# Performance Evaluation : Contention and Queues RICM4 

Jean-Marc Vincent

Laboratoire LIG, projet Inria-Mescal
UniversitéJoseph Fourier
Jean-Marc.Vincent@imag.fr

2014
 Sciences sociales \& humaines

## Outline

(1) Queues

- Characterization

2) Stability
3. Average
(4) Computable queues
4. Networks

6 Multiclass networks

## Queues

Queues are among simplest dynamic systems, but are still the source of many open problems.
Tasks do not have any constraints, sizes and arrival times are often independent.


## Queues

Queues are among simplest dynamic systems, but are still the source of many open problems.
Tasks do not have any constraints, sizes and arrival times are often independent.


## Queues

Queues are among simplest dynamic systems, but are still the source of many open problems.
Tasks do not have any constraints, sizes and arrival times are often independent.


## Queues

Queues are among simplest dynamic systems, but are still the source of many open problems.
Tasks do not have any constraints, sizes and arrival times are often independent.


## Queues

Queues are among simplest dynamic systems, but are still the source of many open problems.
Tasks do not have any constraints, sizes and arrival times are often independent.


## Queues

Queues are among simplest dynamic systems, but are still the source of many open problems.
Tasks do not have any constraints, sizes and arrival times are often independent.


## Kendall's notation



## Notation : $A / S / K / C / D i s c$

- A : arrival process
- B : service process
- K : number of servers
- C : total queue capacity (including currently served customers)
- Disc : Service discipline (FIFO, LIFO, PS, Quantum, Priorities,...)


## State variables

## User variables

- Input rate $\lambda$ or inter-arrival $\delta$
- Service time $\sigma$ or $S$ (service rate $\mu$ )
- Waiting time $W$
- Response time $R$ (in some books $W$ )
- Rejection probability


## Resource variables

- Resource utilisation (offered load) $\rho$
- Queue occupation $N$
- System availability


## One Server Queue load



## Lindley's formula (2)

$W_{n}$ is the waiting time of the $n$-th task. It is a dynamical system of the form $W_{n}=\varphi\left(W_{n-1}, X_{n}\right)$ with $X_{n}=\sigma_{n-1}-\delta_{n}$ and $\varphi$ defined by the

## Lindley's equation:

$$
W_{n}=\max \left(W_{n-1}+X_{n}, 0\right) .
$$

- FIFO scheduling
- Non-linear evolution equation


## Outline

(1) Queues

## 2 Stability

3 Average
(4) Computable queues
(5) Networks
(6) Multiclass networks

## Stability of the $G / G / 1$ queue

$$
\begin{aligned}
W_{n} & =\max \left(W_{n-1}+X_{n}, 0\right), \\
& =\max \left(\max \left(W_{n-2}+X_{n-1}, 0\right)+X_{n}, 0\right), \\
& =\max \left(W_{n-2}+X_{n-1}+X_{n}, X_{n}, 0\right), \\
& =\max \left(W_{n-3}+X_{n-2}+X_{n-1}+X_{n}, X_{n-1}+X_{n}, X_{n}, 0\right), \\
& =\max \left(W_{0}+X_{1}+\cdots+X_{n-1}+X_{n}, \cdots, X_{n-1}+X_{n}, X_{n}, 0\right), \\
& =\max \left(X_{1}+\cdots+X_{n-1}+X_{n}, \cdots, X_{n-1}+X_{n}, X_{n}, 0\right), \\
& \sim \max \left(X_{n}+\cdots+X_{2}+X_{1}, \cdots, X_{2}+X_{1}, X_{1}, 0\right), \\
& \stackrel{\text { def }}{=} M_{n} .
\end{aligned}
$$

$$
W_{n}={ }_{s t} M_{n}=\max \left(M_{n-1}, X_{1}+\cdots+X_{n}\right) .
$$

## Stability of the $G / G / 1$ queue (2)

$$
W_{n}=s t M_{n}=\max \left(M_{n-1}, X_{1}+\cdots+X_{n}\right)
$$

$M_{n}$ is a non-decreasing sequence
Either $M_{n} \longrightarrow M_{\infty}$ or $M_{n} \longrightarrow+\infty$

## Stability

- $\mathbb{E} X=\mathbb{E}(\sigma-\delta)<0$ The system is Stable

$$
M_{\infty}=s t \max \left(M_{\infty}+X, 0\right) .
$$

Functional equation on the distribution

$$
\mathbb{P}\left(M_{\infty}<x\right) \stackrel{\text { def }}{=} F(x)=\int F(x-u) d F_{X}(u)
$$

Condition : $\mathbb{E} \sigma<\mathbb{E} \delta$ or $\lambda<\mu$

- $\mathbb{E} X=\mathbb{E}(\sigma-\delta)>0$ The system is Unstable

Depends only on service and inter-arrival expectation

## Loynes' scheme

## Theorem

$W_{n} \leqslant s t W_{n+1}$ in a $G / G / 1$ queue, initialy empty.
Proof. done by a backward coupling known as the Loynes' scheme.
Construct on a common probability space two trajectories by going backward in time: $S_{i-n}^{1}(\omega)=S_{i-n-1}^{2}(\omega)$ with distribution $S_{i}$ and $T_{i-n}^{1}(\omega)=T_{i-n-1}^{2}(\omega)$, with distribution $T_{i}-T_{n+1}$ for all $0 \leqslant i \leqslant n+1$ and $S_{-n-1}^{+1}(\omega)=0$. By construction, $W_{0}^{1}={ }_{\text {st }} W_{n}$ and $W_{0}^{2}={ }_{s t} W_{n+1}$. Also, it should be clear that $0=W_{-n+1}^{1}(\omega) \leqslant W_{-n+1}^{2}(\omega)$ for all $\omega$.
This implies $W_{-i}^{1}(\omega) \leqslant W_{-i}^{2}(\omega)$ so that $W_{n} \leqslant W_{n-1}$

## Loynes' scheme

## Theorem

$W_{n} \leqslant s t W_{n+1}$ in a $G / G / 1$ queue, initialy empty.
Proof. done by a backward coupling known as the Loynes' scheme. Construct on a common probability space two trajectories by going backward in time: $S_{i-n}^{1}(\omega)=S_{i-n-1}^{2}(\omega)$ with distribution $S_{i}$ and $T_{i-n}^{1}(\omega)=T_{i-n-1}^{2}(\omega)$, with distribution $T_{i}-T_{n+1}$ for all $0 \leqslant i \leqslant n+1$ and $S_{-n-1}^{1}(\omega)=0$.


## Loynes' scheme

## Theorem

$W_{n} \leqslant_{s t} W_{n+1}$ in a $G / G / 1$ queue, initialy empty.
Proof. done by a backward coupling known as the Loynes' scheme. Construct on a common probability space two trajectories by going backward in time: $S_{i-n}^{1}(\omega)=S_{i-n-1}^{2}(\omega)$ with distribution $S_{i}$ and $T_{i-n}^{1}(\omega)=T_{i-n-1}^{2}(\omega)$, with distribution $T_{i}-T_{n+1}$ for all $0 \leqslant i \leqslant n+1$ and $S_{-n-1}^{1}(\omega)=0$. By construction, $W_{0}^{1}=s t W_{n}$ and $W_{0}^{2}=s t W_{n+1}$. Also, it should be clear that $0=W_{-n+1}^{1}(\omega) \leqslant W_{-n+1}^{2}(\omega)$ for all $\omega$.
This implies $W_{-i}^{1}(\omega) \leqslant W_{-i}^{2}(\omega)$ so that $W_{n} \leqslant s t W_{n+1}$.

## Loynes' scheme



This has many consequences in terms of existence and uniqueness of a stationary (or limit) regime for the G/G/1 queue Baccelli Bremaud, 2002).

## Loynes' scheme



This has many consequences in terms of existence and uniqueness of a stationary (or limit) regime for the $\mathrm{G} / \mathrm{G} / 1$ queue Baccelli Bremaud, 2002).

## Outline

(1) Queues
(2) Stability
(3) Average
(4) Computable queues
(5) Networks
(6) Multiclass networks

## Little's Formula



## Assumptions

$$
\lim _{t \rightarrow+\infty} \frac{A_{t}}{t}=\lambda, \quad \lim _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} N_{s} d s=\mathbb{E} N \text { and } \lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{i=1}^{n} R_{i}=\mathbb{E} R,
$$

## Little's Formula

$\mathbb{E} N=\lambda \mathbb{E} R$.

## Little's Formula (proof)



Little's Formula (proof)

$T \rightarrow \infty$ implies $\mathbb{E} N=\lambda \mathbb{E} R$.

Little's Formula (proof)


$$
\frac{1}{T} \int_{0}^{T} N_{s} d s=\frac{A_{T}}{T} \frac{1}{A_{T}} \sum_{i=1}^{A_{T}} R_{i} .
$$

$T \rightarrow \infty$ implies $\mathbb{E} N=\lambda \mathbb{E} R$.

## Outline

(1) Queues
(2) Stability
(3) Average
(4) Computable queues

- Single server queue
- Limited capacity
(5) Networks
(6) Multiclass networks


## M/M/1



- Infinite capacity
- Poisson $(\lambda)$ arrivals
- $\operatorname{Exp}(\mu)$ service times
- FIFO discipline

Definition
$\rho=\frac{\lambda}{\mu}$ is the traffic intensity of the queueing system.

## M/M/1



- Infinite capacity
- Poisson $(\lambda)$ arrivals
- $\operatorname{Exp}(\mu)$ service times
- FIFO discipline


## Definition

$\rho=\frac{\lambda}{\mu}$ is the traffic intensity of the queueing system.

## M/M/1

Let $X(t)$ the number of clients in the system at time $t . X(t)$ is a birth and death process.


## M/M/1

Let $X(t)$ the number of clients in the system at time $t . X(t)$ is a birth and death process.


## M/M/1

Let $X(t)$ the number of clients in the system at time $t . X(t)$ is a birth and death process.


## M/M/1

Let $X(t)$ the number of clients in the system at time $t . X(t)$ is a birth and death process.


## Results for M/M/1 queue

(1) Stable if and only if $\rho<1$
(2) Clients follow a geometric distribution $\forall i \in \mathbb{N}, \pi_{i}=(1-\rho) \rho^{i}$
(3) Mean number of clients $\mathbb{E} X=\frac{\rho}{(1-\rho)}$
(4) Average response time $\mathbb{E} T=\frac{1}{\mu-\lambda}$

## M/M/1/C

In reality, buffers are finite: $\mathrm{M} / \mathrm{M} / 1 / \mathrm{C}$ is a queueing system with rejection.


## Results for M/M/1/C queue

Geometric distribution with finite state space

$$
\pi(i)=\frac{(1-\rho) \rho^{i}}{1-\rho^{C+1}}
$$

## Outline

2 Stability
(3) Average
(4) Computable queues
(5) Networks

- Tandem queues
- Jackson networks
- Open networks of $M / M / c$ queues
(6) Multiclass networks


## Reversibility

## Proposition

An ergodic birth and death process is time-reversible.

## Proof



By induction:
(1) $\pi_{0} \lambda_{0}=\pi_{1} \mu_{1}$
(2) Suppose $\pi_{i-1} \lambda_{i-1}=\pi_{i} \mu_{i}$. Then

## Reversibility

## Proposition

An ergodic birth and death process is time-reversible.

## Proof



By induction:
(1) $\pi_{0} \lambda_{0}=\pi_{1} \mu_{1}$
(2) Suppose $\pi_{i-1} \lambda_{i-1}=\pi_{i} \mu_{i}$. Then
$\pi_{i}\left(\lambda_{i}+\mu_{i}\right)=\pi_{i+1} \mu_{i+1}+\pi_{i-1} \lambda_{i-1}$
Which gives $\pi_{i} \lambda_{i}=\pi_{i+1} \mu_{i+1}$.

## Reversibility

## Proposition

An ergodic birth and death process is time-reversible.

## Proof



By induction:
(1) $\pi_{0} \lambda_{0}=\pi_{1} \mu_{1}$
(2) Suppose $\pi_{i-1} \lambda_{i-1}=\pi_{i} \mu_{i}$. Then
$\pi_{i}\left(\lambda_{i}+\mu_{i}\right)=\pi_{i+1} \mu_{i+1}+\pi_{i-1} \lambda_{i-1}$
Which gives $\pi_{i} \lambda_{i}=\pi_{i+1} \mu_{i+1}$.

## Burke's theorem

## Theorem

The output process of an $M / M / s$ queue is a Poisson process that is independent of the number of customers in the queue.

## Sketch of Proof.



$X(t)$ increases by 1 at rate $\lambda \pi_{i}$ (Poisson process $\lambda$ ). Reverse process increases by 1 at rate $\mu \pi_{i+1}=\lambda \pi$; by reversibility.

## Burke's theorem

## Theorem

The output process of an $M / M / s$ queue is a Poisson process that is independent of the number of customers in the queue.

## Sketch of Proof.



$X(t)$ increases by 1 at rate $\lambda \pi_{i}$ (Poisson process $\lambda$ ). Reverse process increases by 1 at rate $\mu \pi_{i+1}=\lambda \pi_{i}$ by reversibility.

## Open Queueing Networks



Let $X_{1}$ and $X_{2}$ denote the number of clients in queues 1 and 2 respectively.

## Lemma

$X_{1}$ and $X_{2}$ are independent rv's.

## Proof

Arrival process at queue 1 is Poisson $(\lambda)$ so future arrivals are independent of $X_{1}(t)$.
By time reversibility $X_{1}(t)$ is independent of past departures.
Since these departures are the arrival process of queue 2, $X_{1}(t)$ and $X_{2}(t)$ are independent.

## Open Queueing Networks



Let $X_{1}$ and $X_{2}$ denote the number of clients in queues 1 and 2 respectively.

## Lemma

$X_{1}$ and $X_{2}$ are independent rv's.

## Proof

Arrival process at queue 1 is Poisson $(\lambda)$ so future arrivals are independent of $X_{1}(t)$. By time reversibility $X_{1}(t)$ is independent of past departures. Since these departures are the arrival process of queue 2, $X_{1}(t)$ and $X_{2}(t)$ are independent.

## Open Queueing Networks



Let $X_{1}$ and $X_{2}$ denote the number of clients in queues 1 and 2 respectively.

## Lemma

$X_{1}$ and $X_{2}$ are independent rv's.

## Proof

Arrival process at queue 1 is Poisson $(\lambda)$ so future arrivals are independent of $X_{1}(t)$. By time reversibility $X_{1}(t)$ is independent of past departures. Since these departures are the arrival process of queue 2, $X_{1}(t)$ and $X_{2}(t)$ are independent.

## Open Queueing Networks

## Theorem

The number of clients at server 1 and 2 are independent and

$$
P\left(n_{1}, n_{2}\right)=\left(\frac{\lambda}{\mu_{1}}\right)^{n_{1}}\left(1-\frac{\lambda}{\mu_{1}}\right)\left(\frac{\lambda}{\mu_{2}}\right)^{n_{2}}\left(1-\frac{\lambda}{\mu_{1}}\right)
$$

Proof
By indenendence of $X_{1}$ and $X_{2}$ the joint probability is the product of $M / M / 1$ distributions.

This result is called a product-form result for the tandem queue. This product form also appears in more general networks of queues.

## Open Queueing Networks

## Theorem

The number of clients at server 1 and 2 are independent and

$$
P\left(n_{1}, n_{2}\right)=\left(\frac{\lambda}{\mu_{1}}\right)^{n_{1}}\left(1-\frac{\lambda}{\mu_{1}}\right)\left(\frac{\lambda}{\mu_{2}}\right)^{n_{2}}\left(1-\frac{\lambda}{\mu_{1}}\right)
$$

## Proof

By independence of $X_{1}$ and $X_{2}$ the joint probability is the product of $\mathrm{M} / \mathrm{M} / 1$ distributions.

This result is called a product-form result for the tandem queue. This product form also appears in more general networks of queues.

## Open Queueing Networks

## Theorem

The number of clients at server 1 and 2 are independent and

$$
P\left(n_{1}, n_{2}\right)=\left(\frac{\lambda}{\mu_{1}}\right)^{n_{1}}\left(1-\frac{\lambda}{\mu_{1}}\right)\left(\frac{\lambda}{\mu_{2}}\right)^{n_{2}}\left(1-\frac{\lambda}{\mu_{1}}\right)
$$

## Proof

By independence of $X_{1}$ and $X_{2}$ the joint probability is the product of $\mathrm{M} / \mathrm{M} / 1$ distributions.

This result is called a product-form result for the tandem queue. This product form also appears in more general networks of queues.

## Open Queueing Networks

Example of a feed-forward network:


- Exponential service times
- output of $i$ is routed to $j$ with probability $p_{i j}$
- external traffic arrives at $i$ with rate $\lambda_{i}^{0}$
- packets exiting queue $i$ leave the system with probability $p_{i 0}$.

Routing matrix

$$
R=\left(\begin{array}{cccc}
0 & p_{i j} & p_{i k} & p_{i l} \\
p_{j i} & 0 & p_{j k} & p_{j l} \\
p_{k i} & p_{k j} & 0 & p_{j l} \\
p_{l i} & p_{l j} & p_{l k} & 0
\end{array}\right)
$$

## Open Queueing Networks

## Reminder

- $N(t)$ Poisson process with rate $\lambda$
- $Z(n)$ sequence of iid rv's $\sim \operatorname{Bernoulli}(p)$ independent of $N$.

Suppose the $n$th trial is performed at the $n$th arrival of the Poisson process.


## Open Queueing Networks

## Reminder

- $N(t)$ Poisson process with rate $\lambda$
- $Z(n)$ sequence of iid rv's $\sim \operatorname{Bernoulli}(p)$ independent of $N$.

Suppose the $n$th trial is performed at the $n$th arrival of the Poisson process. The resulting process $M(t)$ of successes is a Poisson process with rate $\lambda p$.


## Open Queueing Networks

## Reminder

- $N(t)$ Poisson process with rate $\lambda$
- $Z(n)$ sequence of iid rv's $\sim \operatorname{Bernoulli}(p)$ independent of $N$.

Suppose the $n$th trial is performed at the $n$th arrival of the Poisson process. The resulting process $M(t)$ of successes is a Poisson process with rate $\lambda p$. The process of failures $L(t)$ is a Poisson process with rate $\lambda(1-p)$ and is independent of $M(t)$.


## Open Queueing Networks

Define $\lambda_{i}$ the total arrival rate at queue $i, 1 \leqslant i \leqslant K$.


No feedback : from Burke we can consider $K$ independent M/M/1 queues with Poisson arrivals with rate $\lambda_{i}$, where

$$
\lambda_{i}=\lambda_{i}^{0}+\sum_{j=0}^{K} \lambda_{j} p_{j i}
$$



## Stability condition

$\lambda_{i}<\mu_{i}, \forall i=1,2, \ldots, K$.

## Open Queueing Networks

Define $\lambda_{i}$ the total arrival rate at queue $i, 1 \leqslant i \leqslant K$.


No feedback : from Burke we can consider $K$ independent $\mathrm{M} / \mathrm{M} / 1$ queues with Poisson arrivals with rate $\lambda_{i}$, where

$$
\lambda_{i}=\lambda_{i}^{0}+\sum_{j=0}^{K} \lambda_{j} p_{j i}
$$

$\vec{\Lambda}=\vec{\Lambda}^{0}+\vec{\Lambda} \mathbf{R}$
in matrix notation.

## Stability condition

$\lambda_{i}<\mu_{i}, \forall i=1,2, \ldots, K$.

## Open Queueing Networks



## Remark

Arrivals are not Poisson anymore!

> Result
> The departure process is still Poisson with rate $\lambda p$.
> Proof in [Walrand, An Introduction to Queueing Networks, 1988].

## Open Queueing Networks



## Remark

Arrivals are not Poisson anymore!

## Result

The departure process is still Poisson with rate $\lambda p$.
Proof in [Walrand, An Introduction to Queueing Networks, 1988].

## Open Queueing Networks



Balance equations:

$$
\begin{aligned}
\pi(0) \lambda^{0} & =\mu p \pi(1) \\
\pi(n)\left(\lambda^{0}+p \mu\right) & =\lambda^{0} \pi(n-1)+\mu p \pi(n+1), \quad n>0
\end{aligned}
$$

Actual arrival rate $\lambda=\lambda^{0}+(1-p) \lambda$, so $\lambda^{0}=\lambda p$ which gives

## Open Queueing Networks



Balance equations:

$$
\begin{aligned}
\pi(0) \lambda^{0} & =\mu p \pi(1) \\
\pi(n)\left(\lambda^{0}+p \mu\right) & =\lambda^{0} \pi(n-1)+\mu p \pi(n+1), \quad n>0
\end{aligned}
$$

Actual arrival rate $\lambda=\lambda^{0}+(1-p) \lambda$, so $\lambda^{0}=\lambda p$ which gives

## Open Queueing Networks

Balance equations:

$$
\begin{aligned}
\pi(0) \lambda^{0} & =\mu p \pi(1) \\
\pi(n)\left(\lambda^{0}+p \mu\right) & =\lambda^{0} \pi(n-1)+\mu p \pi(n+1), \quad n>0
\end{aligned}
$$

Actual arrival rate $\lambda=\lambda^{0}+(1-p) \lambda$, so $\lambda^{0}=\lambda p$ which gives

$$
\begin{aligned}
\pi(0) \lambda & =\mu \pi(1) \\
\pi(n)(\lambda+\mu) & =\lambda \pi(n-1)+\mu \pi(n+1), \quad n>0
\end{aligned}
$$

## Open Queueing Networks



Balance equations:

$$
\begin{aligned}
\pi(0) \lambda^{0} & =\mu p \pi(1) \\
\pi(n)\left(\lambda^{0}+p \mu\right) & =\lambda^{0} \pi(n-1)+\mu p \pi(n+1), \quad n>0
\end{aligned}
$$

Actual arrival rate $\lambda=\lambda^{0}+(1-p) \lambda$, so $\lambda^{0}=\lambda p$ which gives

$$
\begin{aligned}
\pi(0) \lambda & =\mu \pi(1) \\
\pi(n)(\lambda+\mu) & =\lambda \pi(n-1)+\mu \pi(n+1), \quad n>0
\end{aligned}
$$

The unique solution is:

## Open Queueing Networks

Balance equations:

$$
\begin{aligned}
\pi(0) \lambda^{0} & =\mu p \pi(1) \\
\pi(n)\left(\lambda^{0}+p \mu\right) & =\lambda^{0} \pi(n-1)+\mu p \pi(n+1), \quad n>0
\end{aligned}
$$

Actual arrival rate $\lambda=\lambda^{0}+(1-p) \lambda$, so $\lambda^{0}=\lambda p$ which gives

$$
\begin{aligned}
\pi(0) \lambda & =\mu \pi(1) \\
\pi(n)(\lambda+\mu) & =\lambda \pi(n-1)+\mu \pi(n+1), \quad n>0 \quad \mathrm{M} / \mathrm{M} / 1!
\end{aligned}
$$

The unique solution is:

$$
\pi(n)=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{n}=\left(1-\frac{\lambda^{0}}{p_{\mu}}\right)\left(\frac{\lambda^{0}}{p_{\mu}}\right)
$$

## Open Queueing Networks

Balance equations:


$$
\begin{aligned}
\pi(0) \lambda^{0} & =\mu p \pi(1) \\
\pi(n)\left(\lambda^{0}+p \mu\right) & =\lambda^{0} \pi(n-1)+\mu p \pi(n+1), \quad n>0
\end{aligned}
$$

Actual arrival rate $\lambda=\lambda^{0}+(1-p) \lambda$, so $\lambda^{0}=\lambda p$ which gives

$$
\begin{aligned}
\pi(0) \lambda & =\mu \pi(1) \\
\pi(n)(\lambda+\mu) & =\lambda \pi(n-1)+\mu \pi(n+1), \quad n>0 \quad \mathrm{M} / \mathrm{M} / 1!
\end{aligned}
$$

The unique solution is:

$$
\pi(n)=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{n}=\left(1-\frac{\lambda^{0}}{p \mu}\right)\left(\frac{\lambda^{0}}{p \mu}\right)^{n}
$$

## Open Queueing Networks



## Open Queueing Networks



Backfeeding allowed.

## Open Queueing Networks



Backfeeding allowed.

## Open Queueing Networks

## Theorem (Jackson, 1957)

If $\lambda_{i}<\mu_{i}$ (stability condition), $\forall i=1,2, \ldots K$ then

$$
\pi(\vec{n})=\prod_{i=1}^{K}\left(1-\frac{\lambda_{i}}{\mu_{i}}\right)\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}} \quad \forall \vec{n}=\left(n_{1}, \ldots, n_{K}\right) \in \mathbb{N}^{K}
$$

where $\lambda_{1}, \ldots, \lambda_{K}$ are the unique solution of the system

$$
\lambda_{i}=\lambda_{i}^{0}+\sum_{j=0}^{K} \lambda_{j} p_{j i}
$$

Product form even with backfeeding!

## Open Queueing Networks

## Theorem (Jackson, 1957)

If $\lambda_{i}<\mu_{i}$ (stability condition), $\forall i=1,2, \ldots K$ then

$$
\pi(\vec{n})=\prod_{i=1}^{K}\left(1-\frac{\lambda_{i}}{\mu_{i}}\right)\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}} \quad \forall \vec{n}=\left(n_{1}, \ldots, n_{K}\right) \in \mathbb{N}^{K}
$$

where $\lambda_{1}, \ldots, \lambda_{K}$ are the unique solution of the system

$$
\lambda_{i}=\lambda_{i}^{0}+\sum_{j=0}^{K} \lambda_{j} p_{j i}
$$

Product form even with backfeeding!

## Open Queueing Networks

Derive balance equations:

$$
\begin{aligned}
\pi(\vec{n})\left(\sum_{i=1}^{K} \lambda_{i}^{0}+\sum_{i=1}^{K} 11 n_{i}>0 \mu_{i}\right)= & \sum_{i=1}^{K} \Pi 1 n_{i}>0 \lambda_{i}^{0} \pi\left(\vec{n}-\vec{e}_{i}\right) \\
& +\sum_{i=1}^{K} p_{i 0} \mu_{i} \pi\left(\vec{n}+\vec{e}_{i}\right) \\
& +\sum_{i=1}^{K} \sum_{j=1}^{K} \Pi 1 n_{j}>0 p_{i j} \mu_{i} \pi\left(\vec{n}+\vec{e}_{i}-\vec{e}_{j}\right)
\end{aligned}
$$

## Open Queueing Networks

Derive balance equations:

$$
\begin{aligned}
\pi(\vec{n})\left(\sum_{i=1}^{K} \lambda_{i}^{0}+\sum_{i=1}^{K} 11 n_{i}>0 \mu_{i}\right)= & \sum_{i=1}^{K} \Pi 1 n_{i}>0 \lambda_{i}^{0} \pi\left(\vec{n}-\vec{e}_{i}\right) \\
& +\sum_{i=1}^{K} p_{i 0} \mu_{i} \pi\left(\vec{n}+\vec{e}_{i}\right) \\
& +\sum_{i=1}^{K} \sum_{j=1}^{K} \Pi 1 n_{j}>0 p_{i j} \mu_{i} \pi\left(\vec{n}+\vec{e}_{i}-\vec{e}_{j}\right)
\end{aligned}
$$

## Open Queueing Networks

Derive balance equations:

$$
\begin{aligned}
\pi(\vec{n})\left(\sum_{i=1}^{K} \lambda_{i}^{0}+\sum_{i=1}^{K} 11 n_{i}>0 \mu_{i}\right)= & \sum_{i=1}^{K} 11 n_{i}>0 \lambda_{i}^{0} \pi\left(\vec{n}-\vec{e}_{i}\right) \\
& +\sum_{i=1}^{K} p_{i 0} \mu_{i} \pi\left(\vec{n}+\vec{e}_{i}\right) \\
& +\sum_{i=1}^{K} \sum_{j=1}^{K} \pi n_{j}>0 p_{i j} \mu_{i} \pi\left(\vec{n}+\vec{e}_{i}-\vec{e}_{j}\right)
\end{aligned}
$$

## Open Queueing Networks

Derive balance equations:

$$
\begin{aligned}
\pi(\vec{n})\left(\sum_{i=1}^{K} \lambda_{i}^{0}+\sum_{i=1}^{K} \Pi n_{i}>0 \mu_{i}\right)= & \sum_{i=1}^{K} \Pi 1 n_{i}>0 \lambda_{i}^{0} \pi\left(\vec{n}-\vec{e}_{i}\right) \\
& +\sum_{i=1}^{K} p_{i 0} \mu_{i} \pi\left(\vec{n}+\vec{e}_{i}\right) \\
& +\sum_{i=1}^{K} \sum_{j=1}^{K} \Pi 1 n_{j}>0 p_{i j} \mu_{i} \pi\left(\vec{n}+\vec{e}_{i}-\vec{e}_{j}\right)
\end{aligned}
$$

Then check that $\pi(\vec{n})=\prod_{i=1}\left(1-\frac{\lambda_{i}}{\mu_{i}}\right)\left(\frac{\lambda_{i}}{\mu_{i}}\right)$

## Open Queueing Networks

Derive balance equations:

$$
\begin{aligned}
\pi(\vec{n})\left(\sum_{i=1}^{K} \lambda_{i}^{0}+\sum_{i=1}^{K} 11 n_{i}>0 \mu_{i}\right)= & \sum_{i=1}^{K} 11 n_{i}>0 \lambda_{i}^{0} \pi\left(\vec{n}-\vec{e}_{i}\right) \\
& +\sum_{i=1}^{K} p_{i 0} \mu_{i} \pi\left(\vec{n}+\vec{e}_{i}\right) \\
& +\sum_{i=1}^{K} \sum_{j=1}^{K} \Pi 1 n_{j}>0 p_{i j} \mu_{i} \pi\left(\vec{n}+\vec{e}_{i}-\vec{e}_{j}\right)
\end{aligned}
$$

Then check that $\pi(\vec{n})=\prod_{i=1}^{K}\left(1-\frac{\lambda_{i}}{\mu_{i}}\right)\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}}$ satisfies the balance equations with $\lambda_{i}=\lambda_{i}^{0}+\sum_{j=0}^{K} \lambda_{j} p_{j i}$.

## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Traffic equations give

## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Traffic equations give for $i \geqslant 2$ and $\lambda_{1}=\lambda^{0}+(1-p) \lambda_{K}$. The unique

## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Traffic equations give $\lambda_{i}=\lambda_{i-1}$ for $i \geqslant 2$ and $\lambda_{1}=\lambda^{0}+(1-p) \lambda_{K}$. The unique solution is clearly $\lambda_{i}=\frac{\lambda^{0}}{p}$ for $1 \leqslant i \leqslant K$. Apply Jackson's theorem:

## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Traffic equations give $\lambda_{i}=\lambda_{i-1}$ for $i \geqslant 2$ and $\lambda_{1}=\lambda^{0}+(1-p) \lambda_{K}$. The unique solution is clearly $\lambda_{i}=\frac{\lambda^{0}}{p}$ for $1 \leqslant i \leqslant K$. Apply Jackson's theorem:


## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Traffic equations give $\lambda_{i}=\lambda_{i-1}$ for $i \geqslant 2$ and $\lambda_{1}=\lambda^{0}+(1-p) \lambda_{k}$. The unique solution is clearly $\lambda_{i}=\frac{\lambda^{0}}{p}$ for $1 \leqslant i \leqslant K$. Apply Jackson's theorem:

$$
\pi(\vec{n})=\left(1-\frac{\lambda^{0}}{p \mu}\right)^{K}\left(\frac{\lambda^{0}}{p \mu}\right)^{n_{1}+\ldots+n_{K}} \quad \forall \vec{n}=\left(n_{1}, \ldots, n_{K}\right) \in \mathbb{N}^{K}
$$

## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Using $M / M / 1$ results for each queue we get the mean number of frames at each queue $\mathbb{E} X_{i}=$ The expected transmission time of a frame is therefore

## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Using $M / M / 1$ results for each queue we get the mean number of frames at each queue $\mathbb{E} X_{i}=\frac{\lambda^{0}}{p \mu-\lambda^{0}}$
The expected transmission time of a frame is therefore (Little)

## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Using $M / M / 1$ results for each queue we get the mean number of frames at each queue $\mathbb{E} X_{i}=\frac{\lambda^{0}}{p \mu-\lambda^{0}}$
The expected transmission time of a frame is therefore (Little)

## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Using $M / M / 1$ results for each queue we get the mean number of frames at each queue $\mathbb{E} X_{i}=\frac{\lambda^{0}}{p \mu-\lambda^{0}}$
The expected transmission time of a frame is therefore (Little)

$$
\mathbb{E} T=\frac{1}{\lambda^{0}} \mathbb{E} X=\frac{1}{\lambda^{0}} \sum^{K}
$$

## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Using $M / M / 1$ results for each queue we get the mean number of frames at each queue $\mathbb{E} X_{i}=\frac{\lambda^{0}}{p \mu-\lambda^{0}}$
The expected transmission time of a frame is therefore (Little)

$$
\mathbb{E} T=\frac{1}{\lambda^{0}} \mathbb{E} X=\frac{1}{\lambda^{0}} \sum_{i=1}^{K} \mathbb{E} X_{i}=\frac{K}{p^{\mu}-\lambda^{0}}
$$

## Open Queueing Networks

## Example

Switches transmitting frames with random errors.


Using $M / M / 1$ results for each queue we get the mean number of frames at each queue $\mathbb{E} X_{i}=\frac{\lambda^{0}}{p \mu-\lambda^{0}}$
The expected transmission time of a frame is therefore (Little)

$$
\mathbb{E} T=\frac{1}{\lambda^{0}} \mathbb{E} X=\frac{1}{\lambda^{0}} \sum_{i=1}^{K} \mathbb{E} X_{i}=\frac{K}{p \mu-\lambda^{0}}
$$

## Open Queueing Networks

## Theorem

Consider an open network of $K M / M / c_{i}$ queues. Let $\mu_{i}(n)=\mu_{i} \min \left(n, c_{i}\right)$ and $\rho_{i}=\frac{\lambda_{i}}{\mu_{i}}$.
Then if $\rho_{i}<c_{i}$ for all $1 \leqslant i \leqslant K$ then

$$
\pi(\vec{n})=\prod_{i=1}^{K} C_{i}\left(\frac{\lambda_{i}^{n_{i}}}{\prod_{m=1}^{n_{i}} \mu_{i}(m)}\right) \quad \forall \vec{n}=\left(n_{1}, \ldots, n_{K}\right) \in \mathbb{N}^{K}
$$

where $\left(\lambda_{1}, \ldots, \lambda_{K}\right)$ is the unique positive solution of the traffic equations

$$
\lambda_{i}=\lambda_{i}^{0}+\sum_{j=0}^{k} \lambda_{j} p_{j}, \quad \text { and where } C_{i}=\left(\sum_{m=1}^{c_{i}-1} \frac{\rho_{i}}{i!}+\frac{\rho_{i}^{c_{i}}}{c_{i}!\left(1-\rho_{i} / c_{i}\right)}\right)^{-1}
$$

## Closed Queueing Networks

Computing the normalization factor $C(N, K)$ is a heavy task!


## Closed Queueing Networks

Computing the normalization factor $C(N, K)$ is a heavy task!

$$
\begin{aligned}
C(n, k)=\sum_{\vec{n} \in S(n, k)} \prod_{i=1}^{k}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}} & =\sum_{m=0}^{n} \sum_{\vec{n} \in S(n, k)} \prod_{i=1}^{k}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}} \\
& =\sum_{m=0}^{n}\left(\frac{\lambda_{k}}{\mu_{k}}\right)_{\vec{n} \in S(n-m, k-1)}^{m} \sum_{i=1}^{n} \prod_{i=1}^{k-1}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}}
\end{aligned}
$$

## Closed Queueing Networks

Computing the normalization factor $C(N, K)$ is a heavy task!

$$
\begin{aligned}
C(n, k)=\sum_{\vec{n} \in S(n, k)} \prod_{i=1}^{k}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}} & =\sum_{m=0}^{n} \sum_{\vec{n} \in S(n, k)} \prod_{i=1}^{k}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}=m} \\
& =\sum_{m=0}^{n}\left(\frac{\lambda_{k}}{\mu_{k}}\right)_{\vec{n} \in S(n-m, k-1)}^{m} \sum_{i=1} \prod_{\substack{k-1}}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}}
\end{aligned}
$$

## Closed Queueing Networks

Computing the normalization factor $C(N, K)$ is a heavy task!

$$
\begin{aligned}
C(n, k)=\sum_{\vec{n} \in S(n, k)} \prod_{i=1}^{k}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}} & =\sum_{m=0}^{n} \sum_{\substack{n \in S(n, k) \\
n_{k}=m}} \prod_{i=1}^{k}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}} \\
& =\sum_{m=0}^{n}\left(\frac{\lambda_{k}}{\mu_{k}}\right)_{\vec{n} \in S(n-m, k-1)}^{m} \sum_{i=1} \prod_{\substack{k-1}}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}}
\end{aligned}
$$

Convolution algorithm (Buzen,1973)

## Closed Queueing Networks

Computing the normalization factor $C(N, K)$ is a heavy task!

$$
\begin{aligned}
C(n, k)=\sum_{\vec{n} \in S(n, k)} \prod_{i=1}^{k}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}} & =\sum_{m=0}^{n} \sum_{\substack{\vec{n} \in S(n, k) \\
n_{k}=m}} \prod_{i=1}^{k}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}} \\
& =\sum_{m=0}^{n}\left(\frac{\lambda_{k}}{\mu_{k}}\right)_{\vec{n} \in S(n-m, k-1)}^{m} \sum_{i=1}^{k-1}\left(\frac{\lambda_{i}}{\mu_{i}}\right)^{n_{i}}
\end{aligned}
$$

## Convolution algorithm (Buzen,1973)

$$
C(n, k)=\sum_{m=0}^{n}\left(\frac{\lambda_{k}}{\mu_{k}}\right)^{m} C(k-m, k-1) \text { and }\left\{\begin{array}{l}
C(n, 1)=\left(\frac{\lambda_{1}}{\mu_{1}}\right)^{n} \\
C(0, k)=1, \forall 1 \leqslant i \leqslant K
\end{array}\right.
$$

## Outline

(1) Queues
2) Stability
(3) Average
(4) Computable queues
(5) Networks

6 Multiclass networks

- Other service disciplines
- BCMP networks
- Kelly networks


## Multiclass Networks



## Multiclass Networks



## Multiclass Networks



## Multiclass Networks



## Multiclass Networks

- $K<\infty$ nodes and $R<\infty$ classes
- Customer at node $i$ in class $r$ will go to node $j$ with class $s$ with probability $p_{(i, r) ;(j, s)}$
- ( $i, r$ ) and $(j, s)$ belong to the same subchain if $P(i, r):(j, s)>0$


## Multiclass Networks

- $K<\infty$ nodes and $R<\infty$ classes
- Customer at node $i$ in class $r$ will go to node $j$ with class $s$ with probability $p_{(i, r) ;(j, s)}$
- $(i, r)$ and $(j, s)$ belong to the same subchain if $p_{(i, r):(j, s)}>0$
- FIFO discipline and exponential service times


## Multiclass Networks

- $K<\infty$ nodes and $R<\infty$ classes
- Customer at node $i$ in class $r$ will go to node $j$ with class $s$ with probability $p_{(i, r) ;(j, s)}$
- $(i, r)$ and $(j, s)$ belong to the same subchain if $p_{(i, r) ;(j, s)}>0$
- FIFO discipline and exponential service times


## Multiclass Networks

- $K<\infty$ nodes and $R<\infty$ classes
- Customer at node $i$ in class $r$ will go to node $j$ with class $s$ with probability $p_{(i, r) ;(j, s)}$
- $(i, r)$ and $(j, s)$ belong to the same subchain if $p_{(i, r) ;(j, s)}>0$
- FIFO discipline and exponential service times


## Multiclass Networks

- $K<\infty$ nodes and $R<\infty$ classes
- Customer at node $i$ in class $r$ will go to node $j$ with class $s$ with probability $p_{(i, r) ;(j, s)}$
- $(i, r)$ and $(j, s)$ belong to the same subchain if $p_{(i, r) ;(j, s)}>0$
- FIFO discipline and exponential service times

Definition
$\Delta$ subchain is open iff there exist one pair $(i, r)$ for which $\lambda_{(i, r)}^{0}>0$.

## Multiclass Networks

- $K<\infty$ nodes and $R<\infty$ classes
- Customer at node $i$ in class $r$ will go to node $j$ with class $s$ with probability $p_{(i, r) ;(j, s)}$
- $(i, r)$ and $(j, s)$ belong to the same subchain if $p_{(i, r) ;(j, s)}>0$
- FIFO discipline and exponential service times


## Definition

A subchain is open iff there exist one pair $(i, r)$ for which $\lambda_{(i, r)}^{0}>0$.
Definition
A mixed system contains at least one open subchain and one closed subchain.

## Multiclass Networks

- $K<\infty$ nodes and $R<\infty$ classes
- Customer at node $i$ in class $r$ will go to node $j$ with class $s$ with probability $p_{(i, r) ;(j, s)}$
- $(i, r)$ and $(j, s)$ belong to the same subchain if $p_{(i, r) ;(j, s)}>0$
- FIFO discipline and exponential service times


## Definition

A subchain is open iff there exist one pair $(i, r)$ for which $\lambda_{(i, r)}^{0}>0$.

## Definition

A mixed system contains at least one open subchain and one closed subchain.

## Multiclass Networks

The state of a multiclass network may be characterized by the number of customers of each class at each node

$$
\left.\vec{Q}(t)=\left(\vec{Q}_{1}(t), \vec{Q}_{2}(t), \ldots, \vec{Q}_{K}(t)\right) \text { with } \vec{Q}_{i}(t)=\left(Q_{i 1}(t)\right), \ldots, Q_{i R(t)}\right)
$$

$\vec{Q}(t)$ is not a CMTC!
To see why, consider the FIFO discipline: how do you know the class of the
next customer?

## Multiclass Networks

The state of a multiclass network may be characterized by the number of customers of each class at each node

$$
\left.\vec{Q}(t)=\left(\vec{Q}_{1}(t), \vec{Q}_{2}(t), \ldots, \vec{Q}_{K}(t)\right) \text { with } \vec{Q}_{i}(t)=\left(Q_{i 1}(t)\right), \ldots, Q_{i R(t)}\right)
$$

## Problem

$\vec{Q}(t)$ is not a CMTC!
To see why, consider the FIFO discipline: how do you know the class of the next customer?

## Multiclass Networks

The state of a multiclass network may be characterized by the number of customers of each class at each node

$$
\left.\vec{Q}(t)=\left(\vec{Q}_{1}(t), \vec{Q}_{2}(t), \ldots, \vec{Q}_{K}(t)\right) \text { with } \vec{Q}_{i}(t)=\left(Q_{i 1}(t)\right), \ldots, Q_{i R(t)}\right)
$$

## Problem

$\vec{Q}(t)$ is not a CMTC!
To see why, consider the FIFO discipline: how do you know the class of the next customer?

## Multiclass Networks

Define $\vec{X}_{i}(t)=\left(l_{i 1}(t), \ldots, l_{i Q_{i}(t)}(t)\right)$ with $l_{i j}(t)$ the class of the $j$ th customer at node $i$.

## Proposition

$\vec{X}(t)$ is a CMTC!
Solving the balance equations for $X$ gives a product-form solution. The
steady-state distribution of $\bar{X}(t)$ also gives the distribution of $\hat{Q}(t)$ by
aggregation of states.

## Multiclass Networks

Define $\vec{X}_{i}(t)=\left(l_{i 1}(t), \ldots, l_{i Q_{i}(t)}(t)\right)$ with $l_{i j}(t)$ the class of the $j$ th customer at node $i$.

## Proposition

$\vec{X}(t)$ is a CMTC!
Solving the balance equations for $X$ gives a product-form solution.
steady-state distribution of $\vec{X}(t)$ also gives the distribution of $\vec{Q}(t)$ by
aggregation of states.

## Multiclass Networks

Define $\vec{X}_{i}(t)=\left(l_{i 1}(t), \ldots, l_{i Q_{i}(t)}(t)\right)$ with $l_{i j}(t)$ the class of the $j$ th customer at node $i$.

## Proposition

$\vec{X}(t)$ is a CMTC!
Solving the balance equations for $X$ gives a product-form solution. The steady-state distribution of $\vec{X}(t)$ also gives the distribution of $\vec{Q}(t)$ by aggregation of states.

## Other queueing networks

Jackson networks imply

- FIFO discipline
- probabilistic routing

These assumptions can be relaxed using BCMP and Kelly networks.

## BCMP networks

## Definition

BCMP networks are multiclass networks with exponential service times and $c_{i}$ servers at node $i$.

Service disciplines may be:

- FCFS
- Processor Sharing
- Infinite Server
- LCFS

BCMP networks also have product-form solution!

## BCMP networks

## Definition

BCMP networks are multiclass networks with exponential service times and $c_{i}$ servers at node $i$.

Service disciplines may be:

- FCFS
- Processor Sharing
- Infinite Server
- LCFS

BCMP networks also have product-form solution!

## BCMP networks

Consider an open/closed/mixed BCMP network with $K$ nodes and $R$ classes in which each node is either FIFO,PS,LIFO or IS. Define

- $\rho_{i r}=\frac{\pi}{\mu}$ for LIFO, IS and PS nodes
- $\rho_{i r}=\frac{\lambda_{i r}}{\mu_{i}}$ for FIFO nodes
- $\lambda_{i r}=\lambda_{i r}^{0}+\sum \lambda_{j s} p(i, r):(j, s)$ for any $(i, r)$ of each open subchain $E_{k}$
- $\lambda_{i r}=\sum \lambda_{j s} p_{(i, r) ;(j, s)}$ for any $(i, r)$ of each closed subchain $E_{m}$


## BCMP networks

Consider an open/closed/mixed BCMP network with $K$ nodes and $R$ classes in which each node is either FIFO,PS,LIFO or IS. Define

- $\rho_{\text {ir }}=\frac{\lambda_{i r}}{\mu_{i r}}$ for LIFO, IS and PS nodes
- $\rho_{i r}=\frac{\lambda_{i r}}{\mu_{i}}$ for FIFO nodes
- $\lambda_{i r}=\lambda_{i r}^{0}+\sum_{(j, s) \in E_{k}} \lambda_{j s} p_{(i, r) ;(j, s)}$ for any $(i, r)$ of each open subchain $E_{k}$
- $\lambda_{i r}=\sum_{(j, s) \in E_{m}} \lambda_{j s} p_{(i, r) ;(i, s)}$ for any (i,r) of each closed subchain $E_{m}$


## BCMP networks

## Theorem

The steady-state distribution is given by: for all $\vec{n}$ in state space $\mathcal{S}$,

$$
\pi(\vec{n})=\frac{1}{G} \prod_{i=1}^{K} f_{i}\left(\vec{n}_{i}\right) \quad \text { with } G=\sum_{\vec{n} \in \mathcal{S}} \prod_{i=1}^{K} f_{i}\left(\vec{n}_{i}\right)
$$

with $\vec{n}=\left(\vec{n}_{1}, \ldots, \vec{n}_{K}\right) \in \mathcal{S}$ and $\vec{n}_{i}=\left(n_{i 1}, \ldots, n_{i r}\right)$, if and only if (stability condition for open subchains) $\sum_{r:(i, r) \in} \rho_{\text {any open }} \rho_{k}<1, \quad \forall 1 \leqslant i \leqslant K$.

Moreover, $f_{i}\left(\vec{n}_{i}\right)$ has an explicit expression for each service discipline.

## BCMP networks

$$
\begin{aligned}
\text { FIFO } f_{i}\left(\vec{n}_{i}\right) & =\left|n_{i}\right|!\prod_{j=1}^{\left|n_{i}\right|} \frac{1}{\alpha_{i}(j)} \prod_{r=1}^{R} \frac{\rho_{i r}^{n_{i r}}}{i_{i r}!} \text { with } \alpha_{j}(j)=\min \left(c_{i}, j\right) . \\
\text { PS or LIFO } f_{i}\left(\vec{n}_{i}\right) & =\left|n_{i}\right|!\prod_{r=1}^{R} \frac{\rho_{i r}^{n_{i r}}}{n_{i r}!} \\
\text { IS } f_{i}\left(\vec{n}_{i}\right) & =\prod_{r=1}^{R} \frac{\rho_{i r}^{n_{i r}}}{n_{i r}!}
\end{aligned}
$$

## Extensions

the BCMP product form result may be extended to the following cases:

- state-dependent routing probabilities
- arrivals depending on the number of customers in the corresponding subchain


## Kelly networks

In Kelly networks the routing is deterministic. The network is then characterized by its set of nodes and its set of routes.

## Definition

In a Kelly network, each class of customers corresponds to a route.
Let $\lambda_{k}$ be the arrival rate of class $k$ clients (Poisson process). Note that class $k$ customers can only arrive at one single node.


## Kelly networks

In Kelly networks the routing is deterministic. The network is then characterized by its set of nodes and its set of routes.

## Definition

In a Kelly network, each class of customers corresponds to a route.
Let $\lambda_{k}$ be the arrival rate of class $k$ clients (Poisson process). Note that class $k$ customers can only arrive at one single node.


## Kelly networks

In Kelly networks the routing is deterministic. The network is then characterized by its set of nodes and its set of routes.

## Definition

In a Kelly network, each class of customers corresponds to a route.
Let $\lambda_{k}$ be the arrival rate of class $k$ clients (Poisson process). Note that class $k$ customers can only arrive at one single node.


## Kelly networks

In Kelly networks the routing is deterministic. The network is then characterized by its set of nodes and its set of routes.

## Definition

In a Kelly network, each class of customers corresponds to a route.
Let $\lambda_{k}$ be the arrival rate of class $k$ clients (Poisson process). Note that class $k$ customers can only arrive at one single node.


## Kelly networks

the state space of a Kelly network is the set of $N \times K$ matrices $M=\left(\left(m_{i, k}\right)\right)$ with $m_{i, k}$ is the number of class $k$ clients in queue $i$

## Theorem (Kelly)

$$
\pi_{M}=\prod_{i=1}^{N}\left(1-\frac{\hat{\lambda}_{i}}{\mu_{i}}\right) \frac{\hat{m}_{i}!}{m_{i, 1}!\cdots m_{i, k}!}\left(\frac{\hat{\lambda}_{i, 1}}{\mu_{i}}\right)^{m_{i, 1}} \cdots\left(\frac{\hat{\lambda}_{i, K}}{\mu_{i}}\right)^{m_{i, K}}
$$

with $\hat{\lambda}_{i, k}$ global input rate of class $k$ clients in queue $i$ with $\hat{\lambda}_{i}=\sum_{k} \hat{\lambda}_{i, k}$ global input rate queue $i$
and $\hat{m}_{i}=\sum_{k} m_{i, k}$

