

Queues	Stability	Average	Computable queues	Networks	Multiclass networks
			Outline		

Computable queues

5 Networks

6 Multiclass networks

Notation : A/S/K/C/Disc

- A : arrival process
- B : service process
- K : number of servers
- C : total queue capacity (including currently served customers)
- Disc : Service discipline (FIFO, LIFO, PS, Quantum, Priorities,...)

User variables

- Input rate λ or inter-arrival δ
- Service time σ or S (service rate μ)
- Waiting time W
- Response time *R* (in some books *W*)
- Rejection probability

Resource variables

- Resource utilisation (offered load) ρ
- Queue occupation N
- System availability

One Server Queue load

LIG

 W_n is the waiting time of the *n*-th task. It is a dynamical system of the form $W_n = \varphi(W_{n-1}, X_n)$ with $X_n = \sigma_{n-1} - \delta_n$ and φ defined by the

Lindley's equation:

 $W_n = \max(W_{n-1} + X_n, 0) .$

- FIFO scheduling
- Non-linear evolution equation

Queues	Stability	Average	computable queues	Networks	Multiciass networks
			Outline		
1	Queues				
2	Stability				
3	Average				
4	Computable q	ueues			
5	Networks				
6	Multiclass net	works			
					L I G

Chability

Queues

Stability

Networks

Multiclass networks

Stability of the G/G/1 queue

$$\begin{split} \mathcal{W}_{n} &= \max \left(\mathcal{W}_{n-1} + X_{n}, 0 \right), \\ &= \max \left(\max \left(\mathcal{W}_{n-2} + X_{n-1}, 0 \right) + X_{n}, 0 \right), \\ &= \max \left(\mathcal{W}_{n-2} + X_{n-1} + X_{n}, X_{n}, 0 \right), \\ &= \max \left(\mathcal{W}_{n-3} + X_{n-2} + X_{n-1} + X_{n}, X_{n-1} + X_{n}, X_{n}, 0 \right), \\ &= \max \left(\mathcal{W}_{0} + X_{1} + \dots + X_{n-1} + X_{n}, \dots, X_{n-1} + X_{n}, X_{n}, 0 \right), \\ &= \max \left(X_{1} + \dots + X_{n-1} + X_{n}, \dots, X_{n-1} + X_{n}, X_{n}, 0 \right), \\ &\sim \max \left(X_{n} + \dots + X_{2} + X_{1}, \dots, X_{2} + X_{1}, X_{1}, 0 \right), \\ &\stackrel{\text{def}}{=} M_{n}. \end{split}$$

$$W_n =_{st} M_n = \max \left(M_{n-1}, X_1 + \cdots + X_n \right) .$$

Stability of the G/G/1 queue (2)

$$W_n =_{st} M_n = \max \left(M_{n-1}, X_1 + \cdots + X_n \right).$$

 M_n is a non-decreasing sequence Either $M_n \longrightarrow M_\infty$ or $M_n \longrightarrow +\infty$

Stability

• $\mathbb{E}X = \mathbb{E}(\sigma - \delta) < 0$ The system is **Stable**

 $M_{\infty} =_{st} \max(M_{\infty} + X, 0).$

Functional equation on the distribution

$$\mathbb{P}(M_{\infty} < x) \stackrel{\text{def}}{=} F(x) = \int F(x-u) dF_X(u).$$

Condition : $\mathbb{E}\sigma < \mathbb{E}\delta$ or $\lambda < \mu$

• $\mathbb{E}X = \mathbb{E}(\sigma - \delta) > 0$ The system is **Unstable**

Depends only on service and inter-arrival expectation

Computable queues

Loynes' scheme

Theorem

$W_n \leq_{st} W_{n+1}$ in a G/G/1 queue, initialy empty.

Proof. done by a backward coupling known as the Loynes' scheme. Construct on a common probability space two trajectories by going backward in time: $S_{i-n}^1(\omega) = S_{i-n-1}^2(\omega)$ with distribution S_i and $T_{i-n}^1(\omega) = T_{i-n-1}^2(\omega)$, with distribution $T_i - T_{n+1}$ for all $0 \le i \le n + 1$ and $S_{-n-1}^1(\omega) = 0$. By construction, $W_0^1 =_{st} W_n$ and $W_0^2 =_{st} W_{n+1}$. Also, it should be clear that $0 = W_{-n+1}^1(\omega) \le W_{-n+1}^2(\omega)$ for all ω . This implies $W_{-i}^1(\omega) \le W_{-i}^2(\omega)$ so that $W_n \le_{st} W_{n+1}$.

Theorem

 $W_n \leq_{st} W_{n+1}$ in a G/G/1 queue, initialy empty.

Proof. done by a backward coupling known as the Loynes' scheme. Construct on a common probability space two trajectories by going backward in time: $S_{i-n}^1(\omega) = S_{i-n-1}^2(\omega)$ with distribution S_i and $T_{i-n}^1(\omega) = T_{i-n-1}^2(\omega)$, with distribution $T_i - T_{n+1}$ for all $0 \le i \le n+1$ and $S_{-n-1}^1(\omega) = 0$. By construction, $W_0^1 =_{st} W_n$ and $W_0^2 =_{st} W_{n+1}$. Also, it should be clear that $0 = W_{-n+1}^1(\omega) \le W_{-n+1}^2(\omega)$ for all ω . This implies $W_{-n+1}^1(\omega) \le W_{-n+1}^2(\omega)$ so that $W_n \le_{st} W_{n+1}$.

Theorem

 $W_n \leq_{st} W_{n+1}$ in a G/G/1 queue, initialy empty.

Proof. done by a backward coupling known as the Loynes' scheme. Construct on a common probability space two trajectories by going backward in time: $S_{i-n}^1(\omega) = S_{i-n-1}^2(\omega)$ with distribution S_i and $T_{i-n}^1(\omega) = T_{i-n-1}^2(\omega)$, with distribution $T_i - T_{n+1}$ for all $0 \le i \le n+1$ and $S_{-n-1}^1(\omega) = 0$. By construction, $W_0^1 =_{st} W_n$ and $W_0^2 =_{st} W_{n+1}$. Also, it should be clear that $0 = W_{-n+1}^1(\omega) \le W_{-n+1}^2(\omega)$ for all ω . This implies $W_{-i}^1(\omega) \le W_{-i}^2(\omega)$ so that $W_n \le_{st} W_{n+1}$.

This has many consequences in terms of existence and uniqueness of a stationary (or limit) regime for the G/G/1 queue Baccelli Bremaud, 2002).

This has many consequences in terms of existence and uniqueness of a stationary (or limit) regime for the G/G/1 queue Baccelli Bremaud, 2002).

Queues	Stability	Average	Computable queues	Networks	Multiclass networks
			Outline		
0	Queues				
2	Stability				
3	Average				
4	Computable of	queues			
5	Networks				
6	Multiclass ne	tworks			

Assumptions

$$\lim_{t \to +\infty} \frac{A_t}{t} = \lambda, \quad \lim_{t \to +\infty} \frac{1}{t} \int_0^t N_s ds = \mathbb{E}N \text{ and } \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n R_i = \mathbb{E}R,$$

Little's Formula

 $\mathbb{E}N = \lambda \mathbb{E}R.$

Little's Formula (proof)

$$\frac{1}{T}\int_0^T N_s ds = \frac{A_T}{T}\frac{1}{A_T}\sum_{i=1}^{A_T} R_i.$$

 $T \to \infty$ implies $\mathbb{E}N = \lambda \mathbb{E}R$.

Little's Formula (proof)

$$\frac{1}{T}\int_0^T N_s ds = \frac{A_T}{T}\frac{1}{A_T}\sum_{i=1}^{A_T} R_i.$$

 $T \to \infty$ implies $\mathbb{E}N = \lambda \mathbb{E}R$.

2	 ~	 ~	~
æ			

Little's Formula (proof)

$$rac{1}{T}\int_0^T N_s ds = rac{A_T}{T}rac{1}{A_T}\sum_{i=1}^{A_T} R_i.$$

 $T \to \infty$ implies $\mathbb{E}N = \lambda \mathbb{E}R$.

Queues	Stability	Average	Computable queues	Networks	Multiclass networks
			Outline		
1	Queues				
2	Stability				
3	Average				
4	Computable ofSingle serveLimited capa	queues er queue acity			
5	Networks				
6	Multiclass net	tworks			

Definition

 $\rho = \frac{\lambda}{\mu}$ is the traffic intensity of the queueing system.

Results for M/M/1 queueus

- Stable if and only if p < 1</p>
- Q. Clients follow a geometric distribution $\forall i \in \mathbb{N}, \pi_i = (1 \rho)\rho^i$
- Mean number of clients IOC = 2 (E-r)
- \bigcirc Average response time 167 $= \frac{1}{2}$

Results for M/M/1 queue

-) Stable if and only if ho < 1
-) Clients follow a geometric distribution $orall i \in \mathbb{N}, \ \pi_l = (1ho)
 ho$
- Mean number of clients $\mathbb{E}X = \frac{\rho}{(1-\rho)}$
-) Average response time $\mathbb{E}T=rac{1}{\mu-\lambda}$

Results for M/M/1 queue

-] Stable if and only if ho < 1
- I Clients follow a geometric distribution $\forall i \in \mathbb{N}, \ \pi_i = (1 \rho)
 ho$
- (a) Mean number of clients $\mathbb{E}X = \frac{\rho}{(1-\rho)}$

) Average response time $\mathbb{E} T = rac{1}{\mu - \lambda}$

Results for M/M/1 queue

• Stable if and only if $\rho < 1$

2 Clients follow a geometric distribution $\forall i \in \mathbb{N}, \pi_i = (1 - \rho)\rho^i$

3 Mean number of clients $\mathbb{E}X = \frac{\rho}{(1-\rho)}$

• Average response time $\mathbb{E}T = \frac{1}{\mu - \lambda}$

In reality, buffers are finite: M/M/1/C is a queueing system with rejection.

Results for M/M/1/C queue

Geometric distribution with finite state space

$$\pi(i) = \frac{(1-\rho)\rho^{i}}{1-\rho^{C+1}}$$

Queues	Stability	Average	Computable queues	Networks	Multiclass networks
			Outline		
1	Queues				
2	Stability				
3	Average				
4	Computable of	queues			
5	Networks Tandem que Jackson net Open netwo 	eues works orks of M/M/c	queues		
6	Multiclass ne	tworks			

Proposition

An ergodic birth and death process is time-reversible.

Proposition

An ergodic birth and death process is time-reversible.

Suppose $\pi_{i-1}\lambda_{i-1} = \pi_i\mu_i$. Then $\pi_i(\lambda_i + \mu_i) = \pi_{i+1}\mu_{i+1} + \pi_{i-1}\lambda_{i-1}$ Which gives $\pi_i\lambda_i = \pi_{i+1}\mu_{i+1}$.

Proposition

An ergodic birth and death process is time-reversible.

By induction:

1

$$\pi_0 \lambda_0 = \pi_1 \mu_1$$

Suppose
$$\pi_{i-1}\lambda_{i-1} = \pi_i\mu_i$$
. Then
 $\pi_i(\lambda_i + \mu_i) = \pi_{i+1}\mu_{i+1} + \pi_{i-1}\lambda_{i-1}$.
Which gives $\pi_i\lambda_i = \pi_{i+1}\mu_{i+1}$.

Theorem

The output process of an *M*/*M*/s queue is a Poisson process that is independent of the number of customers in the queue.

Theorem

The output process of an M/M/s queue is a Poisson process that is independent of the number of customers in the queue.

Let X_1 and X_2 denote the number of clients in queues 1 and 2 respectively.

Lemma

 X_1 and X_2 are independent rv's.

Proof

Arrival process at queue 1 is $Poisson(\lambda)$ so future arrivals are independent of $X_1(t)$. By time reversibility $X_1(t)$ is independent of past departures. Since these departures are the arrival process of queue 2, $X_1(t)$ and $X_2(t)$ are independent.

Let X_1 and X_2 denote the number of clients in queues 1 and 2 respectively.

Lemma

 X_1 and X_2 are independent rv's.

Proof

Arrival process at queue 1 is $Poisson(\lambda)$ so future arrivals are independent of $X_1(t)$. By time reversibility $X_1(t)$ is independent of past departures. Since these departures are the arrival process of queue 2, $X_1(t)$ and $X_2(t)$ are independent.

Let X_1 and X_2 denote the number of clients in queues 1 and 2 respectively.

Lemma

 X_1 and X_2 are independent rv's.

Proof

Arrival process at queue 1 is $Poisson(\lambda)$ so future arrivals are independent of $X_1(t)$. By time reversibility $X_1(t)$ is independent of past departures. Since these departures are the arrival process of queue 2, $X_1(t)$ and $X_2(t)$ are independent.

Theorem

The number of clients at server 1 and 2 are independent and

$$P(n_1, n_2) = \left(\frac{\lambda}{\mu_1}\right)^{n_1} \left(1 - \frac{\lambda}{\mu_1}\right) \left(\frac{\lambda}{\mu_2}\right)^{n_2} \left(1 - \frac{\lambda}{\mu_1}\right)$$

Proof

By independence of X_1 and X_2 the joint probability is the product of M/M/1 distributions.

This result is called a product-form result for the tandem queue. This product form also appears in more general networks of queues.

Theorem

The number of clients at server 1 and 2 are independent and

$$P(n_1, n_2) = \left(\frac{\lambda}{\mu_1}\right)^{n_1} \left(1 - \frac{\lambda}{\mu_1}\right) \left(\frac{\lambda}{\mu_2}\right)^{n_2} \left(1 - \frac{\lambda}{\mu_1}\right)^{n_2} \left(1$$

Proof

By independence of X_1 and X_2 the joint probability is the product of M/M/1 distributions.

This result is called a product-form result for the tandem queue.

This product form also appears in more general **networks** of queues.

Theorem

The number of clients at server 1 and 2 are independent and

$$P(n_1, n_2) = \left(\frac{\lambda}{\mu_1}\right)^{n_1} \left(1 - \frac{\lambda}{\mu_1}\right) \left(\frac{\lambda}{\mu_2}\right)^{n_2} \left(1 - \frac{\lambda}{\mu_1}\right)^{n_2} \left(1$$

Proof

By independence of X_1 and X_2 the joint probability is the product of M/M/1 distributions.

This result is called a product-form result for the tandem queue. This product form also appears in more general networks of queues.

Example of a feed-forward network:

- output of *i* is routed to *j* with probability *p_{ij}*
- external traffic arrives at *i* with rate λ_i^0
- packets exiting queue *i* leave the system with probability p_{i0}.

 $R = egin{pmatrix} 0 & p_{ij} & p_{ik} & p_{il} \ p_{ji} & 0 & p_{jk} & p_{jl} \ p_{ki} & p_{kj} & 0 & p_{jl} \ p_{li} & p_{lj} & p_{lk} & 0 \ \end{pmatrix}$

Reminder

- N(t) Poisson process with rate λ
- Z(n) sequence of iid rv's ~ Bernoulli(p) independent of N.

Suppose the *n*th trial is performed at the *n*th arrival of the Poisson process.

$$\underbrace{\frac{Poisson(\lambda)}{1-p}}_{p}$$

Reminder

- N(t) Poisson process with rate λ
- Z(n) sequence of iid rv's ~ Bernoulli(p) independent of N.

Suppose the *n*th trial is performed at the *n*th arrival of the Poisson process. The resulting process M(t) of successes is a Poisson process with rate λp .

$$\begin{array}{c|c} \hline Poisson(\lambda) \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ Poisson(\lambda(1-p)) \\ \hline \\ \end{array} \begin{array}{c} p \\ Poisson(\lambda p) \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \end{array} \begin{array}{c} p \\ Poisson(\lambda p) \\ \hline \\ \\ \hline \\ \\ \\ \end{array} \end{array}$$

Reminder

- N(t) Poisson process with rate λ
- Z(n) sequence of iid rv's ~ Bernoulli(p) independent of N.

Suppose the *n*th trial is performed at the *n*th arrival of the Poisson process. The resulting process M(t) of successes is a Poisson process with rate λp . The process of failures L(t) is a Poisson process with rate $\lambda(1 - p)$ and is independent of M(t).

$$\begin{array}{c|c} \hline Poisson(\lambda) \\ \hline Bernoulli \\ \hline 1-p \\ Poisson(\lambda(1-p)) \end{array} \xrightarrow{P} Poisson(\lambda p)$$

Define λ_i the total arrival rate at queue $i, 1 \leq i \leq K$.

No feedback : from Burke we can consider *K* independent M/M/1 queues with Poisson arrivals with rate λ_i , where

$$\lambda_i = \lambda_i^0 + \sum_{j=0}^K \lambda_j \boldsymbol{p}_{ji}$$

$$\vec{\Lambda}=\vec{\Lambda}^{0}+\vec{\Lambda}\textbf{R}$$

in matrix notation.

Stability condition

$$\lambda_i < \mu_i, \forall i = 1, 2, \dots, K.$$

Define λ_i the total arrival rate at queue $i, 1 \leq i \leq K$.

No feedback : from Burke we can consider *K* independent M/M/1 queues with Poisson arrivals with rate λ_i , where

$$\lambda_i = \lambda_i^0 + \sum_{j=0}^K \lambda_j \boldsymbol{p}_{ji}$$

$$\vec{\Lambda} = \vec{\Lambda}^0 + \vec{\Lambda} \mathbf{R}$$

in matrix notation.

Stability condition

$$\lambda_i < \mu_i, \forall i = 1, 2, \dots, K.$$

Remark

Arrivals are not Poisson anymore!

Result

The departure process is still Poisson with rate λp .

Proof in [Walrand, An Introduction to Queueing Networks, 1988].

Remark

Arrivals are not Poisson anymore!

Result

The departure process is still Poisson with rate λp .

Proof in [Walrand, An Introduction to Queueing Networks, 1988].

Balance equations:

$$\begin{array}{lll} \pi(0)\lambda^{0} & = & \mu p \pi(1) \\ \pi(n)(\lambda^{0} + p \mu) & = & \lambda^{0} \pi(n-1) + \mu p \pi(n+1), \quad n > 0 \end{array}$$

Actual arrival rate $\lambda = \lambda^0 + (1 - p)\lambda$, so $\lambda^0 = \lambda p$ which gives

$$\pi(0)\lambda = \mu\pi(1) \pi(n)(\lambda + \mu) = \lambda\pi(n-1) + \mu\pi(n+1), \quad n > 0$$
 M/M/1!

$$\pi(n) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n = \left(1 - \frac{\lambda^0}{\mu}\right) \left(\frac{\lambda^0}{\mu}\right)^n$$

Balance equations:

$$\begin{aligned} \pi(0)\lambda^0 &= \mu p \pi(1) \\ \pi(n)(\lambda^0 + p \mu) &= \lambda^0 \pi(n-1) + \mu p \pi(n+1), \quad n > 0 \end{aligned}$$

Actual arrival rate $\lambda = \lambda^0 + (1 - p)\lambda$, so $\lambda^0 = \lambda p$ which gives

$$\pi(0)\lambda = \mu\pi(1) \pi(n)(\lambda + \mu) = \lambda\pi(n-1) + \mu\pi(n+1), \quad n > 0$$
 M/M/1!

$$\pi(n) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n = \left(1 - \frac{\lambda^0}{\rho\mu}\right) \left(\frac{\lambda^0}{\rho\mu}\right)'$$

$$\begin{aligned} \pi(0)\lambda^0 &= \mu p \pi(1) \\ \pi(n)(\lambda^0 + p\mu) &= \lambda^0 \pi(n-1) + \mu p \pi(n+1), \quad n > 0 \\ \text{Actual arrival rate } \lambda &= \lambda^0 + (1-p)\lambda, \text{ so } \lambda^0 = \lambda p \text{ which gives} \end{aligned}$$

$$\pi(0)\lambda = \mu\pi(1) \\ \pi(n)(\lambda + \mu) = \lambda\pi(n-1) + \mu\pi(n+1), \quad n > 0$$
 M/M/1

$$\pi(n) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n = \left(1 - \frac{\lambda^0}{\mu}\right) \left(\frac{\lambda^0}{\mu}\right)^n$$

$$\begin{aligned} \pi(0)\lambda^0 &= \mu p \pi(1) \\ \pi(n)(\lambda^0 + p\mu) &= \lambda^0 \pi(n-1) + \mu p \pi(n+1), \quad n > 0 \end{aligned}$$
Actual arrival rate $\lambda = \lambda^0 + (1-p)\lambda$, so $\lambda^0 = \lambda p$ which gives
$$\pi(0)\lambda &= \mu \pi(1) \\ \pi(n)(\lambda + \mu) &= \lambda \pi(n-1) + \mu \pi(n+1), \quad n > 0 \end{aligned}$$
M/M/1!

$$\pi(n) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n = \left(1 - \frac{\lambda^0}{\rho\mu}\right) \left(\frac{\lambda^0}{\rho\mu}\right)^n$$

$$\pi(0)\lambda^{0} = \mu p \pi(1)$$

$$\pi(n)(\lambda^{0} + p\mu) = \lambda^{0} \pi(n-1) + \mu p \pi(n+1), \quad n > 0$$

Actual arrival rate $\lambda = \lambda^0 + (1 - p)\lambda$, so $\lambda^0 = \lambda p$ which gives

$$\pi(0)\lambda = \mu\pi(1) \pi(n)(\lambda + \mu) = \lambda\pi(n-1) + \mu\pi(n+1), \quad n > 0$$
 M/M/1!

$$\pi(n) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n = \left(1 - \frac{\lambda^0}{\rho\mu}\right) \left(\frac{\lambda^0}{\rho\mu}\right)^n$$

$$\pi(0)\lambda^0 = \mu p \pi(1)$$

 $\pi(n)(\lambda^0 + p\mu) = \lambda^0 \pi(n-1) + \mu p \pi(n+1), \quad n > 0$

Actual arrival rate $\lambda = \lambda^0 + (1 - p)\lambda$, so $\lambda^0 = \lambda p$ which gives

$$\pi(0)\lambda = \mu\pi(1) \\ \pi(n)(\lambda + \mu) = \lambda\pi(n-1) + \mu\pi(n+1), \quad n > 0$$
 M/M/1!

$$\pi(n) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n = \left(1 - \frac{\lambda^0}{\rho\mu}\right) \left(\frac{\lambda^0}{\rho\mu}\right)^n$$

Backfeeding allowed.

Backfeeding allowed.

Backfeeding allowed.

Theorem (Jackson, 1957)

If $\lambda_i < \mu_i$ (stability condition), $\forall i = 1, 2, \dots K$ then

$$\pi(\vec{n}) = \prod_{i=1}^{K} \left(1 - \frac{\lambda_i}{\mu_i}\right) \left(\frac{\lambda_i}{\mu_i}\right)^{n_i} \quad \forall \vec{n} = (n_1, \dots, n_K) \in \mathbb{N}^K.$$

where $\lambda_1, \ldots, \lambda_K$ are the unique solution of the system

$$\lambda_i = \lambda_i^0 + \sum_{j=0}^K \lambda_j \boldsymbol{p}_{ji}$$

Product form even with backfeeding!

Theorem (Jackson, 1957)

If $\lambda_i < \mu_i$ (stability condition), $\forall i = 1, 2, \dots K$ then

$$\pi(\vec{n}) = \prod_{i=1}^{K} \left(1 - \frac{\lambda_i}{\mu_i}\right) \left(\frac{\lambda_i}{\mu_i}\right)^{n_i} \quad \forall \vec{n} = (n_1, \dots, n_K) \in \mathbb{N}^K.$$

where $\lambda_1, \ldots, \lambda_K$ are the unique solution of the system

$$\lambda_i = \lambda_i^0 + \sum_{j=0}^K \lambda_j \boldsymbol{p}_{ji}$$

Product form even with backfeeding!

Derive balance equations:

$$\pi(\vec{n}) \left(\sum_{i=1}^{K} \lambda_{i}^{0} + \sum_{i=1}^{K} \mathbf{1} | n_{i} > 0 \mu_{i} \right) = \sum_{i=1}^{K} \mathbf{1} | n_{i} > 0 \lambda_{i}^{0} \pi(\vec{n} - \vec{e}_{i}) + \sum_{i=1}^{K} p_{i0} \mu_{i} \pi(\vec{n} + \vec{e}_{i}) + \sum_{i=1}^{K} \sum_{j=1}^{K} \mathbf{1} | n_{j} > 0 p_{ij} \mu_{i} \pi(\vec{n} + \vec{e}_{i} - \vec{e}_{j})$$

Then check that $\pi(\vec{n}) = \prod_{l=1}^{\kappa} \left(1 - \frac{\lambda_l}{\mu_l}\right) \left(\frac{\lambda_l}{\mu_l}\right)^{a_l}$ satisfies the balance equations with $\lambda_l = \lambda_l^0 + \sum_{j=0}^{\kappa} \lambda_j \rho_{j'}$.

Derive balance equations:

$$\pi(\vec{n}) \left(\sum_{i=1}^{K} \lambda_{i}^{0} + \sum_{i=1}^{K} \mathbf{1} | n_{i} > 0 \mu_{i} \right) = \sum_{i=1}^{K} \mathbf{1} | n_{i} > 0 \lambda_{i}^{0} \pi(\vec{n} - \vec{e}_{i}) + \sum_{i=1}^{K} p_{i0} \mu_{i} \pi(\vec{n} + \vec{e}_{i}) + \sum_{i=1}^{K} \sum_{j=1}^{K} \mathbf{1} | n_{j} > 0 p_{ij} \mu_{i} \pi(\vec{n} + \vec{e}_{i} - \vec{e}_{j})$$

atisfies the balance equations

Derive balance equations:

$$\pi(\vec{n}) \left(\sum_{i=1}^{K} \lambda_{i}^{0} + \sum_{i=1}^{K} \mathbf{1} | n_{i} > 0 \mu_{i} \right) = \sum_{i=1}^{K} \mathbf{1} | n_{i} > 0 \lambda_{i}^{0} \pi(\vec{n} - \vec{e}_{i}) + \sum_{i=1}^{K} p_{i0} \mu_{i} \pi(\vec{n} + \vec{e}_{i}) + \sum_{i=1}^{K} \sum_{j=1}^{K} \mathbf{1} | n_{j} > 0 p_{ij} \mu_{i} \pi(\vec{n} + \vec{e}_{i} - \vec{e}_{j})$$

atisfies the balance equations

Derive balance equations:

$$\pi(\vec{n}) \left(\sum_{i=1}^{K} \lambda_{i}^{0} + \sum_{i=1}^{K} \mathbf{1} | n_{i} > 0 \mu_{i} \right) = \sum_{i=1}^{K} \mathbf{1} | n_{i} > 0 \lambda_{i}^{0} \pi(\vec{n} - \vec{e}_{i}) + \sum_{i=1}^{K} p_{i0} \mu_{i} \pi(\vec{n} + \vec{e}_{i}) + \sum_{i=1}^{K} \sum_{j=1}^{K} \mathbf{1} | n_{j} > 0 p_{ij} \mu_{i} \pi(\vec{n} + \vec{e}_{i} - \vec{e}_{j})$$

satisfies the balance equations

with $\lambda_i = \lambda_i^0 + \sum_{j=0}^K \lambda_j p_{ji}$.

Derive balance equations:

$$\pi(\vec{n}) \left(\sum_{i=1}^{K} \lambda_{i}^{0} + \sum_{i=1}^{K} \mathbf{1} \mathbf{1} n_{i} > 0 \mu_{i} \right) = \sum_{i=1}^{K} \mathbf{1} n_{i} > 0 \lambda_{i}^{0} \pi(\vec{n} - \vec{e}_{i}) \\ + \sum_{i=1}^{K} p_{i0} \mu_{i} \pi(\vec{n} + \vec{e}_{i}) \\ + \sum_{i=1}^{K} \sum_{j=1}^{K} \mathbf{1} n_{j} > 0 p_{ij} \mu_{i} \pi(\vec{n} + \vec{e}_{i} - \vec{e}_{j})$$

Then check that $\pi(\vec{n}) = \prod_{i=1}^{K} \left(1 - \frac{\lambda_i}{\mu_i}\right) \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$ satisfies the balance equations with $\lambda_i = \lambda_i^0 + \sum_{j=0}^{K} \lambda_j p_{ji}$.

Traffic equations give $\lambda_i = \lambda_{i-1}$ for $i \ge 2$ and $\lambda_1 = \lambda^0 + (1-p)\lambda_K$. The unique solution is clearly $\lambda_i = \frac{\lambda^0}{p}$ for $1 \le i \le K$. Apply Jackson's theorem

$$\pi(\vec{n}) = \left(1 - \frac{\lambda^0}{\rho\mu}\right)^{\kappa} \left(\frac{\lambda^0}{\rho\mu}\right)^{n_1 + \dots + n_{\kappa}} \quad \forall \vec{n} = (n_1, \dots, n_{\kappa}) \in \mathbb{N}^{\kappa}.$$

Traffic equations give $\lambda_i = \lambda_{i-1}$ for $i \ge 2$ and $\lambda_1 = \lambda^0 + (1-p)\lambda_K$. The unique solution is clearly $\lambda_i = \frac{\lambda^0}{\rho}$ for $1 \le i \le K$. Apply Jackson's theorem:

$$\pi(\vec{n}) = \left(1 - \frac{\lambda^0}{\rho\mu}\right)^K \left(\frac{\lambda^0}{\rho\mu}\right)^{n_1 + \ldots + n_K} \quad \forall \vec{n} = (n_1, \ldots, n_K) \in \mathbb{N}^K.$$

Traffic equations give $\lambda_i = \lambda_{i-1}$ for $i \ge 2$ and $\lambda_1 = \lambda^0 + (1 - p)\lambda_K$. The unique solution is clearly $\lambda_i = \frac{\lambda^0}{\rho}$ for $1 \le i \le K$. Apply Jackson's theorem:

$$\pi(\vec{n}) = \left(1 - \frac{\lambda^0}{p\mu}\right)^K \left(\frac{\lambda^0}{p\mu}\right)^{n_1 + \ldots + n_K} \quad \forall \vec{n} = (n_1, \ldots, n_K) \in \mathbb{N}^K.$$

Traffic equations give $\lambda_i = \lambda_{i-1}$ for $i \ge 2$ and $\lambda_1 = \lambda^0 + (1 - p)\lambda_K$. The unique solution is clearly $\lambda_i = \frac{\lambda^0}{p}$ for $1 \le i \le K$. Apply Jackson's theorem:

$$\pi(\vec{n}) = \left(1 - \frac{\lambda^0}{\rho\mu}\right)^K \left(\frac{\lambda^0}{\rho\mu}\right)^{n_1 + \ldots + n_K} \quad \forall \vec{n} = (n_1, \ldots, n_K) \in \mathbb{N}^K.$$

Traffic equations give $\lambda_i = \lambda_{i-1}$ for $i \ge 2$ and $\lambda_1 = \lambda^0 + (1 - p)\lambda_K$. The unique solution is clearly $\lambda_i = \frac{\lambda^0}{p}$ for $1 \le i \le K$. Apply Jackson's theorem:

$$\pi(\vec{n}) = \left(1 - \frac{\lambda^0}{p\mu}\right)^{\kappa} \left(\frac{\lambda^0}{p\mu}\right)^{n_1 + \ldots + n_K} \quad \forall \vec{n} = (n_1, \ldots, n_K) \in \mathbb{N}^{\kappa}.$$

$$\mathbb{E}T = \frac{1}{\lambda^0} \mathbb{E}X = \frac{1}{\lambda^0} \sum_{i=1}^K \mathbb{E}X_i = \frac{K}{\rho_\mu - \lambda^0}$$

$$\mathbb{E}T = \frac{1}{\lambda^0} \mathbb{E}X = \frac{1}{\lambda^0} \sum_{i=1}^K \mathbb{E}X_i = \frac{K}{\rho\mu - \lambda^0}$$

$$\mathbb{E}T = \frac{1}{\lambda^0} \mathbb{E}X = \frac{1}{\lambda^0} \sum_{i=1}^K \mathbb{E}X_i = \frac{K}{\rho \mu - \lambda^0}$$

$$\mathbb{E}\boldsymbol{T} = \frac{1}{\lambda^0} \mathbb{E}\boldsymbol{X} = \frac{1}{\lambda^0} \sum_{i=1}^{K} \mathbb{E}\boldsymbol{X}_i = \frac{K}{\rho \mu - \lambda^0}$$

$$\mathbb{E}T = \frac{1}{\lambda^0} \mathbb{E}X = \frac{1}{\lambda^0} \sum_{i=1}^{K} \mathbb{E}X_i = \frac{K}{p\mu - \lambda^0}$$

$$\mathbb{E}T = \frac{1}{\lambda^0}\mathbb{E}X = \frac{1}{\lambda^0}\sum_{i=1}^{K}\mathbb{E}X_i = \frac{K}{p\mu - \lambda^0}$$

Theorem

Consider an open network of K M/M/c_i queues. Let $\mu_i(n) = \mu_i \min(n, c_i)$ and $\rho_i = \frac{\lambda_i}{\mu_i}$.

Then if $\rho_i < c_i$ for all $1 \leq i \leq K$ then

$$\pi(\vec{n}) = \prod_{i=1}^{K} C_i \left(\frac{\lambda_i^{n_i}}{\prod_{m=1}^{n_i} \mu_i(m)} \right) \quad \forall \vec{n} = (n_1, \dots, n_K) \in \mathbb{N}^K$$

where $(\lambda_1, \ldots, \lambda_K)$ is the unique positive solution of the traffic equations

$$\lambda_i = \lambda_i^0 + \sum_{j=0}^{\kappa} \lambda_j p_{ji}, \quad \text{and where } C_i = \left(\sum_{m=1}^{c_i-1} rac{
ho_i}{i!} + rac{
ho_i^{c_i}}{c_i!(1-
ho_i/c_i)}
ight)^{-1}$$

Computing the normalization factor C(N, K) is a heavy task!

$$C(n,k) = \sum_{\vec{n} \in S(n,k)} \prod_{i=1}^{k} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i} = \sum_{m=0}^{n} \sum_{\substack{\vec{n} \in S(n,k) \\ n_k = m}} \prod_{i=1}^{k} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$$
$$= \sum_{m=0}^{n} \left(\frac{\lambda_k}{\mu_k}\right)_{\vec{n} \in S(n-m,k-1)}^{m} \prod_{i=1}^{k-1} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$$

Convolution algorithm (Buzen, 1973)

Queues

$$C(n,k) = \sum_{m=0}^{n} \left(\frac{\lambda_k}{\mu_k}\right)^m C(k-m,k-1) \text{ and } \begin{cases} C(n,1) = \left(\frac{\lambda_i}{\mu_1}\right)^n \\ C(0,k) = 1, \forall 1 \le i \le K \end{cases}$$

Computing the normalization factor C(N, K) is a heavy task!

$$C(n,k) = \sum_{\vec{n} \in S(n,k)} \prod_{i=1}^{k} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i} = \sum_{m=0}^{n} \sum_{\substack{\vec{n} \in S(n,k) \\ n_k = m}} \prod_{i=1}^{k} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$$
$$= \sum_{m=0}^{n} \left(\frac{\lambda_k}{\mu_k}\right)_{\vec{n} \in S(n-m,k-1)}^{m} \prod_{i=1}^{k-1} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$$

$$C(n,k) = \sum_{m=0}^{n} \left(\frac{\lambda_k}{\mu_k}\right)^m C(k-m,k-1) \text{ and } \begin{cases} C(n,1) = \left(\frac{\lambda_1}{\mu_1}\right)^n \\ C(0,k) = 1, \forall 1 \leq i \leq K \end{cases}$$

Computing the normalization factor C(N, K) is a heavy task!

$$C(n,k) = \sum_{\vec{n} \in S(n,k)} \prod_{i=1}^{k} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i} = \sum_{m=0}^{n} \sum_{\substack{\vec{n} \in S(n,k) \\ n_k = m}} \prod_{i=1}^{k} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$$
$$= \sum_{m=0}^{n} \left(\frac{\lambda_k}{\mu_k}\right)_{\vec{n} \in S(n-m,k-1)}^{m} \prod_{i=1}^{k-1} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$$

$$C(n,k) = \sum_{m=0}^{n} \left(\frac{\lambda_k}{\mu_k}\right)^m C(k-m,k-1) \text{ and } \begin{cases} C(n,1) = \left(\frac{\lambda_1}{\mu_1}\right)^n \\ C(0,k) = 1, \forall 1 \leq i \leq K \end{cases}$$

Computing the normalization factor C(N, K) is a heavy task!

$$C(n,k) = \sum_{\vec{n} \in S(n,k)} \prod_{i=1}^{k} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i} = \sum_{m=0}^{n} \sum_{\substack{\vec{n} \in S(n,k) \\ n_k = m}} \prod_{i=1}^{k} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$$
$$= \sum_{m=0}^{n} \left(\frac{\lambda_k}{\mu_k}\right)^{m} \sum_{\vec{n} \in S(n-m,k-1)} \prod_{i=1}^{k-1} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$$

$$C(n,k) = \sum_{m=0}^{n} \left(\frac{\lambda_k}{\mu_k}\right)^m C(k-m,k-1) \text{ and } \begin{cases} C(n,1) = \left(\frac{\lambda_1}{\mu_1}\right)^n \\ C(0,k) = 1, \forall 1 \leq i \leq K \end{cases}$$

Computing the normalization factor C(N, K) is a heavy task!

$$C(n,k) = \sum_{\vec{n} \in S(n,k)} \prod_{i=1}^{k} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i} = \sum_{m=0}^{n} \sum_{\substack{\vec{n} \in S(n,k) \\ n_k = m}} \prod_{i=1}^{k} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$$
$$= \sum_{m=0}^{n} \left(\frac{\lambda_k}{\mu_k}\right)_{\vec{n} \in S(n-m,k-1)}^{m} \prod_{i=1}^{k-1} \left(\frac{\lambda_i}{\mu_i}\right)^{n_i}$$

$$C(n,k) = \sum_{m=0}^{n} \left(\frac{\lambda_{k}}{\mu_{k}}\right)^{m} C(k-m,k-1) \text{ and } \begin{cases} C(n,1) = \left(\frac{\lambda_{1}}{\mu_{1}}\right)^{n} \\ C(0,k) = 1, \forall 1 \leq i \leq K \end{cases}$$

Queues	Stability	Average	Computable queues	Networks	Multiclass networks
			Outline		
1	Queues				
2	Stability				
3	Average				
4	Computable of	lueues			
5	Networks				
6	 Multiclass net Other servic BCMP netw Kelly netword 	tworks ce disciplines orks rks			
					- •

Multiclass Networks

Queues	Stability	Average	Computable queues	Networks	(Multiclass networks)
		Mult	iclass Networks	5	

• $K < \infty$ nodes and $R < \infty$ classes

- Customer at node *i* in class *r* will go to node *j* with class *s* with probability P(i,r);(j,s)
- (i, r) and (j, s) belong to the same subchain if $p_{(i,r);(j,s)} > 0$
- FIFO discipline and exponential service times

Definition

A subchain is open iff there exist one pair (i, r) for which $\lambda^0_{(i,r)} > 0$.

Queues	Stability	Average	Computable queues	Networks	(Multiclass networks)
		Mult	iclass Networks	;	

- $K < \infty$ nodes and $R < \infty$ classes
- Customer at node *i* in class *r* will go to node *j* with class *s* with probability P(i,r);(j,s)
- (i, r) and (j, s) belong to the same subchain if $p_{(i,r);(j,s)} > 0$
- FIFO discipline and exponential service times

A subchain is open iff there exist one pair (i, r) for which $\lambda_{(i, r)}^0 > 0$.

Queues	Stability	Average	Computable queues	Networks	(Multiclass networks)
		Mult	iclass Networks	5	

- $K < \infty$ nodes and $R < \infty$ classes
- Customer at node *i* in class *r* will go to node *j* with class *s* with probability $P_{(i,r);(j,s)}$
- (i, r) and (j, s) belong to the same subchain if $p_{(i,r);(j,s)} > 0$
- FIFO discipline and exponential service times

A subchain is open iff there exist one pair (i, r) for which $\lambda_{(i,r)}^0 > 0$.

Queues	Stability	Average	Computable queues	Networks	Multiclass networks
		Mult	iclass Networks	5	

- $K < \infty$ nodes and $R < \infty$ classes
- Customer at node *i* in class *r* will go to node *j* with class *s* with probability $P_{(i,r);(j,s)}$
- (i, r) and (j, s) belong to the same subchain if $p_{(i,r);(j,s)} > 0$
- FIFO discipline and exponential service times

A subchain is open iff there exist one pair (i, r) for which $\lambda_{(i,r)}^0 > 0$.

Definition

subchain and one closed one open subchain and one closed

Queues	Stability	Average	Computable queues	Networks	(Multiclass networks)
		Mult	iclass Networks	\$	

- $K < \infty$ nodes and $R < \infty$ classes
- Customer at node *i* in class *r* will go to node *j* with class *s* with probability *P*(*i*,*r*):(*j*,*s*)
- (i, r) and (j, s) belong to the same subchain if $p_{(i,r);(j,s)} > 0$
- FIFO discipline and exponential service times

A subchain is open iff there exist one pair (i, r) for which $\lambda_{(i,r)}^0 > 0$.

Definition

A mixed system contains at least one open subchain and one closed subchain.

Queues	Stability	Average	Computable queues	Networks	(Multiclass networks)
		Mult	iclass Networks	;	

- $K < \infty$ nodes and $R < \infty$ classes
- Customer at node *i* in class *r* will go to node *j* with class *s* with probability $P_{(i,r);(j,s)}$
- (i, r) and (j, s) belong to the same subchain if $p_{(i,r);(j,s)} > 0$
- FIFO discipline and exponential service times

A subchain is open iff there exist one pair (i, r) for which $\lambda_{(i,r)}^0 > 0$.

Definition

A mixed system contains at least one open subchain and one closed subchain.

Queues	Stability	Average	Computable queues	Networks	(Multiclass networks)
		Mult	iclass Networks	5	

- $K < \infty$ nodes and $R < \infty$ classes
- Customer at node *i* in class *r* will go to node *j* with class *s* with probability $P_{(i,r);(j,s)}$
- (i, r) and (j, s) belong to the same subchain if $p_{(i,r);(j,s)} > 0$
- FIFO discipline and exponential service times

A subchain is open iff there exist one pair (i, r) for which $\lambda_{(i,r)}^0 > 0$.

Definition

A mixed system contains at least one open subchain and one closed subchain.

The state of a multiclass network may be characterized by the number of customers of each class at each node

 $\vec{Q}(t) = (\vec{Q}_1(t), \vec{Q}_2(t), \dots, \vec{Q}_K(t))$ with $\vec{Q}_i(t) = (Q_{i1}(t)), \dots, Q_{iR(t)})$

Problem

 $\vec{Q}(t)$ is not a CMTC!

To see why, consider the FIFO discipline: how do you know the class of the next customer?

The state of a multiclass network may be characterized by the number of customers of each class at each node

 $\vec{Q}(t) = (\vec{Q}_1(t), \vec{Q}_2(t), \dots, \vec{Q}_K(t))$ with $\vec{Q}_i(t) = (Q_{i1}(t)), \dots, Q_{iR(t)})$

Problem

 $\vec{Q}(t)$ is not a CMTC!

To see why, consider the FIFO discipline: how do you know the class of the next customer?

The state of a multiclass network may be characterized by the number of customers of each class at each node

 $\vec{Q}(t) = (\vec{Q}_1(t), \vec{Q}_2(t), \dots, \vec{Q}_K(t))$ with $\vec{Q}_i(t) = (Q_{i1}(t)), \dots, Q_{iR(t)})$

Problem

 $\vec{Q}(t)$ is not a CMTC!

To see why, consider the FIFO discipline: how do you know the class of the next customer?

Define $\vec{X}_i(t) = (I_{i1}(t), \dots, I_{iQ_i(t)}(t))$ with $I_{ij}(t)$ the class of the *j*th customer at node *i*.

Proposition

 $\vec{X}(t)$ is a CMTC!

Solving the balance equations for X gives a product-form solution. The steady-state distribution of $\vec{X}(t)$ also gives the distribution of $\vec{Q}(t)$ by aggregation of states.

Define $\vec{X}_i(t) = (I_{i1}(t), \dots, I_{iQ_i(t)}(t))$ with $I_{ij}(t)$ the class of the *j*th customer at node *i*.

Proposition

 $\vec{X}(t)$ is a CMTC!

Solving the balance equations for X gives a product-form solution. The steady-state distribution of $\vec{X}(t)$ also gives the distribution of $\vec{O}(t)$ by aggregation of states.

Define $\vec{X}_i(t) = (I_{i1}(t), \dots, I_{iQ_i(t)}(t))$ with $I_{ij}(t)$ the class of the *j*th customer at node *i*.

Proposition

 $\vec{X}(t)$ is a CMTC!

Solving the balance equations for X gives a product-form solution. The steady-state distribution of $\vec{X}(t)$ also gives the distribution of $\vec{Q}(t)$ by aggregation of states.

Jackson networks imply

- FIFO discipline
- probabilistic routing

These assumptions can be relaxed using BCMP and Kelly networks.

BCMP networks are multiclass networks with exponential service times and c_i servers at node *i*.

Service disciplines may be:

- FCFS
- Processor Sharing
- Infinite Server
- LCFS

BCMP networks also have product-form solution!

BCMP networks are multiclass networks with exponential service times and c_i servers at node *i*.

Service disciplines may be:

- FCFS
- Processor Sharing
- Infinite Server
- LCFS

BCMP networks also have product-form solution!

Consider an open/closed/mixed BCMP network with K nodes and R classes in which each node is either FIFO,PS,LIFO or IS. Define

- $\rho_{ir} = \frac{\lambda_{ir}}{\mu_{ir}}$ for LIFO, IS and PS nodes
- $\rho_{ir} = \frac{\lambda_{ir}}{\mu_i}$ for FIFO nodes
- $\lambda_{ir} = \lambda_{ir}^{0} + \sum_{(j,s) \in E_k} \lambda_{js} p_{(i,r);(j,s)}$ for any (i, r) of each open subchain E_k
- $\lambda_{ir} = \sum_{(j,s)\in E_m} \lambda_{js} p_{(i,r);(j,s)}$ for any (i,r) of each closed subchain E_m

Consider an open/closed/mixed BCMP network with K nodes and R classes in which each node is either FIFO,PS,LIFO or IS. Define

•
$$\rho_{\it ir}=rac{\lambda_{\it ir}}{\mu_{\it ir}}$$
 for LIFO, IS and PS nodes

•
$$\rho_{ir} = \frac{\lambda_{ir}}{\mu_i}$$
 for FIFO nodes

• $\lambda_{ir} = \lambda_{ir}^0 + \sum_{(j,s)\in E_k} \lambda_{js} p_{(i,r);(j,s)}$ for any (i, r) of each open subchain E_k

•
$$\lambda_{ir} = \sum_{(j,s)\in E_m} \lambda_{js} p_{(i,r);(j,s)}$$
 for any (i, r) of each closed subchain E_m

Theorem

The steady-state distribution is given by: for all \vec{n} in state space S,

$$\pi(\vec{n}) = \frac{1}{G} \prod_{i=1}^{K} f_i(\vec{n}_i) \quad \text{with } G = \sum_{\vec{n} \in S} \prod_{i=1}^{K} f_i(\vec{n}_i)$$

with $\vec{n} = (\vec{n}_1, \dots, \vec{n}_K) \in S$ and $\vec{n}_i = (n_{i1}, \dots, n_{iR})$, if and only if (stability condition for open subchains)
$$\sum_{r:(i,r)\in \text{ any open } E_k} \rho_{ir} < 1, \quad \forall 1 \leq i \leq K.$$

Moreover, $f_i(\vec{n}_i)$ has an explicit expression for each service discipline.

FIFO
$$f_i(\vec{n}_i) = |n_i|! \prod_{j=1}^{|n_i|} \frac{1}{\alpha_i(j)} \prod_{r=1}^R \frac{\rho_{ir}^{n_{ir}}}{n_{ir}!}$$
 with $\alpha_j(j) = min(c_i, j)$.
PS or LIFO $f_i(\vec{n}_i) = |n_i|! \prod_{r=1}^R \frac{\rho_{ir}^{n_{ir}}}{n_{ir}!}$
IS $f_i(\vec{n}_i) = \prod_{r=1}^R \frac{\rho_{ir}^{n_{ir}}}{n_{ir}!}$

the BCMP product form result may be extended to the following cases:

- state-dependent routing probabilities
- arrivals depending on the number of customers in the corresponding subchain

characterized by its set of nodes and its set of routes.

Definition

In a Kelly network, each class of customers corresponds to a route.

In Kelly networks the routing is deterministic. The network is then characterized by its set of nodes and its set of routes.

Definition

In a Kelly network, each class of customers corresponds to a route.

In Kelly networks the routing is deterministic. The network is then characterized by its set of nodes and its set of routes.

Definition

In a Kelly network, each class of customers corresponds to a route.

In Kelly networks the routing is deterministic. The network is then characterized by its set of nodes and its set of routes.

Definition

In a Kelly network, each class of customers corresponds to a route.

the state space of a Kelly network is the set of $N \times K$ matrices $M = ((m_{i,k}))$ with $m_{i,k}$ is the number of class *k* clients in queue *i*

Theorem (Kelly)

$$\pi_{M} = \prod_{i=1}^{N} \left(1 - \frac{\hat{\lambda}_{i}}{\mu_{i}}\right) \frac{\hat{m}_{i}!}{m_{i,1}! \cdots m_{i,K}!} \left(\frac{\hat{\lambda}_{i,1}}{\mu_{i}}\right)^{m_{i,1}} \cdots \left(\frac{\hat{\lambda}_{i,K}}{\mu_{i}}\right)^{m_{i,J}}$$

with $\hat{\lambda}_{i,k}$ global input rate of class k clients in queue i with $\hat{\lambda}_i = \sum_k \hat{\lambda}_{i,k}$ global input rate queue i and $\hat{m}_i = \sum_k m_{i,k}$

