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Queues

Queues are among simplest dynamic systems, but are still the source of
many open problems.
Tasks do not have any constraints, sizes and arrival times are often
independent.
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Kendall’s notation

Rejection/blocking policy

Service rate µ

Arrival Process

Number of servers K

Queue total capacity C
Service Process

arrival rate λ

Notation : A/S/K/C/Disc

A : arrival process

B : service process

K : number of servers

C : total queue capacity (including currently served customers)

Disc : Service discipline (FIFO, LIFO, PS, Quantum, Priorities,...)
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State variables

User variables

Input rate λ or inter-arrival δ

Service time σ or S (service rate µ)

Waiting time W

Response time R (in some books W )

Rejection probability

Resource variables

Resource utilisation (offered load) ρ

Queue occupation N

System availability
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One Server Queue load
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Lindley’s formula (2)

Wn is the waiting time of the n-th task. It is a dynamical system of the form
Wn = ϕ(Wn−1,Xn) with Xn = σn−1 − δn and ϕ defined by the

Lindley’s equation:

Wn = max (Wn−1 + Xn, 0) .

- FIFO scheduling
- Non-linear evolution equation
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Stability of the G/G/1 queue

Wn = max (Wn−1 + Xn, 0) ,

= max (max(Wn−2 + Xn−1, 0) + Xn, 0) ,

= max (Wn−2 + Xn−1 + Xn,Xn, 0) ,

= max (Wn−3 + Xn−2 + Xn−1 + Xn,Xn−1 + Xn,Xn, 0) ,

= max (W0 + X1 + · · ·+ Xn−1 + Xn, · · · ,Xn−1 + Xn,Xn, 0) ,

= max (X1 + · · ·+ Xn−1 + Xn, · · · ,Xn−1 + Xn,Xn, 0) ,

∼ max (Xn + · · ·+ X2 + X1, · · · ,X2 + X1,X1, 0) ,

def
= Mn.

Wn =st Mn = max (Mn−1,X1 + · · ·+ Xn) .
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Stability of the G/G/1 queue (2)

Wn =st Mn = max (Mn−1,X1 + · · ·+ Xn) .

Mn is a non-decreasing sequence
Either Mn −→ M∞ or Mn −→ +∞

Stability

EX = E(σ − δ) < 0 The system is Stable

M∞ =st max(M∞ + X , 0).

Functional equation on the distribution

P(M∞ < x) def
= F (x) =

∫
F (x − u)dFX (u).

Condition : Eσ < Eδ or λ < µ

EX = E(σ − δ) > 0 The system is Unstable

Depends only on service and inter-arrival expectation
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Loynes’ scheme

Theorem

Wn 6st Wn+1 in a G/G/1 queue, initialy empty.

Proof. done by a backward coupling known as the Loynes’ scheme.
Construct on a common probability space two trajectories by going backward
in time: S1

i−n(ω) = S2
i−n−1(ω) with distribution Si and T 1

i−n(ω) = T 2
i−n−1(ω),

with distribution Ti − Tn+1 for all 0 6 i 6 n + 1 and S1
−n−1(ω) = 0.

By construction, W 1
0 =st Wn and W 2

0 =st Wn+1. Also, it should be clear that
0 = W 1

−n+1(ω) 6 W 2
−n+1(ω) for all ω.

This implies W 1
−i (ω) 6 W 2

−i (ω) so that Wn 6st Wn+1.
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Loynes’ scheme

W 1
0

W 2
0

0Ti − Tn+1−Tn+1

This has many consequences in terms of existence and uniqueness of a
stationary (or limit) regime for the G/G/1 queue Baccelli Bremaud, 2002).
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Little’s Formula

At

Nt

Rn

Assumptions

lim
t→+∞

At

t
= λ, lim

t→+∞

1
t

∫ t

0
Nsds = EN and lim

n→+∞

1
n

n∑
i=1

Ri = ER,

Little’s Formula

EN = λER.
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Little’s Formula (proof)

d8

Nt

Time

Client

a1 a2 a3 a4 a5 a6 a7 a8 a9

d1 d3 d2 d1 d7 d6 d1

1
T

∫ T

0
Nsds =

AT

T
1

AT

AT∑
i=1

Ri .

T →∞ implies EN = λER.
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M/M/1

µ
λ

M/M/1 queue

Infinite capacity

Poisson(λ) arrivals

Exp(µ) service times

FIFO discipline

Definition

ρ = λ
µ

is the traffic intensity of the queueing system.
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M/M/1

Let X (t) the number of clients in the system at time t . X (t) is a birth and
death process.

n + 1
λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ
0 1 3 4 n − 1 n

Results for M/M/1 queue

1 Stable if and only if ρ < 1
2 Clients follow a geometric distribution ∀i ∈ N, πi = (1− ρ)ρi

3 Mean number of clients EX = ρ
(1−ρ)

4 Average response time ET = 1
µ−λ
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M/M/1/C

In reality, buffers are finite: M/M/1/C is a queueing system with rejection.

Rejection

C

µ
λ

C
λ

µ

λ

µ

λ

µ

λ

µ

λ

µ
0 1 3 4 C − 1

Results for M/M/1/C queue

Geometric distribution with finite state space

π(i) =
(1− ρ)ρi

1− ρC+1
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Reversibility

Proposition

An ergodic birth and death process is time-reversible.

Proof

. . .0 1 . ..i−1 i i+1

µi−1 µi+2µ1 µ2
µi+1µi

λ0 λ1
λi−2 λi−1 λi λi+1

By induction:
1 π0λ0 = π1µ1

2 Suppose πi−1λi−1 = πiµi . Then
πi (λi + µi ) = πi+1µi+1 + πi−1λi−1
Which gives πiλi = πi+1µi+1.
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Burke’s theorem

Theorem

The output process of an M/M/s queue is a Poisson process that is
independent of the number of customers in the queue.

Sketch of Proof.

i i+1

µ

λ

X (t) increases by 1 at rate λπi (Poisson process λ). Reverse process
increases by 1 at rate µπi+1= λπi by reversibility.
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Open Queueing Networks

λ µ2µ1

Let X1 and X2 denote the number of clients in queues 1 and 2 respectively.

Lemma

X1 and X2 are independent rv’s.

Proof

Arrival process at queue 1 is Poisson(λ) so future arrivals are independent of
X1(t).
By time reversibility X1(t) is independent of past departures.
Since these departures are the arrival process of queue 2, X1(t) and X2(t)
are independent.

23 / 49Performance Evaluation : Contention and Queues



Queues Stability Average Computable queues Networks Multiclass networks

Open Queueing Networks

λ µ2µ1

Let X1 and X2 denote the number of clients in queues 1 and 2 respectively.

Lemma

X1 and X2 are independent rv’s.

Proof

Arrival process at queue 1 is Poisson(λ) so future arrivals are independent of
X1(t).
By time reversibility X1(t) is independent of past departures.
Since these departures are the arrival process of queue 2, X1(t) and X2(t)
are independent.

23 / 49Performance Evaluation : Contention and Queues



Queues Stability Average Computable queues Networks Multiclass networks

Open Queueing Networks

λ µ2µ1

Let X1 and X2 denote the number of clients in queues 1 and 2 respectively.

Lemma

X1 and X2 are independent rv’s.

Proof

Arrival process at queue 1 is Poisson(λ) so future arrivals are independent of
X1(t).
By time reversibility X1(t) is independent of past departures.
Since these departures are the arrival process of queue 2, X1(t) and X2(t)
are independent.

23 / 49Performance Evaluation : Contention and Queues



Queues Stability Average Computable queues Networks Multiclass networks

Open Queueing Networks

Theorem

The number of clients at server 1 and 2 are independent and

P(n1, n2) =

(
λ

µ1

)n1
(

1− λ

µ1

)(
λ

µ2

)n2
(

1− λ

µ1

)

Proof

By independence of X1 and X2 the joint probability is the product of M/M/1
distributions.

This result is called a product-form result for the tandem queue.
This product form also appears in more general networks of queues.
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Open Queueing Networks

Example of a feed-forward network:

pik

pjl

pk0

pl0

µl

µkµi

µj

pj0

pi0

p jk

λ0
i

λ0
j

λ0
k

λ0
l

p
il

Exponential service times

output of i is routed to j with probability pij

external traffic arrives at i with rate λ0
i

packets exiting queue i leave the system with
probability pi0.

Routing matrix

R =


0 pij pik pil

pji 0 pjk pjl

pki pkj 0 pjl

pli plj plk 0


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Open Queueing Networks

Reminder

N(t) Poisson process with rate λ

Z (n) sequence of iid rv’s ∼ Bernoulli(p) independent of N.

Suppose the nth trial is performed at the nth arrival of the Poisson process.

The resulting process M(t) of successes is a Poisson process with rate λp.
The process of failures L(t) is a Poisson process with rate λ(1− p) and is
independent of M(t).

Bernoulli
p

1−p

Poisson(λ)
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Open Queueing Networks

Define λi the total arrival rate at queue
i , 1 6 i 6 K .

pik

pjl

pk0

pl0

µl

µkµi

µj

pj0

pi0

p jk

λ0
i

λ0
j

λ0
k

λ0
l

p
il

No feedback : from Burke we can consider K independent M/M/1 queues
with Poisson arrivals with rate λi , where

λi = λ0
i +

K∑
j=0

λjpji
~Λ = ~Λ0 + ~ΛR

in matrix notation.

Stability condition

λi < µi ,∀i = 1, 2, . . . ,K .
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Open Queueing Networks

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
� p

1−p

µλ0

Remark

Arrivals are not Poisson anymore!

Result

The departure process is still Poisson with rate λp.

Proof in [Walrand, An Introduction to Queueing Networks, 1988].
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Open Queueing Networks

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
� p

1−p

µλ0

Balance equations:

π(0)λ0 = µpπ(1)

π(n)(λ0 + pµ) = λ0π(n − 1) + µpπ(n + 1), n > 0

Actual arrival rate λ = λ0 + (1− p)λ, so λ0 = λp which gives

π(0)λ = µπ(1)

π(n)(λ+ µ) = λπ(n − 1) + µπ(n + 1), n > 0 M/M/1!

The unique solution is:

π(n) =

(
1− λ

µ

)(
λ

µ

)n

=

(
1− λ0

pµ

)(
λ0

pµ

)n
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pik

pil
λ0

l

Backfeeding allowed.
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Open Queueing Networks

Theorem (Jackson, 1957)

If λi < µi (stability condition), ∀i = 1, 2, . . .K then

π(~n) =
K∏

i=1

(
1− λi

µi

)(
λi

µi

)ni

∀~n = (n1, . . . , nK ) ∈ NK .

where λ1, . . . , λK are the unique solution of the system

λi = λ0
i +

K∑
j=0

λjpji

Product form even with backfeeding!
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Open Queueing Networks

Derive balance equations:

π(~n)

(
K∑

i=1

λ0
i +

K∑
i=1

11ni > 0µi

)
=

K∑
i=1

11ni > 0λ0
i π(~n − ~ei )

+
K∑

i=1

pi0µiπ(~n + ~ei )

+
K∑

i=1

K∑
j=1

11nj > 0pijµiπ(~n + ~ei − ~ej )

Then check that π(~n) =
K∏

i=1

(
1− λi

µi

)(
λi

µi

)ni

satisfies the balance equations

with λi = λ0
i +

∑K
j=0 λjpji .
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Open Queueing Networks

Example

Switches transmitting frames with random errors.
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1−p

server 1 server 2 server K

pµ µλ0
µ

Traffic equations give λi = λi−1 for i > 2 and λ1 = λ0 + (1− p)λK .The unique
solution is clearly λi = λ0

p for 1 6 i 6 K . Apply Jackson’s theorem:

π(~n) =

(
1− λ0

pµ

)K (
λ0

pµ

)n1+...+nK

∀~n = (n1, . . . , nK ) ∈ NK .
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1−p

server 1 server 2 server K

pµ µλ0
µ

Using M/M/1 results for each queue we get the mean number of frames at
each queue EXi = λ0

pµ−λ0

The expected transmission time of a frame is therefore (Little)

ET =
1
λ0 EX =

1
λ0

K∑
i=1

EXi =
K

pµ− λ0
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Open Queueing Networks

Theorem

Consider an open network of K M/M/ci queues. Let µi (n) = µi min(n, ci ) and
ρi = λi

µi
.

Then if ρi < ci for all 1 6 i 6 K then

π(~n) =
K∏

i=1

Ci

(
λ

ni
i∏ni

m=1 µi (m)

)
∀~n = (n1, . . . , nK ) ∈ NK

where (λ1, . . . , λK ) is the unique positive solution of the traffic equations

λi = λ0
i +

K∑
j=0

λjpji , and where Ci =

(ci−1∑
m=1

ρi

i!
+

ρ
ci
i

ci !(1− ρi/ci )

)−1

35 / 49Performance Evaluation : Contention and Queues



Queues Stability Average Computable queues Networks Multiclass networks

Closed Queueing Networks

Computing the normalization factor C(N,K ) is a heavy task!

C(n, k) =
∑

~n∈S(n,k)

k∏
i=1

(
λi

µi

)ni

=
n∑

m=0

∑
~n ∈ S(n, k)

nk = m

k∏
i=1

(
λi

µi

)ni

=
n∑

m=0

(
λk

µk

)m ∑
~n∈S(n−m,k−1)

k−1∏
i=1

(
λi

µi

)ni

Convolution algorithm (Buzen,1973)

C(n, k) =
n∑

m=0

(
λk

µk

)m

C(k −m, k − 1) and

{
C(n, 1) =

(
λ1
µ1

)n

C(0, k) = 1, ∀1 6 i 6 K
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Outline

1 Queues

2 Stability

3 Average

4 Computable queues

5 Networks

6 Multiclass networks
Other service disciplines
BCMP networks
Kelly networks
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Multiclass Networks
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µl

µkµi

µj

λ0
i ,1 p(i ,1)→0

p(k ,1)→0

λ0
j ,1

p(i ,1)→(k ,1)
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Multiclass Networks

K <∞ nodes and R <∞ classes

Customer at node i in class r will go to node j with class s with probability
p(i,r);(j,s)

(i, r) and (j, s) belong to the same subchain if p(i,r);(j,s) > 0

FIFO discipline and exponential service times

Definition

A subchain is open iff there exist one pair (i, r) for which λ0
(i,r) > 0.

Definition

A mixed system contains at least one open subchain and one closed
subchain.
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Multiclass Networks

The state of a multiclass network may be characterized by the number of
customers of each class at each node

~Q(t) = (~Q1(t), ~Q2(t), . . . , ~QK (t)) with ~Qi (t) = (Qi1(t)), . . . ,QiR(t))

Problem

~Q(t) is not a CMTC!

To see why, consider the FIFO discipline: how do you know the class of the
next customer?
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Multiclass Networks

Define ~Xi (t) = (Ii1(t), . . . , IiQi (t)(t)) with Iij (t) the class of the j th customer at
node i .

Proposition

~X (t) is a CMTC!

Solving the balance equations for X gives a product-form solution. The
steady-state distribution of ~X (t) also gives the distribution of ~Q(t) by
aggregation of states.
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Other queueing networks

Jackson networks imply
FIFO discipline

probabilistic routing

These assumptions can be relaxed using BCMP and Kelly networks.
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BCMP networks

Definition

BCMP networks are multiclass networks with exponential service times and
ci servers at node i .

Service disciplines may be:
FCFS

Processor Sharing

Infinite Server

LCFS

BCMP networks also have product-form solution!
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BCMP networks

Consider an open/closed/mixed BCMP network with K nodes and R classes
in which each node is either FIFO,PS,LIFO or IS. Define

ρir = λir
µir

for LIFO, IS and PS nodes

ρir = λir
µi

for FIFO nodes

λir = λ0
ir +

∑
(j,s)∈Ek

λjsp(i,r);(j,s) for any (i, r) of each open subchain Ek

λir =
∑

(j,s)∈Em

λjsp(i,r);(j,s) for any (i, r) of each closed subchain Em
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BCMP networks

Theorem

The steady-state distribution is given by: for all ~n in state space S,

π(~n) =
1
G

K∏
i=1

fi (~ni ) with G =
∑
~n∈S

K∏
i=1

fi (~ni )

with ~n = (~n1, . . . , ~nK ) ∈ S and ~ni = (ni1, . . . , niR), if and only if (stability
condition for open subchains)

∑
r :(i,r)∈ any open Ek

ρir < 1, ∀1 6 i 6 K .

Moreover, fi (~ni ) has an explicit expression for each service discipline.
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BCMP networks

FIFO fi (~ni ) = |ni |!
|ni |∏
j=1

1
αi (j)

R∏
r=1

ρ
nir
ir

nir !
with αj (j) = min(ci , j).

PS or LIFO fi (~ni ) = |ni |!
R∏

r=1

ρ
nir
ir

nir !

IS fi (~ni ) =
R∏

r=1

ρ
nir
ir

nir !
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Extensions

the BCMP product form result may be extended to the following cases:
state-dependent routing probabilities

arrivals depending on the number of customers in the corresponding subchain
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Kelly networks

In Kelly networks the routing is deterministic. The network is then
characterized by its set of nodes and its set of routes.

Definition

In a Kelly network, each class of customers corresponds to a route.

Let λk be the arrival rate of class k clients (Poisson process). Note that class
k customers can only arrive at one single node.
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Kelly networks

the state space of a Kelly network is the set of N × K matrices
M = ((mi,k )) with mi,k is the number of class k clients in queue i

Theorem (Kelly)

πM =
N∏

i=1

(
1− λ̂i

µi

)
m̂i !

mi,1! · · ·mi,K !

(
λ̂i,1

µi

)mi,1

· · ·

(
λ̂i,K

µi

)mi,K

with λ̂i,k global input rate of class k clients in queue i
with λ̂i =

∑
k λ̂i,k global input rate queue i

and m̂i =
∑

k mi,k
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