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Matrix Product: Sequential Version

1 { To compute C ← C +A×B };
2 for i = 1 to n do
3 for j = 1 to n do
4 for k = 1 to n do
5 Ci,j ← Ci,j +Ai,k ×Bk,j

A1,1 A1,2

A2,2A2,1

C1,1 C1,2

C2,1 C2,2

B2,2

B1,2B1,1

B2,1
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Sequential Programs

Sequential programs are generally a succession of CPU burst and
I/O burst.

A. Legrand (CNRS-LIG) INRIA-MESCAL Introduction to Scheduling Applications 5 / 89



Matrix Product: Parallel Version (1/2)
Setting

P2,1 P2,2

P1,2P1,1

Server

I A, B, and C are initially located on the server.
I We will distribute A, B, and C on P1,1, P1,2, P2,1, P2,2.
I We will make use of all four processors to compute C ← C +
A×B.

I Such a parallel program could be written using for example
MPI. We want a SPMD algorithm.

A. Legrand (CNRS-LIG) INRIA-MESCAL Introduction to Scheduling Applications 6 / 89



Matrix Product: Parallel Version (2/2)
Algorithm

1 { Pi,j is responsible for computing Ci,j . };
2 Load Ci,j , Ai,(i+j)%2, B(i+j)%2,j from the

server;
3 Clocal ← Clocal +Alocal ×Blocal;
4 Exchange Alocal with horizontal neighbor;
5 Exchange Blocal with vertical neighbor;
6 Clocal ← Clocal +Alocal ×Blocal;
7 Unload Ci,j to the server;

P1,1 P1,2

P2,1 P2,2

B2,1

C1,1A1,2 A1,1 C1,2

B1,2

B1,1

C2,1A2,1

B2,2

A2,2 C2,2
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Parallel Programs

Parallel programs are generally a succession of CPU burst and com-
munication burst. The synchronization pattern generally incurs idle
time. This is the parallelization overhead.
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Work, Cost, Speed-up and Efficiency

P2,2P2,2

P2,1

P1,2

P1,1

Server
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Work, Cost, Speed-up and Efficiency

P2,2P2,2

P2,1

P1,2

P1,1

Server

Definition: Work.

The work is the amount of computation performed (the surface of
the pink area).
In the previous parallel Matrix Multiplication example, the work is
the same as in the sequential Matrix Multiplication example.
However, parallel algorithms generally do not do the same operations
as the sequential ones. They often have to do more. Therefore, the
work W (p) generally depends on the number of processors that are
alloted!
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Work, Cost, Speed-up and Efficiency

P2,2P2,2

P2,1

P1,2

P1,1

Server

Definition: Cost.

C(p) = p× TotalTime(p).

It is the total surface.
The cost accounts for the idle time of the processing units.
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Work, Cost, Speed-up and Efficiency

P2,2P2,2

P2,1

P1,2

P1,1

Server

Definition: Speed-up and Efficiency.

I Speed-up: s(p) =
SequentialTime

TotalTime(p)
.

I Efficiency: e(p) =
s(p)

p
=

SequentialTime

p× TotalTime(p)
.
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Side Note on Speed-up and Efficiency

Speed-up

We have SequentialTime 6 C(p) 6 p× TotalTime(p).

P2,2P2,2

P2,1

P1,2

P1,1

Hence, s(p) =
SequentialTime

TotalTime(p)
6 p and e(p) = SequentialTime

pTotalTime(p) 6 1.

The speed-up is bounded by the number of processors and the effi-
ciency is thus in [0, 1].

Still, Supra-linear speed-up may happen!.

We did not take I/O into account. With p processor, we have p times
more available memory. Swapping sometimes kills the sequential
algorithm.

Efficiency

TotalTime(p) does not necessarily decrease with p due to the par-
allelization overhead.
Using more processors may hurt and may be particularly inefficient!
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Parallel Matrix Algorithm
Block Version of the Outer-Product Algorithm

1 var A, B, C: array[0..m− 1,0..m− 1] of real;
2 var bufferA, bufferB: array[0..m− 1,0..m− 1] of real;
3 q ←SRQT(NUM PROCS());
4 myrow ←MY PROC ROW();
5 mycol ←MY PROC COL();
6 for k = 0 to q − 1 do
7 for i = 0 to m− 1 do { Broadcast A along rows }
8 BROADCASTROW(i, k, A, bufferA,m×m)

9 for j = 0 to m− 1 do { Broadcast B along columns }
10 BROADCASTCOL(k, j, B, bufferB ,m×m)

11 { Multiply matrix blocks } if (myrow = k) And (mycol = k) then
12 MATRIXMULTIPLYADD(C,A,B,m)

13 else if (myrow = k) then MATRIXMULTIPLYADD(C, bufferA, B,m) ;
14 else if (mycol = k) then MATRIXMULTIPLYADD(C,A, bufferB ,m) ;
15 else MATRIXMULTIPLYADD(C, bufferA, bufferB ,m) ;
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Two Comments

I Many parallel programs take the number of processors as an input
and adapt to it.

I Many parallel programs use collective communication operations and
synchronization.
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The BSP model

Bulk Synchronous Parallel is a programming paradigm whose prin-
ciple is a series of independent steps of computations and commu-
nication/synchronization.

SynchronizationComputations

Communications

The cost of a superstep is determined as the sum of three terms:

T = max
i
w(i) + maxh(i)g + l

Scheduling under BSP is about finding a tradeoff between load-
balancing and number of communication/synchronizations.
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Moldable Parallel Programs

Remember the previous “Block Version of the Outer-Product Algo-
rithm”.

1 q ←SRQT(NUM PROCS());
2 myrow ←MY PROC ROW();
3 mycol ←MY PROC COL();
4 for k = 0 to q − 1 do
5 . . .

This q is not hard-coded. The algorithm adapts to the number of
available processors at the beginning of the execution.
It uses this number to distribute the data and organize the commu-
nications.
Such programs are called moldable.
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Dynamic Parallel Programs

Code Coupling and Adaptive Mesh-Refining

When using adaptive mesh-refining, load imbalance occurs. Cou-
pling code makes it worse. Recomputing a good partition and redis-
tributing the data is not necessarily a good option. However adding
computing resources on the fly is often very efficient.

; The resource requirements vary over the time.

This kind of program is called dynamic.
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Dynamic Parallel Programs

Mesh Partitioning
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Adaptive Programs

FlowVR: Adaptive Interactive Rendering

These programs can adapt to the resource they are alloted over the
time.
This kind of program is called malleable.
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Adaptive Programs

KAAPI: Adaptive, Asynchronous Parallel and Interactive Computing

KAAPI is based on work-stealing algorithms and contains non-
blocking and scalable algorithms.
KAAPI/Taktuk won the 4th and 5th International Challenge
GRIDS@WORK (2007, 2008).

2007 N-queens

2008 Super Quant Monte-Carlo, pricing application.

I 3609 cores used between France and Japan during one hour.
I The KAAPI/Taktuk team was able to price 988 actions on

the 1000 of the challenge and was scored 8760/18000.
I The second team was able to price 177 actions using 4329

and was scored 1459/18000.

These programs can adapt to the resource they are alloted over the
time.
This kind of program is called malleable.
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Divisible Load Scheduling

Parallelizing generally has a price. There is a computation overhead
and a communication/synchronization overhead.
Some applications however have a very low computation overhead
and can be very easily divided.

I Pattern Searching

I Database Computation

I Video encoding

I Image processing

Such applications are very well suited to master-slave computing.

Computation times and commu-
nication times are linear with the
fraction of alloted load.

This kind of program is called di-
visible.
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Solving a triangular system (step by step)


x+ y+ z+ t = 6

y− 3z− t = 5

6z+ t =−4

4t = 8

The main steps are:

I we start from the bottom and proceed to the top

I we make horizontal sums of products

I we divide the results by a coefficient
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Solving a triangular system (step by step)
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4t = 8


y+ 1 = 5

z = −1

t = 2

The main steps are:
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Solving a triangular system (step by step)


x+ y+ z+ t = 6

y− 3z− t = 5

6z+ t =−4

4t = 8


y = (5− 1)/1

z = −1

t = 2
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Solving a triangular system (step by step)
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t = 2
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Solving a triangular system (step by step)
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6z+ t =−4

4t = 8


x+ 5 = 6

y = 4

z = −1

t = 2

The main steps are:

I we start from the bottom and proceed to the top

I we make horizontal sums of products

I we divide the results by a coefficient

A. Legrand (CNRS-LIG) INRIA-MESCAL Introduction to Scheduling Applications 18 / 89



Solving a triangular system (step by step)
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Solving a triangular system (step by step)


x+ y+ z+ t = 6

y− 3z− t = 5

6z+ t =−4

4t = 8


x = 1

y = 4

z = −1

t = 2

The main steps are:

I we start from the bottom and proceed to the top

I we make horizontal sums of products

I we divide the results by a coefficient
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Solving a triangular system (in python)

(without using np.linalg.solve(A,b), of course! ,)

1 import numpy as np

2 A = np.array([[1, 1, 1, 1], [0, 1, -3, -1],

3 [0, 0, 6, 1] , [0, 0, 0, 4]], float)

4 b = np.array([6, 5, -4, 8], float)

5

6 n = len(b)

7 x = np.zeros(n, float)

8 for i in reversed(range(0,n)): # from the bottom to the top

9 S = 0

10 for j in range(i+1,n):

11 S = S + A[i][j] * x[j] # the sum of products

12 x[i] = (b[i] - S) / A[i][i] # the division

13 print(x)

1 [ 1. 4. -1. 2.]

x+ y+ z+ t = 6

y− 3z− t = 5

6z+ t =−4

4t = 8

As such, this code is intrinsically sequential (because of S!)
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Solving a triangular system (minor rewriting)

1 for i in reversed(range(0,n)): # from the bottom to the top

2 S = np.dot(A[i][i+1:n],x[i+1:n]) # the sum of products

3 x[i] = (b[i] - S) / A[i][i] # the division

This version is much faster than the previous one because:

I no interpretation of the inner loop, no need to check bounds,
. . .

I the sum can be vectorized (MMX, SSE, GPU,...)

I the sum can be multithreaded (threads, multicore)

I the sum can be distributed (MPI, cluster)
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This version is much faster than the previous one because:

I no interpretation of the inner loop, no need to check bounds,
. . .

I the sum can be vectorized (MMX, SSE, GPU,...)

I the sum can be multithreaded (threads, multicore)

I the sum can be distributed (MPI, cluster)

S = S + V HAdd(R0)

R0 = V Mult(R1,R2)

...

...
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Solving a triangular system (minor rewriting)

1 for i in reversed(range(0,n)): # from the bottom to the top

2 S = np.dot(A[i][i+1:n],x[i+1:n]) # the sum of products

3 x[i] = (b[i] - S) / A[i][i] # the division

This version is much faster than the previous one because:

I no interpretation of the inner loop, no need to check bounds,
. . .

I the sum can be vectorized (MMX, SSE, GPU,...)

I the sum can be multithreaded (threads, multicore)

I the sum can be distributed (MPI, cluster)

S2 = prod(A2,B2)S1 = prod(A1,B1)

thread join()

S = S1 + S2

thread create()

Thread 1 Thread 2
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Solving a triangular system (minor rewriting)

1 for i in reversed(range(0,n)): # from the bottom to the top

2 S = np.dot(A[i][i+1:n],x[i+1:n]) # the sum of products

3 x[i] = (b[i] - S) / A[i][i] # the division

This version is much faster than the previous one because:

I no interpretation of the inner loop, no need to check bounds,
. . .

I the sum can be vectorized (MMX, SSE, GPU,...)

I the sum can be multithreaded (threads, multicore)

I the sum can be distributed (MPI, cluster)

S = prod(A,B)

MPI Scatter

MPI Gather(Sp)

S = prod(A,B)

S = sum(Sp)

MPI Scatter

MPI Gather(Sp)

MPI S...

S = ...

MPI G...

Node 2 Node...Node 1
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Is it satisfying ?

P1

P3
P2

P4

P5

P6

P7

P8

Temps
Somme Inversion

...

No!

I CPUs are mostly inactive (except in the end)

I Communications = very small and very frequent

I If one process is ever late, it delays all the others

To obtain performance, we should completely reorganize this code:

I change the granularity

I get rid of synchronizations
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Some non trivial reorganization


x+ y+ z+ t = 6

y− 3z− t = 5

6z+ t =−4

4t = 8

Let’s propagate new values in all
lines (sums) as soon as possible

(we now proceed ”vertically”)

1 import numpy as np

2 A = np.array([[1, 1, 1, 1], [0, 1, -3, -1],

3 [0, 0, 6, 1] , [0, 0, 0, 4]], float)

4 b = np.array([6, 5, -4, 8], float)

5

6 n = len(b)

7 x = np.zeros(n, float)

8 S = np.zeros(n, float)

9 for j in reversed(range(0,n)): # from the bottom to the top

10 x[j] = (b[j] - S[j]) / A[j][j] # the division (D_j)

11 for i in range(0,j): # A true parallel loop

12 S[i] = S[i] + A[i][j] * x[j] # Update (U_i,j)
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Some non trivial reorganization


x+ y+ z+ 2 = 6

y− 3z− 2 = 5

6z+ 2 =−4

4t = 8

Let’s propagate new values in all
lines (sums) as soon as possible
(we now proceed ”vertically”)

1 import numpy as np

2 A = np.array([[1, 1, 1, 1], [0, 1, -3, -1],

3 [0, 0, 6, 1] , [0, 0, 0, 4]], float)

4 b = np.array([6, 5, -4, 8], float)

5

6 n = len(b)

7 x = np.zeros(n, float)

8 S = np.zeros(n, float)

9 for j in reversed(range(0,n)): # from the bottom to the top

10 x[j] = (b[j] - S[j]) / A[j][j] # the division (D_j)

11 for i in range(0,j): # A true parallel loop

12 S[i] = S[i] + A[i][j] * x[j] # Update (U_i,j)
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Analyzing a Simple Code

1 for j in reversed(range(0,n)):

2 x[j] = (b[j] - S[j]) / A[j][j] # (D_j)

3 for i in range(0,j):

4 S[i] = S[i] + A[i][j] * x[j] # (U_i,j)

For a given value 1 6 i 6 n, all tasks Ui,∗ are computations done
during the ith iteration of the outer loop.

<seq is the sequential order :

Dn<seq U1,n<seq U2,n<seq . . .<seq Un,n<seq Dn−1<seq
U1,n−1<seq . . .<seq D1 .
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Independence

However, some independent tasks could be executed in parallel.

I Independent tasks are the ones whose execution order can be
changed without modifying the result of the program.

I Two independent tasks may read the value but never write to
the same memory location.

For a given task T , In(T ) denotes the set of input variables and
Out(T ) the set of output variables.
In the previous example, we have:{
In(Dj) = {b(j), S(j), a(j, j)}
Out(Dj) = {x(j)} and{
In(Ui,j) = {a(i, j), x(i), S(i)}
Out(Ui,j) = {S(i)} for i < j.

1 for j in reversed(range(0,n)):

2 x[j] = (b[j] - S[j]) / A[j][j] # (D_j)

3 for i in range(0,j):

4 S[i] = S[i] + A[i][j] * x[j] # (U_i,j)
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Bernstein Conditions

Definition.

Two tasks T and T ′ are not independent ( T⊥T ′) whenever they
share a written variable:

T⊥T ′ ⇔


In(T ) ∩Out(T ′) 6= ∅

or Out(T ) ∩ In(T ′) 6= ∅
or Out(T ) ∩Out(T ′) 6= ∅

.

Those conditions are known as Bernstein’s conditions [Bernstein66].

We can check that:

I Out(Dn)∩In(Un,1) = {x(n)}
; Dn⊥Un,1.

I Out(U3,n) ∩Out(U3,n−1) = {S(3)}
; U3,n⊥U3,n−1.

1 for j in reversed(range(0,n)):

2 x[j] = (b[j] - S[j]) / A[j][j] # (D_j)

3 for i in range(0,j):

4 S[i] = S[i] + A[i][j] * x[j] # (U_i,j)
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Precedence

If T⊥T ′, then they should be ordered with the sequential execution
order. T ≺ T ′ if T⊥T ′ and T <seq T

′.
More precisely ≺ is defined as the transitive closure of (<seq ∩ ⊥).

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i+ 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A dependency graph G is used.

(e : T → T ′) ∈ G means that T ′ can
start only if T has already been finished.
T is a predecessor of T ′.

Transitivity arcs are generally omitted.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1
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. . . pour obtenir des graphes de tâches

If I1 writes in z and I2 reads/writes z, then I1 and I2 should be
done in the right (sequential) order [Bernstein66]

Data access define dependencies be-
tween instructions/tasks

1 import numpy as np

2 A = np.array([[1, 1, 1, 1], [0, 1, -3, -1],

3 [0, 0, 6, 1] , [0, 0, 0, 4]], float)

4 b = np.array([6, 5, -4, 8], float)

5

6 n = len(b)

7 x = np.zeros(n, float)

8 S = np.zeros(n, float)

9 for j in reversed(range(0,n)): # from the bottom to the top

10 x[j] = (b[j] - S[j]) / A[j][j] # the division (D_j)

11 for i in range(0,j): # A true parallel loop

12 S[i] = S[i] + A[i][j] * x[j] # Update (U_i,j)

I allows to adapt granularity

I optimized versions depending
on resources (CPU/GPU/auto-
tuning)

I dynamic load-balancing

I more portables performances

U5,2 U5,1 U5,0

U4,3 U4,2 U4,0U4,1

U2,1

U3,1 U3,0

U5,6

D2

U2,0

D4

D1

U5,4

D3

D0

U5,3

U3,2

D5
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From Coarse-grain Task Graphs. . .

The previous task graph comes from a low-
level analysis of the code.

I It probably makes little sense to do a
parallel implementation with MPI with
such a low task granularity.

I Can totally make sense with OpenMP.

I Such task graphs can also be used
by compilers to do code optimization
by exploiting multiple functional units,
pipelines functional units, etc.

I With blocking these tasks could be-
come MPI (parallel) tasks.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1
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. . . to Parallel Tasks

time

processors

Hide applications’ complexity

3 versions:

I Rigid Tasks

I Moldable Tasks

I Malleable Tasks

The execution time generally decreases with the number of proces-
sors but the penalty incurred by communications and synchroniza-
tions increases.
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Workflow

Task-graph do not necessarily come from instruction-level analysis.

select p.proteinID,

blast(p.sequence)

from proteins p, proteinTerms t

where p.proteinID = t.proteinID and

t.term = GO:0008372

scan(proteinTerms t)

(termGO:0008372)

project

(t.proteinID)

exchange

join

(p.proteinID=t.proteinID)

project

(p.proteinID,blast)

operation call

(blast(p.sequence))

exchange

scan(proteins p)

(termGO:0008372)

project

(p.proteinID,p.sequence)

exchange

I Each task may be a parallel job. . .

I Each edge depicts a dependency i.e. most of the times some
data to transfer.
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Conclusion

I have presented you a few different parallel program models:

I rigid jobs
I moldable jobs
I dynamic jobs
I malleable jobs

I divisible jobs

I BSP jobs

I DAGs of the previous jobs

The rationale behind all these models is:

I the diversity and the complexity of parallel programs;

I the level of details we need/wish to expose to the one in charge
of the execution.

Modeling is an art.

You have to know your application to know what is negligible and
what is important. Even if your model is imperfect, you may still
derive interesting results.
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Some questions you need to answer

Preemption Are we allowed to suspend a program and resume it
later ?

I Resumed from the beginning or from where it was stopped?
I May be resumed on another machine or not (migration)?
I Does preemption/migration has a cost or not?

Release dates Are all tasks available at the very beginning or not?

Deadlines Are the tasks associated to a deadline before which they
should complete? What happens when the deadline is missed?

Dependencies Are there dependencies between tasks (DAGs)?

Users Are there many users and should this be taken into account?

Long-term vs. short-term What kind of constraints do you have on
the time needed to take your scheduling decisions?
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Online vs. Off-line, clairvoyance

What kind of of information do you have to make your scheduling choices?

Off-line You know everything (release dates and processing time of each
task) at the very beginning.
It is the “simplest” setting and will give you insights on your scheduling
problem even though these hypothesis do not really hold in practice.
This kind of problem should thus be studied before everything else.

On-line/clairvoyant You do not know in advance when tasks arrive. How-
ever, once a new task are available, you know its computation time.

On-line/non clairvoyant You know nothing!

Sometimes (often?), reality is in between:

I We could have “informations” about the task arrival (e.g., periodic
creation, random process, use the past to predict the future).

I We could have “informations” about the task computation require-
ment (e.g., mix of short tasks and long tasks).
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Criteria: Intuitive Notion

CPU utilization (max) percent usage of CPU. Only useful computations
(mix CPU, I/O; preemption overhead).

Throughput (max) average number of tasks that complete their execution
per time-unit.

Makespan (min) Completion time of the last finishing task.

Load (min) Completion time of the last finishing task for a given processor.

Turnaround Time/Response Time/Flow (min) amount of time it takes be-
tween the task arrival and its completion.

Waiting Time (min) amount of time spent waiting for being executed.

Slowdown/Stretch (min) slowdown factor encountered by a task relative
to the time it would take on an unloaded system.

The previous quantities are task- or CPU-centric and need to be aggregated
into a single objective function.

I max (the worst case)
I average: arithmetic (i.e. sum)

or something else. . .

I variance (to be “fair” between
the tasks).
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Criteria: Classical Definitions

A given task Ti is defined by:
I processing time pi
I release date ri
I completion time Ci

I (number of required proces-
sors qi)

I (deadline di)

Completion Time

I Makespan: Cmax = maxiCi
This metric is the most classical and is relevant when scheduling
a single application.

I Total Completion Time: SC =
∑

iCi
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Fi = Ci − ri

I Maximum Flow Time: Fmax = maxi Fi

I Total Completion Time: SF =
∑
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∑
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Waiting Time

Wi = Ci − ri − pi

I Maximum Waiting time: Wmax = maxiWi

I Total Waiting Time: SW =
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Criteria: Classical Definitions

A given task Ti is defined by:
I processing time pi
I release date ri
I completion time Ci

I (number of required proces-
sors qi)

I (deadline di)

Slowdown

Si =
Ci − ri
pi

I Maximum Stretch: Smax = maxi Si

I Total Stretch: SS =
∑

i Si
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NP-completeness

Most scheduling problem are NP-complete but you may be lucky. . . So
the first question to answer is: P or NP-hard ?

For a given objective function Obj:

Definition: Decision and Optimization.

Dec(M): Is there a schedule σ such that Obj(σ) 6M?

Opt: Find M∗ such that M∗ = minσ Obj(σ).

If Dec can be solved in polynomial time, then so can Opt (using a
dichotomy). And conversely. . .

Note that since SW (σ) = SF (σ)−
∑

i pi = SC(σ)−
∑

i ri−
∑

i pi,
all these problem are equivalent on a complexity point of view.
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Worst-Case Analysis: %-approximation

Your scheduling problem is NP-hard so you need to propose a heuris-
tic and compare it to the best possible solution.
Consider a given objective function Obj.

Definition: %-approximation.

An algorithm A is a %-approximation
iff

for any instance I, Obj(A(I)) 6 %.Obj∗(I).

The approximation ratio of A is:

%(A) = max I
Obj(A(I))

Obj∗(I)

Note that even though SW (σ) = SF (σ)−
∑

i pi = SC(σ)−
∑

i ri−∑
i pi, these problem are not equivalent on an approximation point

of view.
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Worst-Case Analysis: %-competitive

What is the best solution to an online problem (where the heuristic
doesn’t know in advance the jobs arrival) ?
We keep comparing to the best possible solution, i.e. the one that
knows everything.

Definition: %-competitive.

An algorithm A is a %-approximation
iff

for any instance I, Obj(A(I)) 6 %.Obj∗(I).

The approximation ratio of A is:

%(A) = max I
Obj(A(I))

Obj∗(I)

It is the same definition except that it applies to online algorithms.
For such a pessimistic evaluation, one commonly uses an adversary.
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Average-Case Analysis

If we have a probability distribution over the set of instances, Obj
can thus be seen as a random variable.
We can define the expectation of Obj.

E[Obj(A)] =

∫
I
Obj(A(I))p(I).dI =

∑
I

Obj(A(I))p(I)

People often try to evaluate at (at least through experiments)

%(A) =

∫
I

Obj(A(I))

Obj∗(I)
p(I).dI or

%(A) =
E[Obj(A)]

E[Obj∗]
=

∫
I Obj(A(I))p(I).dI∫
I Obj

∗(I)p(I).dI

However, in the literature, there are many different ways of compar-
ing random variables (and thus to compare and evaluate algorithms).
These techniques will be presented in much more details later.
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Graham Notation

Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : 〈α|β|γ〉 [Brucker-Book]

I α is the processor environment (a few examples):
I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):
I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):
I Cmax: makespan;
I
∑
Ci: average completion

time;
I
∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(maxCi − di);

I . . .
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times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):
I Cmax: makespan;
I
∑
Ci: average completion

time;
I
∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(maxCi − di);

I . . .
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Graham Notation: Exercise

Understand the following problems and propose a practical situation
to illustrate them:

I 〈P |prec|Cmax〉
I 〈P |qj , prec|Cmax〉
I 〈P |qj |Fmax〉
I 〈1|rj ; pmtn|Smax〉
I 〈1|rj ; pmtn, di|Lmax〉

A. Legrand (CNRS-LIG) INRIA-MESCAL Introduction to Scheduling Defining a Scheduling Problem 46 / 89



Scheduling. . .

Scheduling is a very generic word that encompass a very wide range
of situations, problems and analysis techniques.

Scheduling is generally about deciding who, where and when.

It is thus almost everywhere and when you start looking at a given
scheduling problem, with very high probability, many people already
worked on it.

Doing a serious and thorough bibliographical study is thus of
uttermost importance!
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Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

time

processors

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications
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Batch Scheduling

Each job is defined as a Number of nodes (qi) and a Time (pi):

I want 6 nodes for 1h

Typically users are “charged” against an “allocation”: e.g. “You
only get 100 CPU hours per week”.
A batch scheduler is a central middleware to manage resources (e.g.
processors) of parallel machines:

I accept jobs (computing tasks) submitted by users
I decide when and where jobs are executed
I start jobs execution

They take into account:
I unavailability of some nodes
I users jobs mutual exclusion
I specific needs for jobs (memory, network, ...)

While trying to :
I maximize resources usage
I be fair among users
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Batch Scheduling

Typical wanted features:

I Interactive mode

I Batch mode

I Parallel jobs support

I Multi-queues with priori-
ties

I Admission policies (limit
on usage, notions of user
groups, power users)

I Resources matching

I File staging

I Jobs dependences

I Backfilling

I Reservations

I Best effort jobs

I Environment reconfiguration

There are many existing batch schedulers : LSF, PBS/Torque, Maui
scheduler, Sun Grid Engine, EASY, OAR, . . .

These are complex systems with many config options !
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Main Batch Schedulers Features

OpenPBS SGE Maui Scheduler OAR
(+ OpenPBS)

Interactive mode × × × ×
Batch mode × × × ×
Parallel jobs support × × × ×
Multi-queues with priorities × × × ×
Resources matching × × × ×
Admission policies × × × ×
File staging × × ×
Jobs dependences × × ×
Backfilling × ×
Reservations × ×
Best effort jobs ×
Environment reconfiguration ×
Fair sharing × ×
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Base results

A batch scheduler may have to solve something like

〈P |sizej , prec, rj |Fmax〉

But this is quite a complicated problem.

I In particular 〈P2||Cmax〉 is already (weakly) NP-hard:

Given n numbers a1, . . . , an whose sum is even, find
a subset of indices I such that

∑
i∈I ai =

∑
i 6∈I ai

I So let’s look at 〈P |pj = 1|Cmax〉. Alright, this one is really
trivial.,

I So maybe we should look at 〈P |pj = 1, prec|Cmax〉
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Try to develop your intuition

Assume we have 2 machines:
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Prioritize according to the “critical path”

We can define a notion of “depth” and schedule ready tasks accord-
ingly (“highest” tasks go first).
This is known as Hu’s algoritm and works great for intrees and
outtrees but not the general case:

I 〈P |pj = 1, intree|Cmax〉 is polynomial (Hu, 1961). Note that
although the result seems trivial, the original proof was 8 pages
long! We had to wait a bit to get a 2 page long proof (James
A. M. McHugh, 1984)

I 〈P |pj = 1, prec|Cmax〉 is NP-hard

I 〈P2|pj = 1, prec|Cmax〉 is polynomial (Coffman, 1972) but the
algorithm is very specific to the 2 machine case and does not
provide much intuition.

I One of the difficulty is to decide between scheduling critical
tasks or tasks that will release a lot of work
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List Scheduling

When simple problems are hard, we should try to find good approx-
imation heuristics. A %-approximation is an algorithm whose output
is never more than a factor % times the optimum solution.
Natural idea: using greedy strategy like trying to allocate the most
possible task at a given time-step. However at some point we may
face a choice (when there is more ready tasks than available proces-
sors).

Any strategy that does not let on purpose a processor idle is effi-
cient [Coffman76]. Such a schedule is called list-schedule.

Theorem 1: Coffman.

Let G = (V,E,w) be a DAG of sequential tasks, p the number of
processors, and σp a list-schedule of G on p processors.

Cmax(σp) 6
(

2− 1
p

)
C∗max(p) .

Most of the time, list-heuristics are based on the critical path.
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List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)
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List Scheduling: proving the Coffman result

One can actually prove that this bound cannot be improved.

Proof.

K(p− 1)

K

p
1 K(p− 1)

··
·




p− 1

% >
K(2p− 1)

Kp+ 1
−−−−→
K→∞

2p− 1

p
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List scheduling Anomalies
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List Scheduling for Parallel Rigid Tasks

Let us assume we have n independent rigid jobs J1 = (p1, q1), . . . , Jn =
(pn, qn) and m machines.
Let us denote by T ∗ the optimal makespan for this instance.

Let us consider a list schedule of makespan T . Let us denote by q(t)
the number of active processors at time t.
We have ∀t1, t2 ∈ [0, T ] : t1 6 t2 − T ∗ ⇒ q(t1) + q(t2) > m
(otherwise, the tasks running at time t2 could have been run at
time t1).
Let us assume that T > 2T ∗. Then we have:

mT ∗ >
∑
i

qipi =

∫ T

0
q(t) =

∫ 2T ∗

0
q(t) +

∫ T

2T ∗
q(t)

>
∫ T ∗

0
q(t) + q(t+ T ∗)︸ ︷︷ ︸

>mT ∗

+

∫ T

2T ∗
q(t)︸ ︷︷ ︸

>0

,which is absurd.
Theorem 2.

List-scheduling has an approximation factor of 2 for minimizing the
Cmax of Parallel Rigid Tasks.
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List-scheduling has an approximation factor of 2 for minimizing the
Cmax of Parallel Rigid Tasks.
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Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Let us look at the schedule produced by A on an instance I.

S0 jobs
release of

0
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Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

I There is a PTAS for 〈Q||Cmax〉. Hence, there is an (2 + ε)-
competitive online clairvoyant algorithm for 〈Q|rj |Cmax〉.

I There is a 2 approximation 〈Q||Cmax〉. Hence, there is an 4-
competitive online clairvoyant algorithm for 〈Q|rj |Cmax〉.

I There is a 2 approximation 〈P |sizej |Cmax〉. Hence, there is an
4-competitive online clairvoyant algorithm for 〈Q|sizej |Cmax〉.

I Actually, by doing a slightly finer analysis, on can show that
the list-scheduling algorithm is a (2 − 1/m)-competitive non-
clairvoyant algorithm for 〈P |rj |Cmax〉.
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General Principle

TimeNow

Processors

Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Introduction to Scheduling Batch Scheduling 64 / 89



General Principle

TimeNow

Processors

in the queue
(Waiting)

1st job
Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Introduction to Scheduling Batch Scheduling 64 / 89



General Principle

TimeNow

Processors

in the queue
(Waiting)

2nd job

in the queue
(Waiting)

1st job
Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Introduction to Scheduling Batch Scheduling 64 / 89



General Principle

TimeNow

Processors

in the queue
(Waiting)

3rd job

in the queue
(Waiting)

2nd job

in the queue
(Waiting)

1st job
Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Introduction to Scheduling Batch Scheduling 64 / 89



First Come First Served

TimeNow

Processors

in
job
1st

the
queue

Running

I FCFS = simplest scheduling option

I Fragmentation ; need for backfilling
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Backfilling: Question

I Which job(s) should be picked for promotion through the queue?

I Many heuristics are possible
I Two have been studied in detail

I EASY
I Conservative Back Filling (CBF)

I In practice EASY (or variants of it) is used, while CBF is not.

I Although, OAR, a recently proposed batch scheduler imple-
ments CBF.
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EASY Backfilling

Extensible Argonne Scheduling System
Maintain only one reservation, for the first job in the queue.
Definitions:

Shadow time time at which the first job in the queue starts execu-
tion

Extra nodes number of nodes idle when the first job in the queue
starts execution

1 Go through the queue in order starting with the 2nd job.

2 Backfill a job if it will terminate by the shadow time, or it needs
less than the extra nodes.
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EASY

TimeNow

Processors

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!
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EASY Properties

Unbounded Delay. I The first job in the queue will never be de-
layed by backfilled jobs

I BUT, other jobs may be delayed infinitely!

No Starvation. I Delay of first job is bounded by runtime of cur-
rent jobs

I When the first job finishes, the second job becomes the first
job in the queue

I Once it is the first job, it cannot be delayed further

Other approach. I Conservative Backfilling. EVERY job has a
reservation. A job may be backfilled only if it does not delay
any other job ahead of it in the queue.

I Fixes the unbounded delay problem that EASY has. More
complicated to implement (The algorithm must find holes
in the schedule) though.

I EASY favors small long jobs and harms large short jobs.
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When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?
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Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?
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How Good is the Schedule ?

All of this is great, but how do we know what a “good” schedule
is? FCFS, EASY, CFB, Random?
What we need are metrics to quantify how good a schedule is. It
has to be an aggregate metric over all jobs

1 Turn-around time or flow (Wait time + Run time).
Job 1 needs 1h of compute time and waits 1s
Job 2 needs 1s of compute time and waits 1h

Clearly Job 1 is really happy, and Job 2 is not happy at all
2 Wait time (equivalent to “user happiness”)

Job 1 asks for 1 nodes and waits 1 h
Job 2 asks for 512 nodes and waits 1h

Again, Job 1 is unhappy while Job 2 is probably sort of happy.

We need a metric that represents happiness for small, large,
short, long jobs.

3 Slowdown or Stretch (turn-around time divided by turn- around
time if alone in the system)
Doesn’t really take care of the small/large problem. Could think
of some scaling, but unclear !
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Now What ?

Now we have a few metrics we can consider
We can run simulations of the scheduling algorithms, and see how
they fare.
We need to test these algorithms in representative scenarios
Supercomputer/cluster traces. Collect the following for long periods
of time:

I Time of submission

I How many nodes asked

I How much time asked

I How much time was actually used

I How much time spent in the queue

Uses of the traces:

1 Drive simulations

2 Come up with models of user behaviors
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Sample Results

A type of experiments that people have done: replace user estimate
by f times the actual run time
Possible to improve performance by multiplying user estimates by 2!

EASY CBF

Mean Slowdown

KTH -4.8% -23.0%

CTC -7.9% -18.0%

SDSC +4.6% -14.2%

Mean Response time

KTH -3.3% -7.0%

CTC -0.9% -1.6%

SDSC -1.6% -10.9%
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Message

I These are all heuristics.

I They are not specifically designed to optimize the metrics we
have designed.

I It is difficult to truly understand the reasons for the results.

I But one can derive some empirical wisdom.

I One of the reasons why one is stuck with possibly obscure
heuristics is that we’re dealing with an on-line problem: We
don’t know what happens next.

I We cannot wait for all jobs to be submitted to make a decision.
But we can wait for a while, accumulate jobs, and schedule
them together.
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Summary

Batch Schedulers are what we’re stuck with at the moment.
They are often hated by users.

I I submit to the queue asking for 10 nodes for 1 hour.

I I wait for two days.

I My code finally starts, but doesn’t finish within 1 hour and gets
killed!!

A lot of research, a few things happening “in the field”.
When you go to a company that has clusters (like most of them),
they typically have a job scheduler, so it’s good to have some idea
of what it is.
A completely different approach is gang scheduling, which we discuss
next.
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Gang Scheduling: Basis

I All processes belonging to a job run at the same time (the term
gang denotes all processors within a job).

I Each process runs alone on each processor.

I BUT: there is rapid coordinated context switching.

I It is possible to suspend/preempt jobs arbitrarily

; May allow
more flexibility to optimize some metrics.

I If processing times are not known in advance (or grossly erro-
neous), preemption can help short jobs that would be “stuck”
behind a long job.

I Should improve machine utilization.
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Gang Scheduling: an Example

I A 128 node cluster.

I A running 64-node job.

I A 32-node job and a 128-node job are queued.

Should the 32-node job be started ?
Space-Sharing Time-Sharing

short
32-node

job

long
32-node

job

More uniform slowdown, better resource usage.
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Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).
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Batch Scheduling it is then

So it seems we’re stuck with batch scheduling.
Why don’t we like Batch Scheduling?

Because queue waiting times
are difficult to predict.

I depends on the status of the queue

I depends on the scheduling algorithm used

I depends on all sorts of configuration parameters set by system
administrator

I depends on future job completions!

I etc.

So I submit my job and then it’s in limbo somewhere, which is
eminently annoying to most users.
That is why there is more and more demand for reservation support.
Users build (badly?) the schedule by themselves.
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Batch Scheduling and Grids

Grids result from the collaboration of many Universities/Computing
Centers.
Everyone runs its own Batch Scheduler that cannot be bypassed.
How to decide where we should submit our jobs?

When in doubt, a brute-force approach is to:

I Do multiple submissions for different numbers of nodes

I Cancel all submissions but the first one that comes back

I Or possibly make some ad-hoc call regarding whether to keep
a potentially poor request in the hope of getting a better one
through shortly after.

What happens if everybody does this?

Other issues:

I File Staging ?

I Load Balancing between sites ?
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Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . , Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?
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So Where are we ?

I Batch schedulers are complex pieces of software that are used
in practice.

I A lot of experience on how they work and how to use them.

I But ultimately everybody knows they are an imperfect solution.

I Many view the lack of theoretical foundations as a big problem.

I Some just don’t care. . .

Fools ignore complexity. Pragmatists suffer it. Some
can avoid it. Geniuses remove it.

– ”Epigrams in Programming”, by Alan J. Perlis of
Yale University.

A. Legrand (CNRS-LIG) INRIA-MESCAL Introduction to Scheduling Gang Scheduling 89 / 89



Bibliography

A.J. Bernstein.
Analysis of programs for parallel processing.
IEEE Transactions on Electronic Computers, 15:757–762, Oc-
tober 1966.

Peter Brucker.
Scheduling Algorithms.
Springer, Heidelberg, 2 edition, 1998.

E. G. Coffman.
Computer and job-shop scheduling theory.
John Wiley & Sons, 1976.

D.B. Shmoys, J. Wein, and D.P. Williamson.
Scheduling parallel machines on-line.
Symposium on Foundations of Computer Science, 0:131–140,
1991.

A. Legrand (CNRS-LIG) INRIA-MESCAL Introduction to Scheduling Bibliography 89 / 89


	Modeling Applications, General Notions
	Introducing Fundamental Notions Through the Matrix Product Example
	Adaptive Parallel Programs
	Task Graphs and Parallel Tasks From Outer Space

	Defining a Scheduling Problem
	Rules of the Game
	Criteria: How Do You Win the Game?
	Analysis Method
	Graham Notation

	Batch Scheduling
	Principles
	Theoretical results
	Basic idea: FCFS + Backfilling
	EASY
	How Good is the Schedule?

	Gang Scheduling as an Alternative
	Principles
	Drawbacks
	Batch Scheduling it is then
	Batch Scheduling and Grids?


