Event flows modeling					
Introduction	Real Application	Basic process	Scaling	Extensions	Synthesis

Event flows modeling

Crimes are random processes

Jean-Marc Vincent

MESCAL-INRIA Project Laboratoire d'Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction	Real Application	Basic process	Scaling	Extensions	Synthesis
		Outlin	е		

- **2** Real Application
- Basic process

Introduction	Real Application	Basic process	Scaling	Extensions	Synthesis
		Outlin	е		

- **2** Real Application
- Basic process
- 4 Scaling

5 Extensions

6 Synthesis

Extensions

Event flow model

Continuous time modeling: occurrence of events

- traffic on a road, arrivals at a taxi station,
- birth and death in demography
- hit on web servers, messages on a link, phone calls
- crimes, delinquency,...
- ...

Basic model of a 2 time scale system

- Randomness due to complexity of the environment
- Superposition of many behaviors

```
\{N_t\}_{t\in\mathbb{R}}, where N_t = number of events in [0, t]
```

or equivalently

 $\left\{ \mathit{T}_{n}
ight\} _{n\in\mathbb{N}}$, where T_{n} is the date at which event #n occurs

Event flow model

Continuous time modeling: occurrence of events

- traffic on a road, arrivals at a taxi station,
- birth and death in demography
- hit on web servers, messages on a link, phone calls
- crimes, delinquency,...
- ...

Basic model of a 2 time scale system

- Randomness due to complexity of the environment
- Superposition of many behaviors

 $\{N_t\}_{t\in\mathbb{R}}$, where N_t = number of events in [0, t[

or equivalently

 $\{T_n\}_{n\in\mathbb{N}}$, where T_n is the date at which event #n occurs

Flow characteristics

Communication model: 2 counting processes

emission/reception process

Throughput

$$\lambda = \lim_{t \to +\infty} \frac{1}{t} N_t.$$

Volume, Streaming Link capacity...

Jitter

$$\mathbb{V}ar(T_{n+1}-T_n)$$

Variability of inter-arrivals Periodic behavior

Latency

$$\mathbb{E}(T_{n+1}-T_n)$$

Response time Time constraints

Loss rates

Communication reliability Perturbed events

 $\lambda_{\text{emission}} - \lambda_{\text{reception}}$

5 Extensions

6 Synthesis

(Real Application

Basic process

Scaling

Extensions

Synthesi

Justice management

RECHERCHES

SUR LA

PROBABILITÉ DES JUGEMENTS

EN MATIÈRE CRIMINELLE

ET EN MATIÈRE CIVILE,

PRECEDEES

Scaling

Extensions

Synthesis

Justice management(2)

RECHERCHES

SUR LA

PROBABILITÉ DES JUGEMENTS

EN MATIÈRE CRIMINELLE

ET EN MATIÈRE CIVILE,

DES RÈGLES GÉNÉRALES DU CALCUL DES PROBABILITÉS;

PAR S.I-D. POISSON,

Membre de l'Institut et du Bureau des Longitudes de France; des Sociétés Royales de Londres et d'Édimbourg; des Académies de Berlin, de Stockholm, de Saint-Pétersbourg, d'Upsal, de Boston, de Turin, de Naples, etc.; des Sociétés, italienne, astronomique de Londres, Philomatique de Paris, etc.

•

Justice management

celui des accusés, a aussi augmenté d'une manière progressive (1). Voici des résultats extraits de ces documents, et que l'on pourra comparer à ce qui a lieu dans notre pays. Les nombres suivants se rapportent seulement à l'Angleterre et au pays de Galles. Ils répondent à trois périodes de chacune sept années, finissant en 1818, 1825, 1832.

	NOMDRE des accusés.	NOMBRE des condamnés.	nAPPORT du sccond nombre au 1 ^{er} .	condamnes à mort.	EXECUTES.	CONDAMNÉS à un emprisonnement de denx ans ou au-dessous.
1 ^{re} période,	64538	41054	0,636	5802	633	27168
2 ^e	93718	- 63418	0,677	7779	579	42713
3 ⁰	127910	90240	0,705	9729	414	58757

578

Justice management

RECHERCHES

4755, 5081, 5018, 5552, 5582, 5296;

les nombres correspondants des condamnés, sous l'empire d'une même législation criminelle, se sont élevés à

882, 967, 948, 871, 834, 766,

pour les crimes de la première espèce, et à

3155, 3381, 3288, 3680, 3641, 3364,

pour ceux de la seconde. De là, on déduit

0,4649, 0,5071, 0,4961, 0,4723, 0,4657, 0,4598,

pour les rapports des nombres de condamnés à ceux des accusés de crimes contre les personnes, et

0,6635, 0,6654, 0,6552, 0,6628, 0,6523, 0,6352,

pour les rapports des nombres de condamnés à ceux des accusés de crimes contre les propriétés; où l'on voit que les uns et les autres n'ont pas beaucoup varié d'une année à une autre, mais que les derniers excèdent notablement les premiers.

En prenant pour μ et a_5 les sommes des nombres d'accusés et de condamnés dans le cas des crimes contre les personnes, et pour μ' et a'_5 leurs sommes dans le cas des crimes contre les propriétés, nous aurons

 $\mu = 11016$, $a_5 = 5268$, $\mu' = 51284$, $a'_5 = 20509$;

d'où il résulte ces deux rapports :

 $\frac{a_5}{\mu} = 0,4782$, $\frac{a'_5}{\mu'} = 0,6556$,

dont le second surpasse le premier d'un peu plus du tiers de celui-ci. Au moyen de ces nombres, on trouve

 $0,4782 \mp \alpha (0,00675)$

pour les limites (a) de l'inconnue R_5 , relative aux crimes contre les personnes, et

 $0,6556 \mp \alpha (0,00580)$,

Introduction	Real Application	Basic process	Scaling	Extensions	Synthesis
		Outlin	е		

2 Real Application

5 Extensions

6 Synthesis

Macroscopic modeling

Definition (Macroscopic definition)

A continuous time stochastic process $\{N_t\}_{t\in\mathbb{R}^+}$ is a counting Poisson process with intensity λ iff

- (1) $N_0 = 0$
- 2 $\{N_t\}_{t\in\mathbb{R}^+}$ have independent increments

(e.g., for a < b < c < d, $N_b - N_a$ is independent of $N_d - N_c$)

The number of events occurring in a time interval]a, b] is Poisson distributed with parameter λ(b – a);

$$\mathbb{P}(N_b - N_a = k) = e^{-\lambda(b-a)} \frac{(\lambda(b-a))^k}{k!}.$$

Properties

• Increments are stationary: homogeneous in time

 $N_t - N_{t+\Delta}$ does not depend on t

- Linearity: $\mathbb{E}(N_b N_a) = \lambda(b a)$
- $\lambda = \text{intensity or throughput of the process (number of events per time unit)}$

Poisson distribution $\mathcal{P}(\lambda)$

X random variable Poisson distributed with parameter λ

If X and Y are independent random variable Poisson distributed with mean λ and μ then

$$X + Y \sim \mathcal{P}(\lambda + \mu).$$

N elements, each of them p = probability of signal emission *X* total number of emissions: binomial distribution $\mathcal{B}(N, p)$. $\mathbb{E}(X) = Np \stackrel{def}{=} \lambda$ mean number of emissions.

$$\mathbb{P}(X = k) = \binom{N}{k} p^{k} (1-p)^{N-k};$$

$$= \underbrace{\frac{N(N-1)\cdots(N-k+1)}{N.N\cdots N}}_{\rightarrow 1} \underbrace{\frac{1}{(1-\frac{\lambda}{N})^{k}}}_{\rightarrow 1} \frac{\lambda^{k}}{k!} \underbrace{(1-\frac{\lambda}{N})^{N}}_{\rightarrow e^{-\lambda}};$$

$$\simeq e^{-\lambda} \frac{\lambda^{k}}{k!}.$$

for very large N, X is asymptotically Poisson distributed

Traffic generated by a huge amount of individuals \Rightarrow Poisson process

- requests arrival on a web server
- arrivals of phone calls
- routed packets in a network
- cars on a road network
- . . .

How to detect non-Poisson flows

- Time dependence or correlation (burstyness, periodicity,...)
- Mean < Variance: too much variability
- smoothers of the traffic (peack avoidance strategies)
- Θ...

Microscopic modeling

Definition (Microscopic definition)

A continuous time stochastic process $\{N_t\}_{t\in\mathbb{R}^+}$ is a counting Poisson process with intensity λ iff

- (1) $N_0 = 0$
- **2** $\{N_t\}_{t \in \mathbb{R}^+}$ have independent and stationary increments
- **③** On a very small intervall]t, t + dt] we have:

 $\mathbb{P}(N_{t+dt} - N_t = 1) = \lambda dt + o(dt)$ $\mathbb{P}(N_{t+dt} - N_t = 0) = 1 - \lambda dt + o(dt)$ $\mathbb{P}(N_{t+dt} - N_t \ge 2) = o(dt)$

Properties

- Increments are stationary: homogeneous in time
- Linearity: $\mathbb{E}(N_b N_a) = \lambda(b a)$
- $\lambda = \text{intensity or throughput of the process (number of events per time unit)}$

Basic process

Scaling

Extensions

Synthesis

Differential system

$$p_n(t) = \mathbb{P}(N_t = n)$$

$$p_n(t + dt) = \mathbb{P}(N_{t+dt} = n)$$

$$= \mathbb{P}(N_{t+dt} = n|N_t = n)\mathbb{P}(N_t = n) \quad \text{nothing happens}$$

$$+ \mathbb{P}(N_{t+dt} = n|N_t = n-1)\mathbb{P}(N_t = n-1) \quad \text{one arrival}$$

$$+ \mathbb{P}(N_{t+dt} = n|N_t < n-1)\mathbb{P}(N_t < n-1) \quad \text{more than one arrival}$$

since we have independent increments

$$= \mathbb{P}(N_{t+dt} - N_t = 0)p_n(t)$$
 nothing happens
+ $\mathbb{P}(N_{t+dt} - N_t = 1)p_{n-1}(t)$ one arrival
+ $\mathbb{P}(N_{t+dt} - N_t \ge 2)\mathbb{P}(N_t < n-1)$ more than one arrival
= $(1 - \lambda dt + o(dt))p_n(t) + (\lambda dt + o(dt))p_{n-1}(t) + o(dt)$
= $p_n(t) + \lambda(p_{n-1}(t) - p_n(t))dt + o(dt)$

We end up with recurrent differential equations:

$$\left\{egin{aligned} p_n'(t) &= \lambda(p_{n-1}(t) - p_n(t)) \ p_0'(t) &= \lambda p_0(t) \end{aligned}
ight.$$

, which are solved by recurrence (put $q_n(t) = e^{\lambda t} p_n(t))$ $ho_n(t)$

Differential system

$$p_n(t) = \mathbb{P}(N_t = n)$$

$$p_n(t + dt) = \mathbb{P}(N_{t+dt} = n)$$

$$= \mathbb{P}(N_{t+dt} = n|N_t = n)\mathbb{P}(N_t = n) \quad \text{nothing happens}$$

$$+ \mathbb{P}(N_{t+dt} = n|N_t = n-1)\mathbb{P}(N_t = n-1) \quad \text{one arrival}$$

$$+ \mathbb{P}(N_{t+dt} = n|N_t < n-1)\mathbb{P}(N_t < n-1) \quad \text{more than one arrival}$$

since we have independent increments

$$= \mathbb{P}(N_{t+dt} - N_t = 0)p_n(t)$$
 nothing happens

$$+ \mathbb{P}(N_{t+dt} - N_t = 1)p_{n-1}(t)$$
 one arrival

$$+ \mathbb{P}(N_{t+dt} - N_t \ge 2)\mathbb{P}(N_t < n-1)$$
 more than one arrival

$$= (1 - \lambda dt + o(dt))p_n(t) + (\lambda dt + o(dt))p_{n-1}(t) + o(dt)$$

$$= p_n(t) + \lambda(p_{n-1}(t) - p_n(t))dt + o(dt)$$

We end up with recurrent differential equations:

$$\begin{cases} p'_n(t) = \lambda(p_{n-1}(t) - p_n(t)) \\ p'_0(t) = \lambda p_0(t) \end{cases}$$

, which are solved by recurrence (put $q_n(t) = e^{\lambda t} p_n(t)$) $\left| p_n(t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!} \right|$

Let t be a fixed time and let T_t be the time to the next arrival after time t

$$\mathbb{P}(T_t \ge s) = \mathbb{P}(N_{t+s} - N_t = 0) = e^{-\lambda s}.$$

T_t is exponentially distributed with rate λ

The inter-arrival process $\{A_n\}_{n\in\mathbb{N}}$ is a sequence of independent exponentially distributed random variable with rate λ

Basic process

Scaling

Extensions

Synthesis

Exponential distribution

Density, rate λ :

$$f(x) = \lambda e^{-\lambda x}$$

Cumulative distribution function

$$F(x) = 1 - e^{-\lambda x}$$

Mean, Variance

$$\mathbb{E} X = rac{1}{\lambda}, \;\; \mathsf{Var} X = rac{1}{\lambda^2}$$

Hazard rate

 $h(x) = \lambda$

Laplace transform

$$\mathcal{L}(t) = \mathbb{E}e^{-tX} = rac{\lambda}{t+\lambda}$$

Memoryless property $\mathbb{P}(X > t + s | X > t) = \mathbb{P}(X > s)$

Basic process

Scaling

Extensions

Synthesis

Equivalence of definitions

Theorem (Global vision)

Macroscopic, microscopic and independent exponentially distributed inter-arrivals are equivalent definitions of a Poisson process

Proof: classical books

- 2 Real Application
- **3** Basic process

6 Synthesis

Maximum Entropy Process

Spread of Points

Let [a, b] an interval, knowing $N_b - N_a = n$ the *n* points are distributed as the rearrangement of *n* points independents and uniformly distributed points on [a, b]

Theorem (Information Approach)

The **Poisson process** is the model of process with a fixed intensity and **minimal** "a priori" information

Maximum Entropy Process

Spread of Points

Let [a, b] an interval, knowing $N_b - N_a = n$ the *n* points are distributed as the rearrangement of *n* points independents and uniformly distributed points on [a, b]

Theorem (Information Approach)

The **Poisson process** is the model of process with a fixed intensity and **minimal** "a priori" information

Extensions

Synthesis

Scale Invariance

Theorem (Superposition)

Let $\{N_t^1\}$ and $\{N_t^2\}$ be two **independent** Poisson processes then $\{(N^1 + N^2)_t\}$ is a Poisson process with rate $\lambda_1 + \lambda_2$

Theorem (Extraction)

Probabilistic thinning of a Poisson process is a Poisson process.

Extensions

Synthesis

Scale Invariance

Theorem (Superposition)

Let $\{N_t^1\}$ and $\{N_t^2\}$ be two **independent** Poisson processes then $\{(N^1 + N^2)_t\}$ is a Poisson process with rate $\lambda_1 + \lambda_2$

Theorem (Extraction)

Probabilistic thinning of a Poisson process is a Poisson process.

Synthesis

Poisson Clumping heuristic

Introduction	Real Application	Basic process	Scaling	Extensions	Synthesis
		Outlin	0		
		Outim	C		

- **2** Real Application
- 3 Basic process

4 Scaling

6 Synthesis

Non-homogeneity

Definition (Macroscopic definition)

A continuous time stochastic process $\{N_t\}_{t\in\mathbb{R}^+}$ is a non-homogeneous counting Poisson process with intensity $\lambda(t)$ iff

1 $N_0 = 0$

2
$$\{N_t\}_{t\in\mathbb{R}^+}$$
 have independent increments

(a) The number of events occurring in a time interval]a, b] is Poisson distributed with parameter $\int_a^b \lambda(t)dt = \Lambda(b) - \Lambda(a)$;

$$\mathbb{P}(N_b - N_a = k) = e^{-(\Lambda(b) - \Lambda(a))} \frac{(\Lambda(b) - \Lambda(a))^k}{k!}$$

- embedded periodicity
- exceptional period

• . . .

Doubly Stochastic

Randomness on the intensity

 $\{\lambda_t\}_{t\in \mathit{real}^+}$

stationary process. Conditioned by λ_t , $\{N_t\}_{t\in\mathbb{R}^+}$ is a Poisson process.

Markov-modulated Poisson process

- several time scales
- algebra by composition of automata
- ON/OFF systems

• . . .

Doubly Stochastic

Randomness on the intensity

 $\{\lambda_t\}_{t\in \mathit{real}^+}$

stationary process. Conditioned by λ_t , $\{N_t\}_{t \in \mathbb{R}^+}$ is a Poisson process.

Markov-modulated Poisson process

- several time scales
- algebra by composition of automata
- ON/OFF systems
- . . .

Synthesis

$$\mathbb{P}(N_A = k) = e^{-\mu(A)} \frac{\mu(A)^k}{k!}.$$

Synthesis

Spatial Poisson Process

 $\mathbb{P}(N_A = k) = e^{-\mu(A)} \frac{\mu(A)^k}{k!}.$

(Extensions)

Synthesis

$$\mathbb{P}(N_A = k) = e^{-\mu(A)} \frac{\mu(A)^k}{k!}.$$

Scaling

Synthesis

$$\mathbb{P}(N_A = k) = e^{-\mu(A)} \frac{\mu(A)^k}{k!}.$$

Synthesis

$$\mathbb{P}(N_A = k) = e^{-\mu(A)} \frac{\mu(A)^k}{k!}.$$

Synthesis

$$\mathbb{P}(N_A = k) = e^{-\mu(A)} \frac{\mu(A)^k}{k!}.$$

Introduction	Real Application	Basic process	Scaling	Extensions	(Synthesis)
		Outlin	e		
		Outim	C		

- **2** Real Application
- Basic process

4 Scaling

Base model

- 2 refinement \Rightarrow model extension
- Image: multi-scale analysis (algebra for superposition, composition,...)
- statistical methods \Rightarrow Poisson regression