76191		
1by4	,7552644		
(6)Obstacle	-,674956		
2by5	-,629668 .5953911		
2by4			
3by6	-,457978 -,3952415		
5by7	220997		
2by3	,172,7503		
3by5			
	p=,05		

Factor Selection

Time out estimation



 $Laptop \rightarrow laptop$



- **2** One Factor
- **3** Factor Selection
- Trace Analysis
- **5** Conclusion

Trace analysis example

Presentation of the paper available on http://fta.inria.fr

Mining for Statistical Models of Availability in Large-Scale Distributed Systems: An Empirical Study of SETI@home

Bahman Javadi¹, Derrick Kondo¹, Jean-Marc Vincent^{1,2}, David P. Anderson³

¹Laboratoire d'Informatique de Grenoble, MESCAL team, INRIA, France ²University of Joseph Fourier, France ³UC Berkeley, USA

IEEE/ACM International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2009)

Mining for Statistical Models of Availability in Large-Scale Distributed Systems: An Empirical Study of SETI@home

Bahman Javadi¹, Derrick Kondo¹, Jean-Marc Vincent^{1,2}, David P. Anderson³

¹Laboratoire d'Informatique de Grenoble, MESCAL team, INRIA, France ²University of Joseph Fourier, France ³UC Berkeley, USA

IEEE/ACM International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2009)

Statistical Models of Availability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MASCOTS 2009

1/34

• P2P, Grid, Cloud, and Volunteer computing systems

B. Javadi (INRIA)

Statistical Models of Availability

- P2P, Grid, Cloud, and Volunteer computing systems
- Main Features:
 - Tens or hundreds of thousands of unreliable and heterogeneous hosts

- P2P, Grid, Cloud, and Volunteer computing systems
- Main Features:
 - Tens or hundreds of thousands of unreliable and heterogeneous hosts
 - Uncertainty of host availability

- P2P, Grid, Cloud, and Volunteer computing systems
- Main Features:
 - Tens or hundreds of thousands of unreliable and heterogeneous hosts
 - Uncertainty of host availability

- P2P, Grid, Cloud, and Volunteer computing systems
- Main Features:
 - Tens or hundreds of thousands of unreliable and heterogeneous hosts
 - Uncertainty of host availability

Main Motivation

Effective Resource Selection for Stochastic Scheduling Algorithms

- P2P, Grid, Cloud, and Volunteer computing systems
- Main Features:
 - Tens or hundreds of thousands of unreliable and heterogeneous hosts
 - Uncertainty of host availability

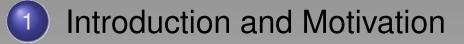
Main Motivation

Effective Resource Selection for Stochastic Scheduling Algorithms

Goal

Model of host availability (i.e., subset of hosts with the same availability distribution)

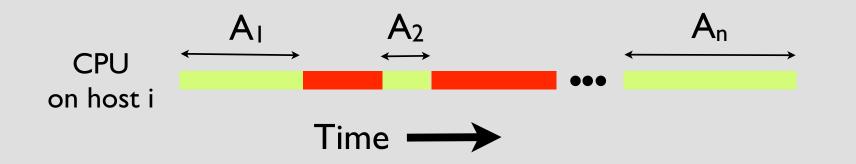
Outline



- Measurement
 - Remove outliers
- 3 Modelling Process
 - Randomness Tests
 - Clustering
 - Model fitting
- 4
- Discussions
 - Significance of Clustering Criteria
 - Scheduling Implications
 - Related Work
 - Conclusion and Future Work

Define Availability

CPU availability on each host



Length of Availability Intervals: A1, A2, ..., An

NRIA

臣

MASCOTS 2009

DQC

4/34

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Measurement Method

BOINC

- Middleware for volunteer computing systems
- Underlying software infrastructure for projects such as SETI@home

Measurement Method

BOINC

- Middleware for volunteer computing systems
- Underlying software infrastructure for projects such as SETI@home

We instrumented the BOINC client to collect CPU availability traces:

- Total number of host traces: 226,208
- Collection period: April 1, 2007 Jan 1, 2009
- Total CPU time: 57,800 years
- Number of intervals: 102,416,434
- Assume 100% or 0% availability

□ ▶ < □ ▶ < □ ▶ < □ ▶

MASCOTS 2009

5/34

Outline

Measurement

Remove outliers

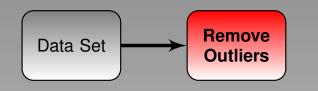
B Modelling Process

- Randomness Tests
- Clustering
- Model fitting

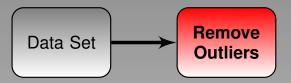
Discussions

- Significance of Clustering Criteria
- Scheduling Implications
- Related Work
- 6 Conclusion and Future Work

Outliers

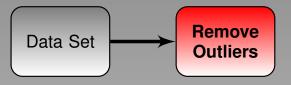


Outliers

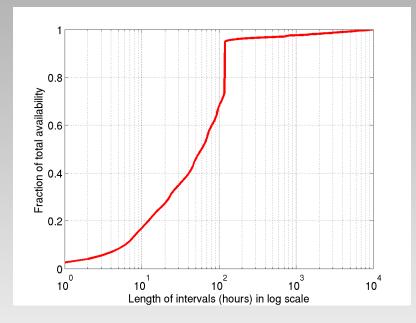


Check for outliers: Artifacts resulted from a benchmark run periodically every five days

Outliers



Check for outliers: Artifacts resulted from a benchmark run periodically every five days



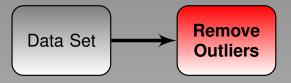
MASCOTS 2009 7 / 34

훈

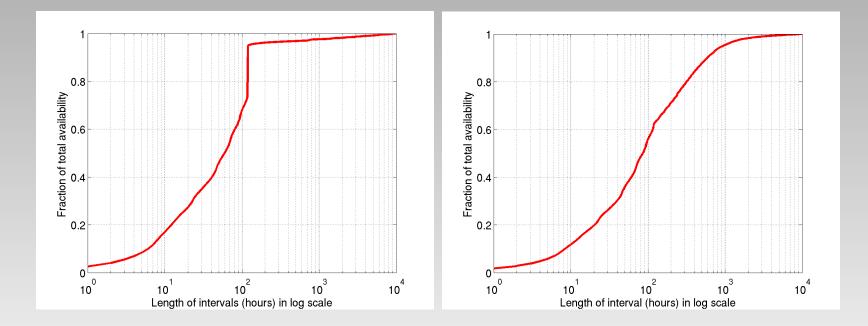
NRIA

5900

Outliers



Check for outliers: Artifacts resulted from a benchmark run periodically every five days



MASCOTS 2009 7 / 34

臣

RIA

5900

Outline

3

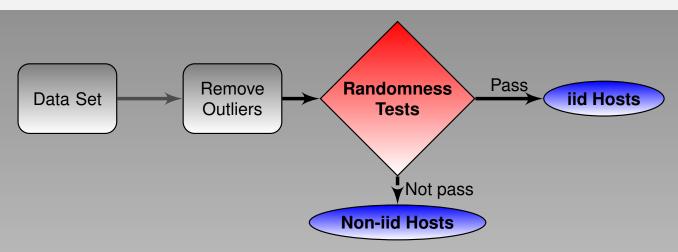
leasurement

Modelling Process

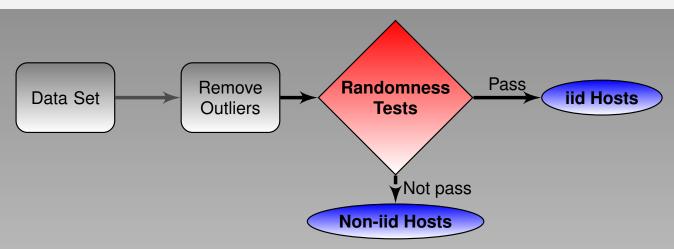
- Randomness Tests
- Clustering
- Model fitting

Discussions

- Significance of Clustering Criteria
- Scheduling Implications
- Related Work
- 6 Conclusion and Future Work



To determine which hosts have truly random availability intervals



To determine which hosts have truly random availability intervals Four well-known non-parametric tests:

- Runs test
- Runs up/down test
- Mann-Kendall test
- Autocorrelation function test (ACF)

B. Javadi (INRIA)

RIA

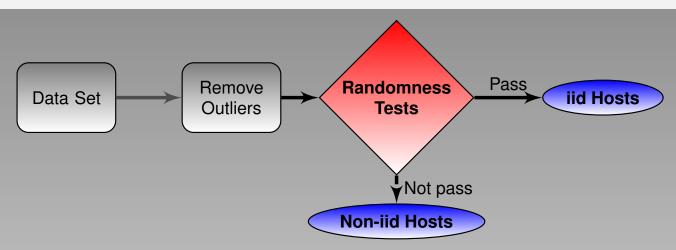
SQ (V

9/34

王

MASCOTS 2009

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



To determine which hosts have truly random availability intervals Four well-known non-parametric tests:

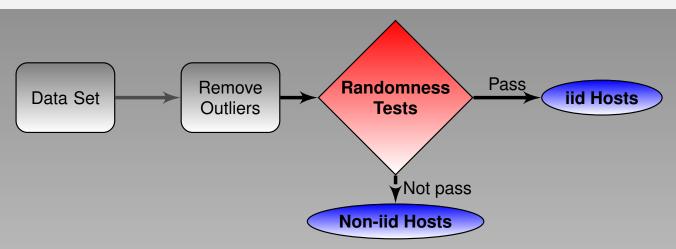
- Runs test
- Runs up/down test
- Mann-Kendall test
- Autocorrelation function test (ACF)

Test	Runs std	Runs up/down	ACF	Kendall	All
# of hosts	101649	144656	109138	101462	57757
Fraction	0.602	0.857	0.647	0.601	0.342

E

SAR

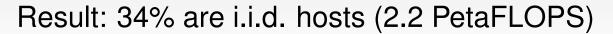
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



To determine which hosts have truly random availability intervals Four well-known non-parametric tests:

- Runs test
- Runs up/down test
- Mann-Kendall test
- Autocorrelation function test (ACF)

Test	Runs std	Runs up/down	ACF	Kendall	All
# of hosts	101649	144656	109138	101462	57757
Fraction	0.602	0.857	0.647	0.601	0.342



SAR

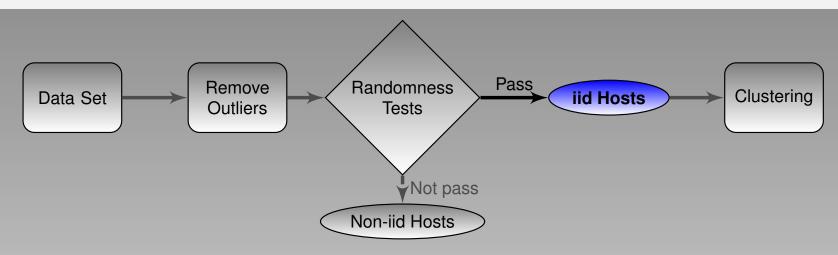
Outline

leasurement

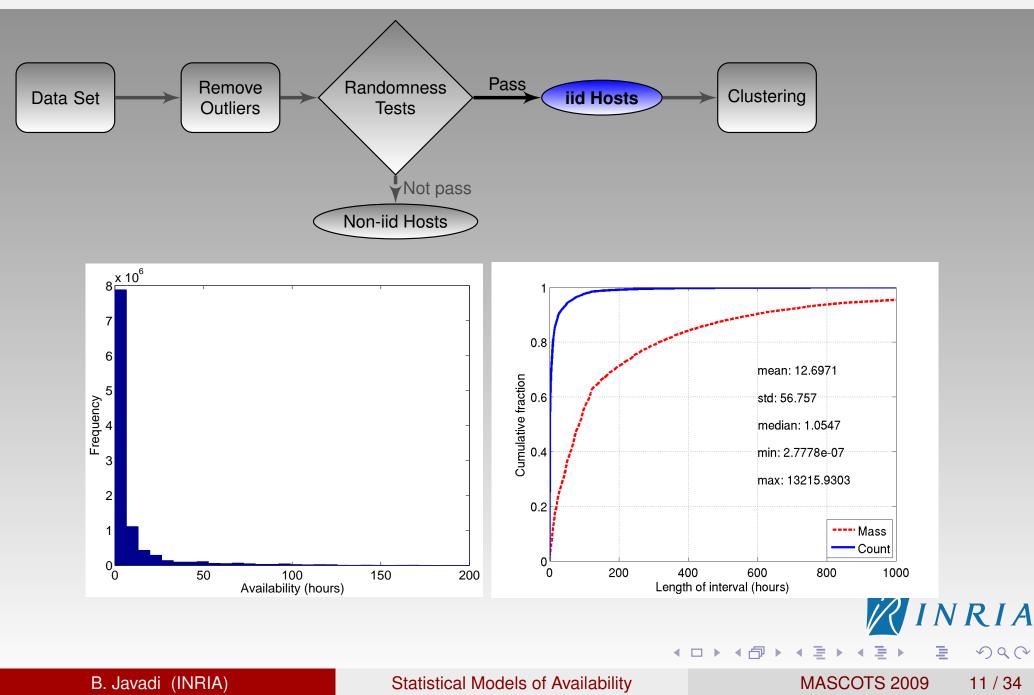
Modelling Process

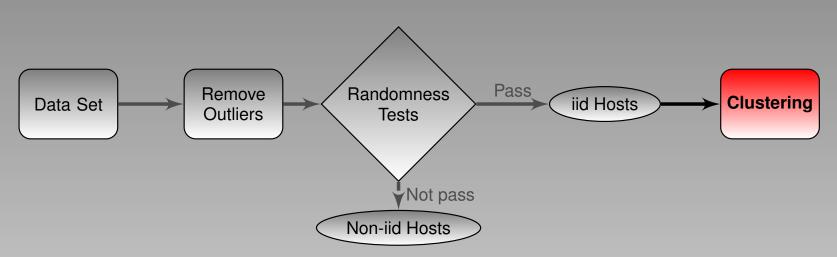
- Randomness Tests
- Clustering
- Model fitting
- Discussions
 - Significance of Clustering Criteria
 - Scheduling Implications
- Related Work
- Conclusion and Future Work

Distribution of Availability Intervals

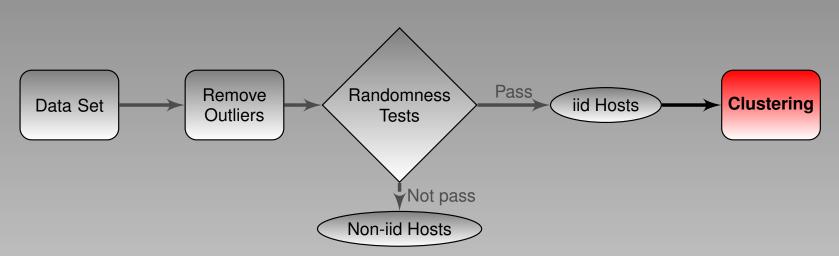


Distribution of Availability Intervals





Generate a few clusters based on availability distribution function



Generate a few clusters based on availability distribution function Method:

• Hierarchical

NRIA

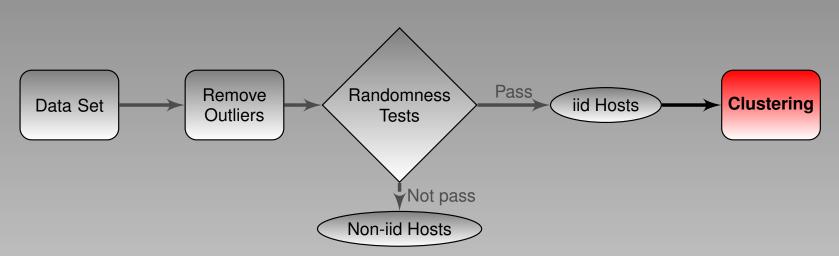
臣

SQ (~

12/34

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

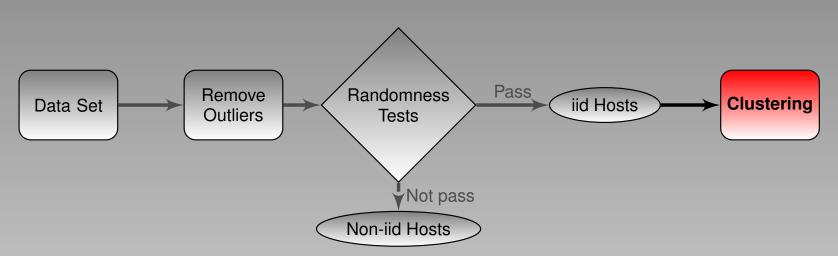
MASCOTS 2009



Generate a few clusters based on availability distribution function Method:

- Hierarchical
 - Compute all permutations

Statistical Models of Availability MASCOTS 2009 12/34



Generate a few clusters based on availability distribution function Method:

• Hierarchical

B. Javadi (INRIA)

- Compute all permutations
- Memory intensive

Statistical Models of Availability

RIA

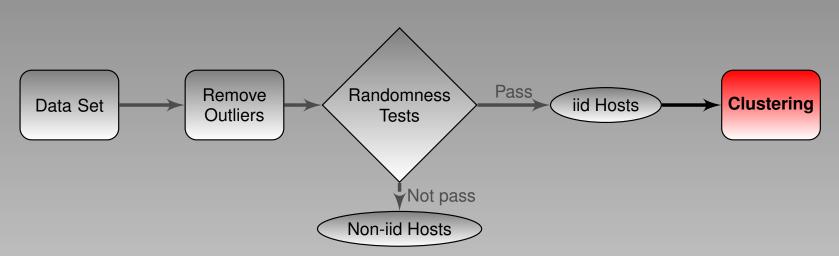
SQ (V

12/34

臣

< □ > < □ > < □ > < Ξ > < Ξ >

MASCOTS 2009



Generate a few clusters based on availability distribution function Method:

- Hierarchical
 - Compute all permutations
 - Memory intensive
- K-means (fast K-means)

B. Javadi (INRIA)

RIA

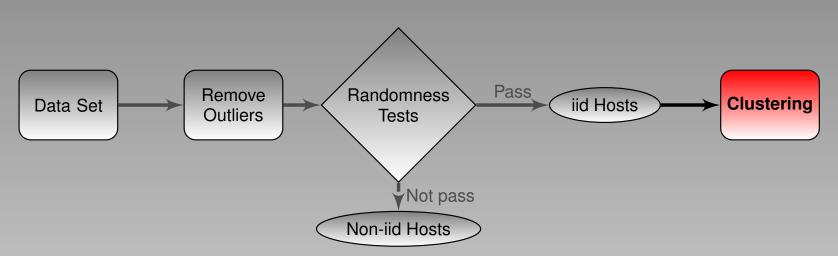
SQ Q

12/34

Ξ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MASCOTS 2009



Generate a few clusters based on availability distribution function Method:

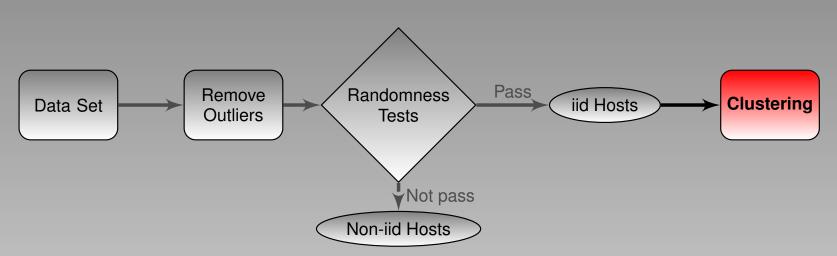
- Hierarchical
 - Compute all permutations
 - Memory intensive
- K-means (fast K-means)
 - Fast convergence

E

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

RIA

SQ Q



Generate a few clusters based on availability distribution function Method:

- Hierarchical
 - Compute all permutations
 - Memory intensive
- K-means (fast K-means)
 - Fast convergence
 - Dependent on initial centroids

E

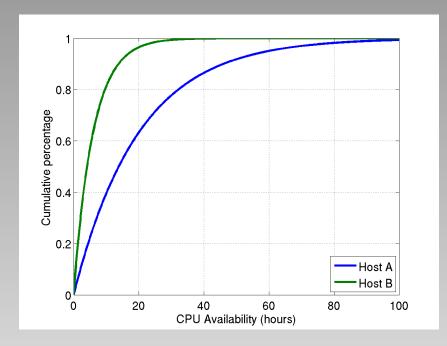
▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

RIA

SQ Q

B. Javadi (INRIA)

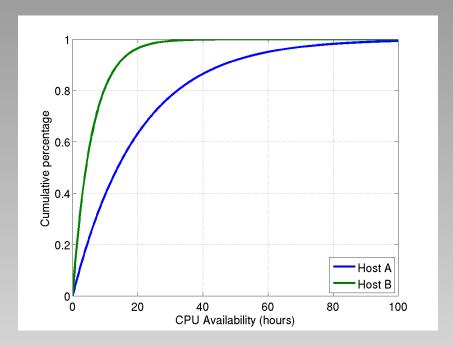
Distance between CDF of two hosts



Statistical Models of Availability MASCOTS 2009 13/34

B. Javadi (INRIA)

Distance between CDF of two hosts

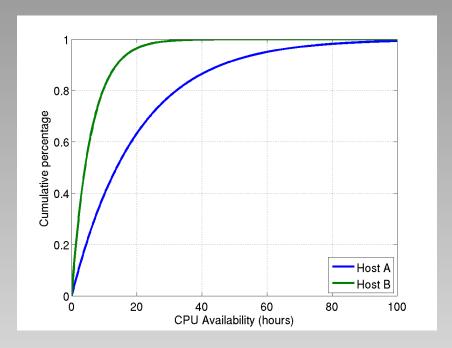


Statistical Models of Availability

Kolmogorov-Smirnov: Maximum difference between two CDFs

INRIA ・ ・ ・ ・ こ・ こ・ こ・ つへ (~ MASCOTS 2009 13/34

Distance between CDF of two hosts



Kolmogorov-Smirnov: Maximum difference between two CDFs

• Kuiper: Maximum deviation above and below of two CDFs

NRIA

5900

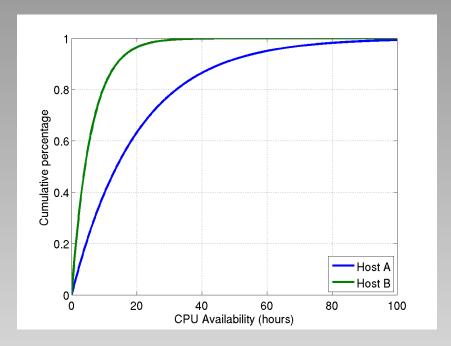
13/34

훈

(口)

MASCOTS 2009

Distance between CDF of two hosts



- Kolmogorov-Smirnov: Maximum difference between two CDFs
- Kuiper: Maximum deviation above and below of two CDFs
- Cramer-von Mises: Area between two CDFs

MASCOTS 2009 13 / 34

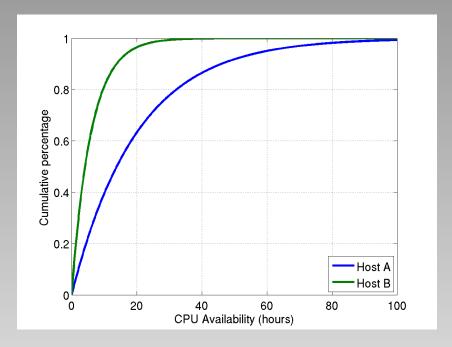
臣

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

RIA

SQ (2)

Distance between CDF of two hosts



- Kolmogorov-Smirnov: Maximum difference between two CDFs
- Kuiper: Maximum deviation above and below of two CDFs
- Cramer-von Mises: Area between two CDFs
- Anderson-Darling: Area between two CDFs, more weight on the tail

Statistical Models of Availability

Important Challenge:

Number of samples in each CDF

• Few samples -> not enough confidence on the result

Important Challenge:

Number of samples in each CDF

- Few samples -> not enough confidence on the result
- Too much samples -> the metric will be too sensitive

Important Challenge:

Number of samples in each CDF

- Few samples -> not enough confidence on the result
- Too much samples -> the metric will be too sensitive

Data Set: different hosts have different number of samples

Important Challenge:

Number of samples in each CDF

- Few samples -> not enough confidence on the result
- Too much samples -> the metric will be too sensitive
- Data Set: different hosts have different number of samples
- Our solution: randomly select a fixed number of intervals from each host (i.e., 30 samples)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

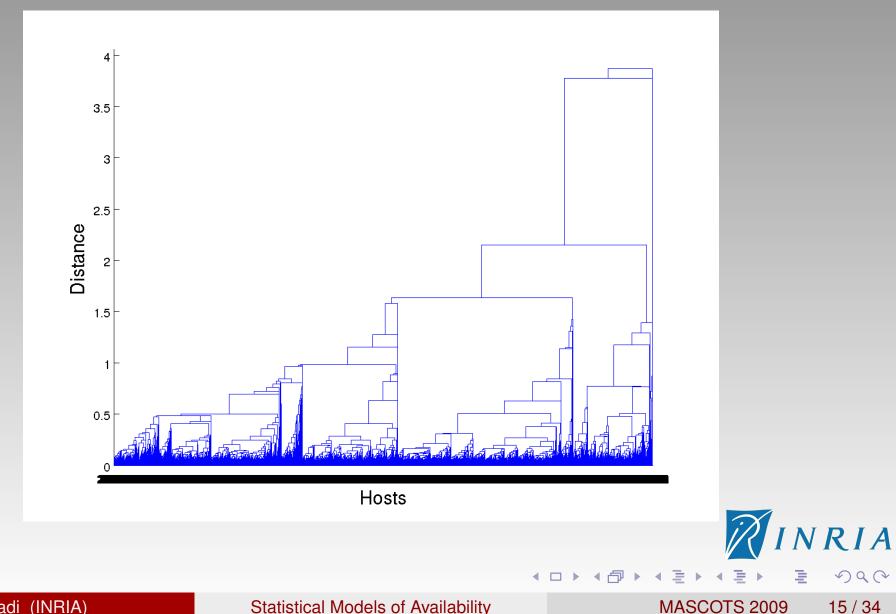
MASCOTS 2009

14/34

Clustering

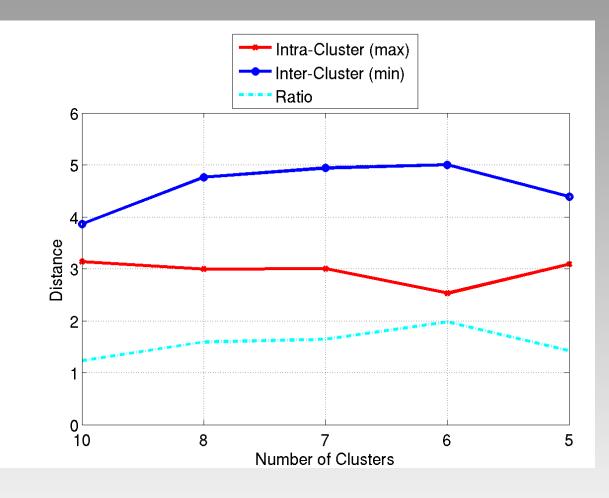
Clustering Results

Dendrogram of hierarchical clustering: 5-10 distinct groups (bootstrap)



Clustering Results

Comparison of distances in clusters (k-means for all iid hosts):



MASCOTS 2009 16 / 34

臣

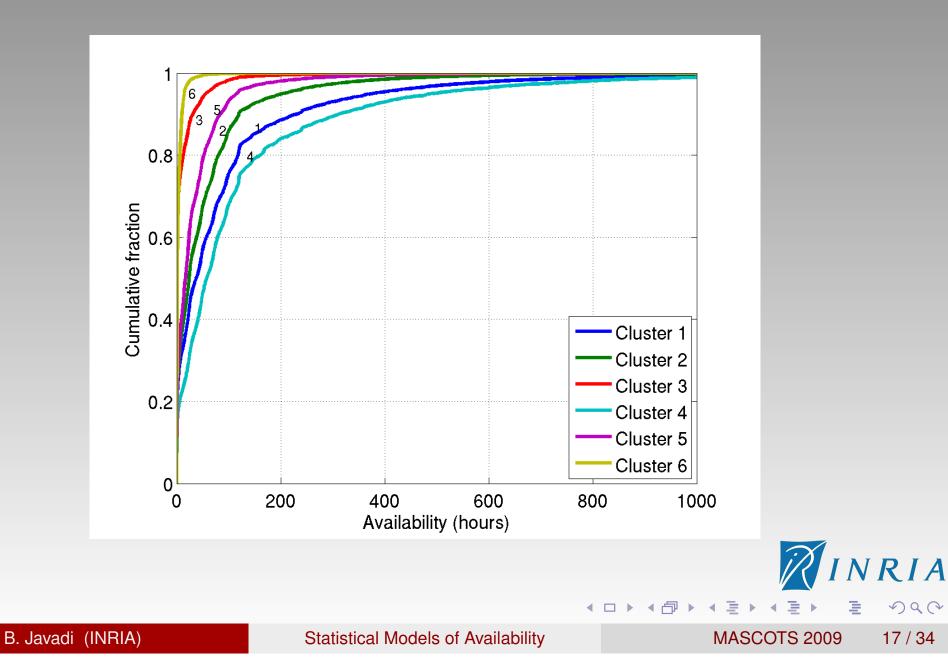
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

RIA

5900

Clustering

EDF of clusters



17/34

5900

Outline

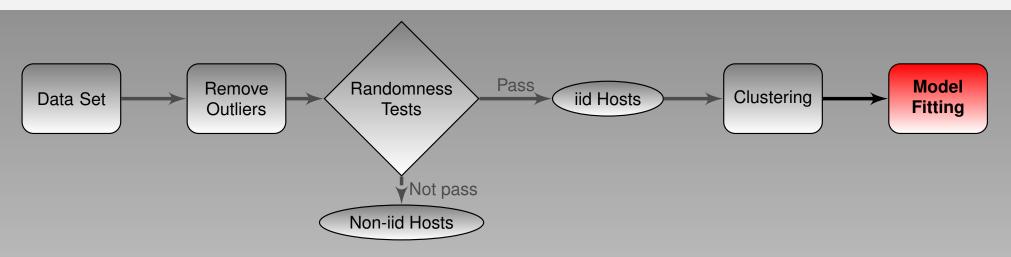
leasurement

Remove outliers

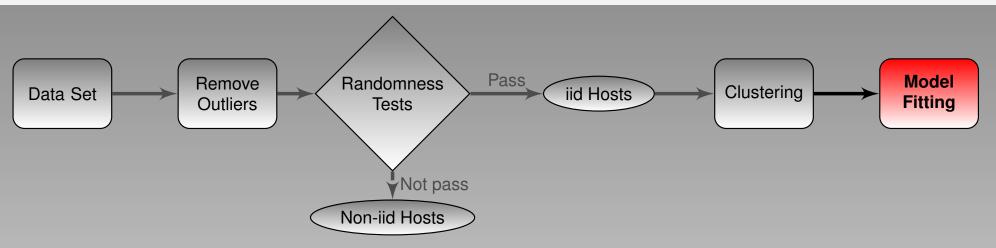
Modelling Process

- Randomness Tests
- Clustering
- Model fitting
- Discussions
 - Significance of Clustering Criteria
 - Scheduling Implications
- Related Work
- 6 Conclusion and Future Work

Methods



Methods



Method:

- Maximum Likelihood Estimation (MLE)
- Moment Matching (MM)

NRIA

5900

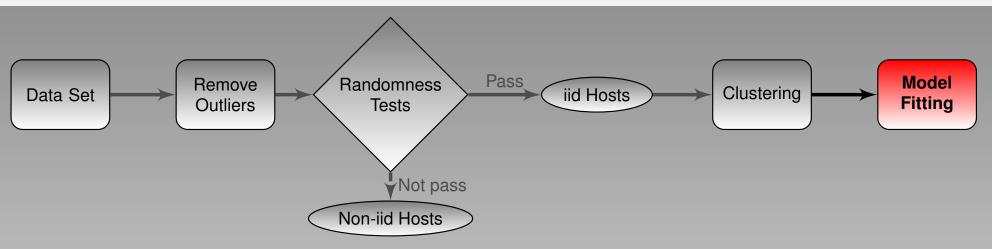
19/34

臣

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MASCOTS 2009

Methods



Method:

- Maximum Likelihood Estimation (MLE)
- Moment Matching (MM)

Target Distributions:

- Exponential
- Pareto
- Weibull
- Log-normal
- Gamma

훈

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

NRIA

Sar

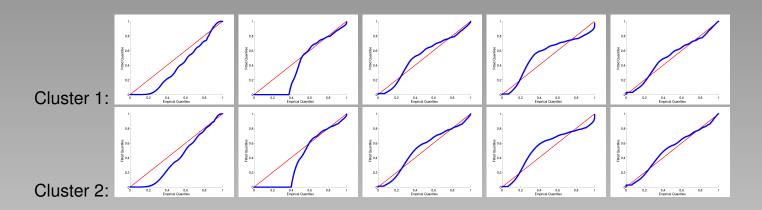
Graphical Test

PP-plots: Exponential, Pareto, Weibull, Log-normal, Gamma

Cluster 1:
$$\int_{0}^{1} \int_{0}^{1} \int_{$$

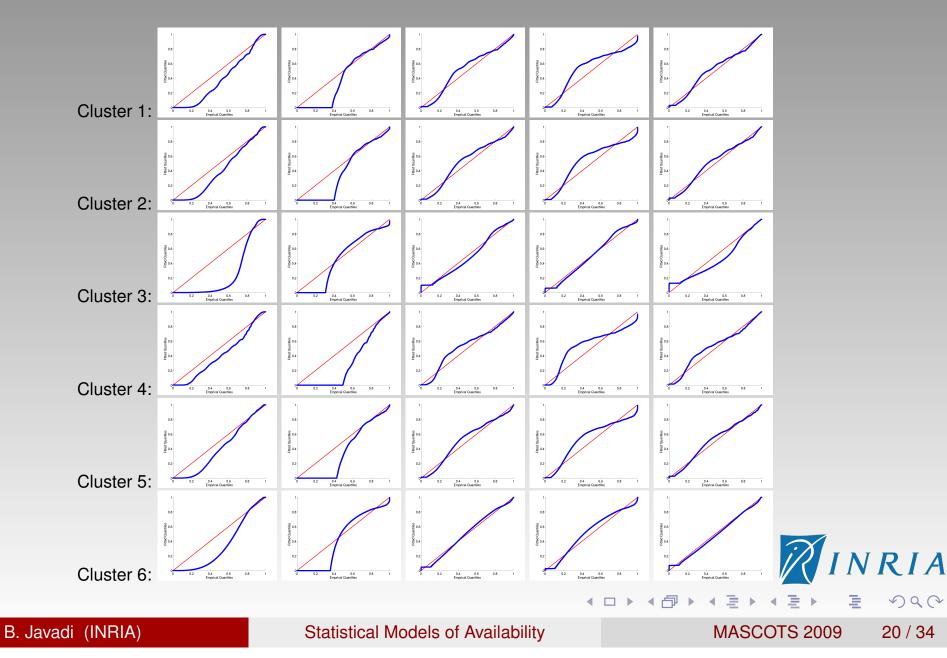
Graphical Test

PP-plots: Exponential, Pareto, Weibull, Log-normal, Gamma



Graphical Test

PP-plots: Exponential, Pareto, Weibull, Log-normal, Gamma



Goodness Of Fit Tests

Generate p-values by two GOF tests (average over 1000 runs):

- Kolmogorov-Smirnov (KS) test
- Anderson-Darling (AD) test

Goodness Of Fit Tests

Generate p-values by two GOF tests (average over 1000 runs):

- Kolmogorov-Smirnov (KS) test
- Anderson-Darling (AD) test

	Exponential		Pareto		Weibull		Log-Normal		Gamma	
Data sets	AD	KS	AD	KS	AD	KS	AD	KS	AD	KS
All iid hosts	0.004	0.000	0.061	0.013	0.581	0.494	0.568	0.397	0.431	0.359
Cluster 1	0.155	0.071	0.029	0.008	0.466	0.243	0.275	0.116	0.548	0.336
Cluster 2	0.188	0.091	0.020	0.004	0.471	0.259	0.299	0.128	0.565	0.384
Cluster 3	0.002	0.000	0.068	0.023	0.485	0.380	0.556	0.409	0.372	0.241
Cluster 4	0.264	0.163	0.002	0.000	0.484	0.242	0.224	0.075	0.514	0.276
Cluster 5	0.204	0.098	0.013	0.002	0.498	0.296	0.314	0.153	0.563	0.389
Cluster 6	0.059	0.016	0.033	0.009	0.570	0.439	0.485	0.328	0.538	0.467

MASCOTS 2009 21 / 34

王

<ロト < 団ト < 巨ト < 巨ト</p>

NRIA

SQ (~

Some properties of clusters

Clusters	# of hosts	% of total avail.	mean (hrs)	Best fit	Parameters	
					shape	scale
All iid hosts	57757	1.0	12.697	Weibull	0.3787	3.0932
Cluster 1	3606	0.16	90.780	Gamma	0.3131	289.9017
Cluster 2	9321	0.35	54.563	Gamma	0.3372	161.8350
Cluster 3	13256	0.22	11.168	Log-Normal	-0.8937	3.2098
Cluster 4	275	0.01	123.263	Gamma	0.3739	329.6922
Cluster 5	1753	0.05	34.676	Gamma	0.3624	95.6827
Cluster 6	29546	0.20	4.138	Weibull	0.4651	1.8461

Cluster sizes are different and often significant

Ξ.

5900

22/34

Some properties of clusters

Clusters	# of hosts	% of total avail.	mean (hrs)	Best fit	Parameters	
					shape	scale
All iid hosts	57757	1.0	12.697	Weibull	0.3787	3.0932
Cluster 1	3606	0.16	90.780	Gamma	0.3131	289.9017
Cluster 2	9321	0.35	54.563	Gamma	0.3372	161.8350
Cluster 3	13256	0.22	11.168	Log-Normal	-0.8937	3.2098
Cluster 4	275	0.01	123.263	Gamma	0.3739	329.6922
Cluster 5	1753	0.05	34.676	Gamma	0.3624	95.6827
Cluster 6	29546	0.20	4.138	Weibull	0.4651	1.8461

- Cluster sizes are different and often significant
- Heterogeneity in distribution parameters (different scale parameters)

B. Javadi (INRIA)

RIA

SAR

22/34

王

▲□▶ ▲□▶ ▲ = ▶ ▲ = ▶

MASCOTS 2009

Some properties of clusters

Clusters	# of hosts	% of total avail.	mean (hrs)	Best fit	Parameters	
					shape	scale
All iid hosts	57757	1.0	12.697	Weibull	0.3787	3.0932
Cluster 1	3606	0.16	90.780	Gamma	0.3131	289.9017
Cluster 2	9321	0.35	54.563	Gamma	0.3372	161.8350
Cluster 3	13256	0.22	11.168	Log-Normal	-0.8937	3.2098
Cluster 4	275	0.01	123.263	Gamma	0.3739	329.6922
Cluster 5	1753	0.05	34.676	Gamma	0.3624	95.6827
Cluster 6	29546	0.20	4.138	Weibull	0.4651	1.8461

- Cluster sizes are different and often significant
- Heterogeneity in distribution parameters (different scale parameters)
- Decreasing hazard rate

RIA

SAR

22/34

王

 </

MASCOTS 2009

Outline

Remove outliers

B) Modelling Process

- Randomness Tests
- Clustering
- Model fitting
- 4

Discussions

- Significance of Clustering Criteria
- Scheduling Implications
- Related Work
- 6 Conclusion and Future Work

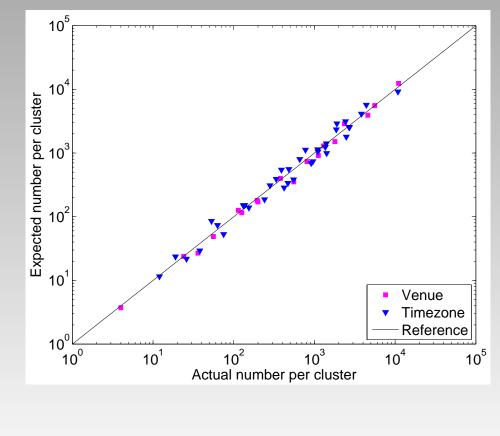
Could the same clusters have been found using some other static criteria?

Could the same clusters have been found using some other static criteria?

- Cluster by venue: Work, Home, School
- Cluster by Time zone: 6 different time zones

Could the same clusters have been found using some other static criteria?

- Cluster by venue: Work, Home, School
- Cluster by Time zone: 6 different time zones



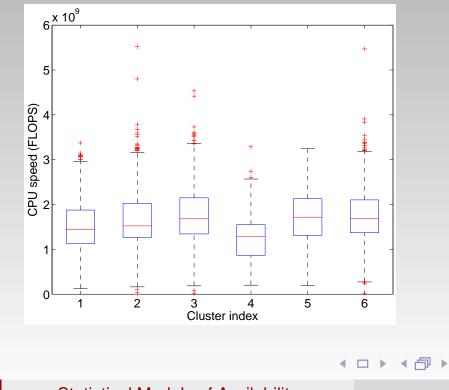
∢ ≣ ▶

i **€** ∃≣

< 47 ▶

Could the same clusters have been found using some other static criteria?

- Cluster by venue: Work, Home, School
- Oluster by Time zone: 6 different time zones
- Cluster by CPU speed



王

E

=

24/34

•

MASCOTS 2009

Outline

Remove outliers

B) Modelling Process

- Randomness Tests
- Clustering
- Model fitting
- 4

Discussions

- Significance of Clustering Criteria
- Scheduling Implications
- Related Work
- 6 Conclusion and Future Work

NRIA

SQ P

25/34

王

◆□ ▶ ◆酉 ▶ ◆ 亘 ▶ ◆ 亘 ▶

MASCOTS 2009

Scheduling accuracy Global model vs. Individual cluster model

Scheduling accuracy

Global model vs. Individual cluster model Ex: Completion probability of a 24-hour task:

Scheduling accuracy

Global model vs. Individual cluster model

Ex: Completion probability of a 24-hour task:

- Global model: <20%</p>
- Cluster 4: 70%

Scheduling accuracy

Global model vs. Individual cluster model

Ex: Completion probability of a 24-hour task:

- Global model: <20%
- Cluster 4: 70%

Resource Selection/Replication

Ξ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

RIA

SAR

- Scheduling accuracy
- Global model vs. Individual cluster model
- Ex: Completion probability of a 24-hour task:
 - Global model: <20%</p>
 - Cluster 4: 70%

Resource Selection/Replication

Single job: Prediction of task failure

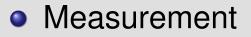
Scheduling accuracy

Global model vs. Individual cluster model

- Ex: Completion probability of a 24-hour task:
 - Global model: <20%</p>
 - Cluster 4: 70%

Resource Selection/Replication

- Single job: Prediction of task failure
- Multi-job: How the task size distribution follows the availability distribution



- Measurement
 - Resource type: home, work, and school

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts

Different from other research

Measurement

- Resource type: home, work, and school
- Scale: 200,000 hosts
- Duration: 1.5 years

Different from other research

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts
 - Duration: 1.5 years
 - Availability : CPU availability

SQ (~

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts
 - Duration: 1.5 years
 - Availability : CPU availability
- Modelling

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts
 - Duration: 1.5 years
 - Availability : CPU availability
- Modelling
 - Classification according to randomness tests

Different from other research

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts
 - Duration: 1.5 years
 - Availability : CPU availability
- Modelling
 - Classification according to randomness tests
 - Cluster-based Model vs Global Model

RIA

27/34

Ξ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MASCOTS 2009

Discovering availability models for host subsets from a distributed system

Discovering availability models for host subsets from a distributed system

Conclusion

Methodology

Discovering availability models for host subsets from a distributed system

- Methodology
 - Remove outliers

Discovering availability models for host subsets from a distributed system

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)

Discovering availability models for host subsets from a distributed system

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution

Discovering availability models for host subsets from a distributed system

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution
- Modelling (Apply the methodology for the SETI@home)

Discovering availability models for host subsets from a distributed system

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution
- Modelling (Apply the methodology for the SETI@home)
 - 34% of hosts have truly random availability intervals

Discovering availability models for host subsets from a distributed system

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution
- Modelling (Apply the methodology for the SETI@home)
 - 34% of hosts have truly random availability intervals
 - Six clusters with three different distributions: Gamma, Weibull, and Log-normal

Discovering availability models for host subsets from a distributed system

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution
- Modelling (Apply the methodology for the SETI@home)
 - 34% of hosts have truly random availability intervals
 - Six clusters with three different distributions: Gamma, Weibull, and Log-normal

Discovering availability models for host subsets from a distributed system

Conclusion

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution
- Modelling (Apply the methodology for the SETI@home)
 - 34% of hosts have truly random availability intervals
 - Six clusters with three different distributions: Gamma, Weibull, and Log-normal

Future Work

- Apply the result for improving makespan of DAG-applications
- Explore ability of clustering dynamically while the system is on-line

Statistical Models of Availability

Failure Trace Archive

http://fta.inria.fr

- Repository of availability traces of parallel and distributed systems, and tools for analysis
- Facilitate design, validation and comparison of fault-tolerance algorithms and models
- 15 data sets including SETI@home data set

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

MASCOTS 2009

29/34

Failure Trace Archive

http://fta.inria.fr

- Repository of availability traces of parallel and distributed systems, and tools for analysis
- Facilitate design, validation and comparison of fault-tolerance algorithms and models
- 15 data sets including SETI@home data set

More Details

- Poster Session at MASCOTS 2009 (Today 19:00-21:00)
- Website: http://fta.inria.fr

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MASCOTS 2009

29/34

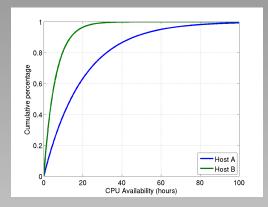
Thank You

Questions?

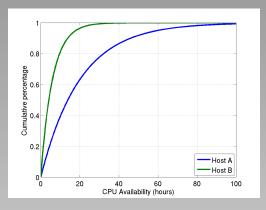
B. Javadi (INRIA)

Statistical Models of Availability

Distance between CDF of two hosts



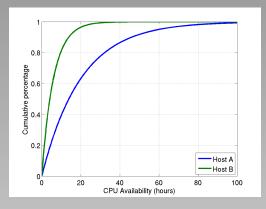
Distance between CDF of two hosts



• Kolmogorov-Smirnov: $D_{n,m} = sup | F_n(x) - G_m(x) |$

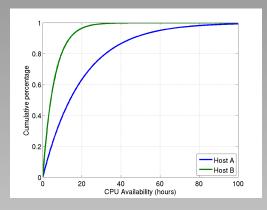
B. Javadi (INRIA)

Distance between CDF of two hosts



- Kolmogorov-Smirnov: $D_{n,m} = sup | F_n(x) G_m(x) |$
- Kuiper: $V_{n,m} = sup | F_n(x) G_m(x) | + sup | G_m(x) F_n(x) |$

Distance between CDF of two hosts



- Kolmogorov-Smirnov: $D_{n,m} = sup | F_n(x) G_m(x) |$
- Kuiper: $V_{n,m} = sup | F_n(x) G_m(x) | + sup | G_m(x) F_n(x) |$
- Cramer-von Mises:

$$T_{n,m} = \frac{nm}{(n+m)^2} \left\{ \sum_{i=1}^n [F_n(x_i) - G_m(x_i)]^2 + \sum_{j=1}^m [F_n(y_j) - G_m(y_j)]^2 \right\}$$

RIA

SQ Q

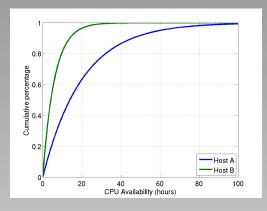
31/34

王

< □ > < □ > < □ > < Ξ > < Ξ >

MASCOTS 2009

Distance between CDF of two hosts



- Kolmogorov-Smirnov: $D_{n,m} = sup | F_n(x) G_m(x) |$
- Kuiper: $V_{n,m} = sup | F_n(x) G_m(x) | + sup | G_m(x) F_n(x) |$
- Cramer-von Mises:

$$T_{n,m} = \frac{nm}{(n+m)^2} \left\{ \sum_{i=1}^n [F_n(x_i) - G_m(x_i)]^2 + \sum_{j=1}^m [F_n(y_j) - G_m(y_j)]^2 \right\}$$

• Anderson-Darling: $Q_n = \int_{-\infty}^{\infty} [F(x) - F_n(x)]^2 \psi(F(x)) dF$ $\psi(F(x)) = \frac{1}{F(x)(1 - F(x))}$

MASCOTS 2009 31 / 34

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

RIA

Ξ

Fitting with Hyper-Exponential

Fitting Method:

- Expectation Maximization (EM) [using EMpht package]
 - Accurate
 - Flexible
 - Slow

Fitting with Hyper-Exponential

Fitting Method:

- Expectation Maximization (EM) [using EMpht package]
 - Accurate
 - Flexible
 - Slow
- Moment Matching (MM)
 - Less accurate
 - Not flexible
 - Very fast

Fitting with Hyper-Exponential

Fitting Method:

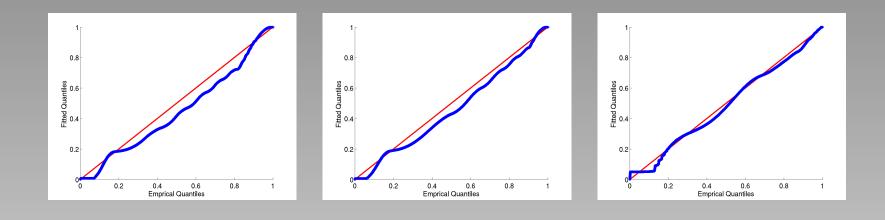
- Expectation Maximization (EM) [using EMpht package]
 - Accurate
 - Flexible
 - Slow
- Moment Matching (MM)
 - Less accurate
 - Not flexible
 - Very fast

We used MM for 2-phase hyper-exponential by the first two moments as follows:

$$p = \frac{1}{2} (1 - \sqrt{\frac{CV^2 - 1}{CV^2 + 1}})$$
$$\lambda_1 = \frac{2p}{\mu}$$
$$\lambda_2 = \frac{2(1 - p)}{\mu}$$

Conclusion and Future Work

PP-Plots



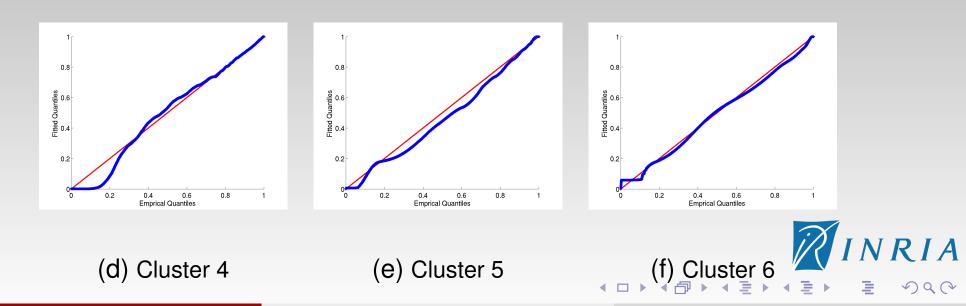
(a) Cluster 1



(c) Cluster 3

MASCOTS 2009

33 / 34



B. Javadi (INRIA)

Statistical Models of Availability

Goodness of Fit Tests

	Hyper-Exponential (MM)			Hyper-Exponential (EM)		
Data sets	Parameters	AD	KS	Parameters	AD	KS
All iid hosts	$p_1 = 0.024 \ \lambda_1 = 0.004 p_2 = 0.976 \ \lambda_2 = 0.154$	0.026	0.005	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.531	0.375
Cluster 1	$p_1 = 0.115 \ \lambda_1 = 0.003$ $p_2 = 0.885 \ \lambda_2 = 0.019$	0.287	0.119	$p_1 = 0.180 \ \lambda_1 = 14.401 p_2 = 0.820 \ \lambda_2 = 0.009$	0.450	0.318
Cluster 2	$p_1 = 0.114 \ \lambda_1 = 0.004 \ p_2 = 0.886 \ \lambda_2 = 0.032$	0.275	0.113	$p_1 = 0.183 \ \lambda_1 = 12.338$ $p_2 = 0.817 \ \lambda_2 = 0.015$	0.512	0.403
Cluster 3	$p_1 = 0.030 \ \lambda_1 = 0.005 p_2 = 0.970 \ \lambda_2 = 0.174$	0.005	0.000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.561	0.434
Cluster 4	$p_1 = 0.136 \lambda_1 = 0.002 p_2 = 0.864 \lambda_2 = 0.014$	0.448	0.273	$\begin{array}{rrrr} p_1 &=& 0.694 \ \lambda_1 &=& 0.020 \\ p_2 &=& 0.306 \ \lambda_2 &=& 0.003 \end{array}$	0.473	0.274
Cluster 5	$p_1 = 0.105 \ \lambda_1 = 0.006$ $p_1 = 0.895 \ \lambda_2 = 0.052$	0.295	0.122	$p_1 = 0.173 \ \lambda_1 = 13.374 p_2 = 0.827 \ \lambda_2 = 0.024$	0.523	0.393
Cluster 6	$p_1 = 0.010 \ \lambda_1 = 0.005 p_2 = 0.990 \ \lambda_2 = 0.478$	0.114	0.038	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.572	0.470

MASCOTS 2009

<□▶ <@▶ <≧▶ <≧▶

RINRIA

Ð,

5900

34 / 34

- Comparison of Systems
- **2** One Factor
- **3** Factor Selection
- 4 Trace Analysis

Synthesis : principles

Formulate the hypothesis

- 2 Design the experiment to validate the hypothesis
- Oheck the validity of the experience
- Analyse the experiments to validate or invalidate the hypothesis
- Report the arguments in a convincing form

Synthesis : Steps for a Performance Evaluation Study [Jain]

- State the goals of the study and define system boundaries.
- 2 List system services and possible outcomes.
- Select performance metrics.
- List system and workload parameters
- Select factors and their values.
- Select evaluation techniques.
- Select the workload.
- Oesign the experiments.
- Analyze and interpret the data.
- Present the results. Start over, if necessary.

Common mistakes in experimentation [Jain]

- The variation due to experimental error is ignored
- Important parameters are not controlled
- Simple one-factor-at-a-time designs are used
- Interactions are ignored
- Too many experiments are conducted

Bibliography

- The Art of Computer Systems Performance Analysis : Techniques for Experimental Design, Measurment, Simulation and Modeling. Raj Jain Wiley 1991 http://www.rajjain.com/
- Measuring Computer Performance: A Practitioner's Guide David J. Lilja Cambridge University Press, 2000.
- Performance Evaluation of Computer and Communication Systems Jean-Yves Le Boudec EPFL http://perfeval.epfl.ch/lectureNotes.htm

Common tools

- Mathlab, Matematica
- Scilab http://www.scilab.org/
- gnuplot http://www.gnuplot.info/
- R http://www.r-project.org/

