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Event flow model
Continuous time modeling: occurrence of events

traffic on a road, arrivals at a taxi station,

birth and death in demography

hit on web servers, messages on a link, phone calls

crimes, delinquency,...

...

Basic model of a 2 time scale system

Randomness due to complexity of the environment

Superposition of many behaviors

{Nt}t∈R , where Nt = number of events in [0, t[

or equivalently

{Tn}n∈N , where Tn is the date at which event #n occurs
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Flow characteristics

Communication model: 2 counting processes

emission/reception process

Throughput

λ = lim
t→+∞

1

t
Nt .

Volume, Streaming
Link capacity...

Latency

E(Tn+1 − Tn)

Response time
Time constraints

Jitter

Var(Tn+1 − Tn)

Variability of inter-arrivals
Periodic behavior

Loss rates

Communication reliability
Perturbed events

λemission − λreception
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Justice management
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Justice management(2)

8 / 31Event flows modeling



Introduction Real Application Basic process Scaling Extensions Synthesis

Justice management

9 / 31Event flows modeling



Introduction Real Application Basic process Scaling Extensions Synthesis

Justice management

10 / 31Event flows modeling



Introduction Real Application Basic process Scaling Extensions Synthesis

Outline

1 Introduction

2 Real Application

3 Basic process

4 Scaling

5 Extensions

6 Synthesis

11 / 31Event flows modeling



Introduction Real Application Basic process Scaling Extensions Synthesis

Counting process

0 n n + 11 2
λ λ λ

0

Nt

A typical trajectory

Counting automaton

S1 S2 S3 S4

T4

t = 0

T1 T2 T3 ..... Arrival time

time

time
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Macroscopic modeling

Definition (Macroscopic definition)

A continuous time stochastic process {Nt}t∈R+ is a counting Poisson pro-
cess with intensity λ iff

1 N0 = 0

2 {Nt}t∈R+ have independent increments

(e.g., for a < b < c < d , Nb − Na is independant of Nd − Nc )

3 The number of events occurring in a time interval ]a, b] is Poisson dis-
tributed with parameter λ(b − a);

P(Nb − Na = k) = e−λ(b−a) (λ(b − a))k

k!
.

Properties

Increments are stationary: homogeneous in time

Nt − Nt+∆ does not depend on t

Linearity: E(Nb − Na) = λ(b − a)

λ = intensity or throughput of the process (number of events per time unit)
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Poisson distribution P(λ)
X random variable Poisson distributed with parameter λ

P(X = k) = e−λ
λk

k!
.

E(X ) = λ; Var(X ) = λ.

Poisson distribution with mean 4
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If X and Y are independent random variable Poisson distributed with mean
λ and µ then

X + Y ∼ P(λ+ µ).
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Interpretation
High number of individuals

emit signal with very small probability

N elements, each of them p = probability of signal emission
X total number of emissions: binomial distribution B(N, p).

E(X ) = Np
def
= λ mean number of emissions.

P(X = k) =

(
N
k

)
pk(1− p)N−k ;

=
N(N − 1) · · · (N − k + 1)

N.N · · ·N︸ ︷︷ ︸
→1

1

(1− λ
N )k︸ ︷︷ ︸

→1

λk

k!
(1− λ

N
)N︸ ︷︷ ︸

→e−λ

;

' e−λ
λk

k!
.

for very large N, X is asymptotically Poisson distributed
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Flow analysis

Traffic generated by a huge amount of individuals⇒ Poisson process

requests arrival on a web server

arrivals of phone calls

routed packets in a network

cars on a road network

. . .

How to detect non-Poisson flows

Time dependence or correlation (burstyness, periodicity,. . . )

Mean < Variance: too much variability

smoothers of the traffic (peack avoidance strategies)

. . .
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Microscopic modeling

Definition (Microscopic definition)

A continuous time stochastic process {Nt}t∈R+ is a counting Poisson pro-
cess with intensity λ iff

1 N0 = 0

2 {Nt}t∈R+ have independent and stationary increments

3 On a very small intervall ]t, t + dt] we have:

P(Nt+dt − Nt = 1) = λdt + o(dt)

P(Nt+dt − Nt = 0) = 1− λdt + o(dt)

P(Nt+dt − Nt > 2) = o(dt)

Properties

Increments are stationary: homogeneous in time

Linearity: E(Nb − Na) = λ(b − a)

λ = intensity or throughput of the process (number of events per time unit)
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Differential system
pn(t) = P(Nt = n)

pn(t + dt) = P(Nt+dt = n)

= P(Nt+dt = n|Nt = n)P(Nt = n) nothing happens

+ P(Nt+dt = n|Nt = n − 1)P(Nt = n − 1) one arrival

+ P(Nt+dt = n|Nt < n − 1)P(Nt < n − 1) more than one arrival

since we have independent increments

= P(Nt+dt − Nt = 0)pn(t) nothing happens

+ P(Nt+dt − Nt = 1)pn−1(t) one arrival

+ P(Nt+dt − Nt > 2)P(Nt < n − 1) more than one arrival

= (1− λdt + o(dt))pn(t) + (λdt + o(dt))pn−1(t) + o(dt)

= pn(t) + λ(pn−1(t)− pn(t))dt + o(dt)

We end up with recurrent differential equations:

{
p′n(t) = λ(pn−1(t)− pn(t))

p′0(t) = λp0(t)

, which are solved by recurrence (put qn(t) = eλtpn(t)) pn(t) = e−λt (λt)n

n!
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Interarrivals

Let t be a fixed time and let Tt be the time to the next arrival after time t

P(Tt > s) = P(Nt+s − Nt = 0) = e−λs .

Tt is exponentially distributed with rate λ
The inter-arrival process {An}n∈N is a sequence of independent exponen-
tially distributed random variable with rate λ
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Exponential distribution

Density, rate λ:

f (x) = λe−λx

Cumulative distribution function

F (x) = 1− e−λx

Mean, Variance

EX =
1

λ
, VarX =

1

λ2

Hazard rate

h(x) = λ

Laplace transform

L(t) = Ee−tX =
λ

t + λ
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Density of the exponential distribution

Memoryless property

P(X > t + s|X > t) = P(X > s)
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Equivalence of definitions

Theorem (Global vision)

Macroscopic, microscopic and independent exponentially distributed
inter-arrivals are equivalent definitions of a Poisson process

Proof: classical books
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Maximum Entropy Process

Spread of Points

Let [a, b] an interval, knowing Nb − Na = n the n points are distributed
as the rearrangement of n points independents and uniformly distributed
points on [a, b]

Theorem (Information Approach)

The Poisson process is the model of process with a
fixed intensity and minimal ”a priori” information
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Scale Invariance

Theorem (Superposition)

Let {N1
t } and {N2

t } be two independent Poisson processes then {(N1 +
N2)t} is a Poisson process with rate λ1 + λ2

Theorem (Extraction)

Probabilistic thinning of a Poisson process is a Poisson process.
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Poisson Clumping heuristic

Simulation of a birth and death process
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Non-homogeneity

Definition (Macroscopic definition)

A continuous time stochastic process {Nt}t∈R+ is a non-homogeneous
counting Poisson process with intensity λ(t) iff

1 N0 = 0

2 {Nt}t∈R+ have independent increments

3 The number of events occurring in a time interval ]a, b] is Poisson dis-

tributed with parameter
∫ b

a
λ(t)dt = Λ(b)− Λ(a);

P(Nb − Na = k) = e−(Λ(b)−Λ(a)) (Λ(b)− Λ(a))k

k!
.

embedded periodicity

exceptional period

. . .
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Doubly Stochastic
Randomness on the intensity

{λt}t∈real+
stationary process. Conditioned by λt , {Nt}t∈R+ is a Poisson process.

Markov-modulated Poisson process

System

several time scales

algebra by composition of au-
tomata

ON/OFF systems

. . .
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Doubly Stochastic
Randomness on the intensity

{λt}t∈real+
stationary process. Conditioned by λt , {Nt}t∈R+ is a Poisson process.

Markov-modulated Poisson process

output

Environment

Input of the system

System

System

several time scales

algebra by composition of au-
tomata

ON/OFF systems

. . .
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Spatial Poisson Process
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P(NA = k) = e−µ(A)µ(A)k

k!
.
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Spatial Poisson Process
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Spatial Poisson Process
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Spatial Poisson Process
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Spatial Poisson Process
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Synthesis

Base model

1 reference model ⇒ deviation

2 refinement ⇒ model extension

3 multi-scale analysis (algebra for superposition, composition,...)

4 statistical methods ⇒ Poisson regression
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