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Introduction to  Regenerative  Simulation 

Abstract: A  recently  developed  method for estimating  confidence  intervals  when  simulating  stochastic  systems  having  a  regenerative 
structure is reviewed. The  paper is basically  tutorial,  but  also  considers  the  pragmatic  issue of the  simulation  duration  required  to  obtain 
valid estimates. The method is illustrated in terms of simulating  the M / G /  1 queue.  Analytic  results for the M / G /  1 queue  are  used  to 
determine  the validity of the  simulation  results. 

Introduction 
The simulation of a stochastic  system  such  as a  queuing 
system  is a  statistical  experiment. In  order  to  draw mean- 
ingful conclusions from such  an  experiment it is neces- 
sary  to  make statistically valid statements  about  the out- 
comes of the experiment. Suppose,  for example, a queuing 
system is simulated in order  to  estimate a response vari- 
able Q (e.g., the long-run average time spent queuing  for 
service).  In addition to obtaining a point estimate Q of 
Q, it is desirable  to  estimate a  confidence  interval for Q. 
An estimated I00 . a% conjidence interval for Q is an 
interval (a,, 0,) whose endpoints Q, and Q, are esti- 
mated  via simulation and  have  the  property  that Pr{ Q, < 
Q < Q,} = a. (Note  that Q, 8, and 9, are  random vari- 
ables while Q is a  number.) Thus,  an estimated confi- 
dence interval carries with it a statement  that  the re- 
sponse variable is contained in the interval with a given 
probability. 

A  number of different methods  exist  for estimating  con- 
fidence intervals via simulation [ 11. Generally,  these 
methods  make  use of the  exact,  approximate,  or  assumed 
normality of an estimate. The variance of the  estimate 
is unknown  and  must also  be estimated via simulation. 
The variance is typically estimated a)  from independent 
and identically distributed  (i.i.d.)  samples of the  estimate 
obtained  from independent replications of the simulation, 
b) by dividing a single run of the simulation into approxi- 
mately  independent subruns  and treating the  estimates 
obtained  from the  subruns  as i.i.d., or  c) by analyzing the 
time series of observations (e.g., waiting times of suc- 
cessive  customers,  queue lengths  sampled at equal  time 
increments) from  a single run. In  the  latter  case, initial 
observations  are usually discarded and the remaining 
time  series is  assumed  to be stationary, i.e., the simula- 

458 tion is assumed  to be in the  “steady  state.” 

Recently, several methods  have been  developed for 
estimating  confidence  intervals for  certain  response vari- 
ables  when simulating stochastic  systems having a re- 
generative  structure [ 2-41. Informally, a stochastic 
system  is said to be regenerative if with probability one 
there  exists  an infinite sequence of increasing  random 
times, called regeneration  points, at which the system 
“stochastically restarts.”  The evolution in time of the 
system between successive regeneration  points is called 
a four or cycle and  the  stochastic  behavior of the  system 
during  different tours is independent and  identical. This 
underlying  regenerative structure  guarantees  that  for 
many response variables, estimates for the  response vari- 
ables based on a single run of the simulation are approxi- 
mately normal if the  run  is sufficiently long and if certain 
random  variables associated with a tour  (e.g.,  the time 
duration of a tour)  have finite first two  moments. Further- 
more,  the  variance of the  estimates  can be  estimated 
either from independent replications of the simulation 
[4] or by observing  a fixed number of tours during a 
single run of the simulation [ 2 ,  31. Thus, provided that a 
simulation  run is sufficiently long, a theoretical  basis 
exists for  estimating  confidence  intervals for many re- 
sponse variables in regenerative stochastic  systems. 

This  paper  contains a tutorial exposition of a method 
for estimating  confidence intervals  for  response vari- 
ables  when simulating a regenerative stochastic system. 
The  method is illustrated in terms of simulating the 
M / G /  1 queue in order  to  estimate  the  average queuing 
time and  the  average waiting time. The next  section  con- 
tains a concise mathematical derivation of confidence 
intervals  for  the  average queuing  time and  average wait- 
ing time for  the M / G /  1 queue.  The third section ad- 
dresses  the pragmatic issue of simulation duration.  For 
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the M / G  / 1 queue, analytic  approximations are given 
for  the  expected  number of tours  that must be simulated 
to obtain  a  given  confidence  interval  width. In addition, 
confidence  interval  widths  and coverages  (the coverage 
of a  confidence  interval is the probability that  the interval 
contains  the  response variable being estimated)  are esti- 
mated by simulating the M / G /  I queue. Based on  the 
simulation  results, conclusions  are  reached  about  the 
number of tours  that  must be  simulated to obtain the re- 
quired coverage  and  the validity of the analytic  approxi- 
mations on simulation duration is checked.  The  last sec- 
tion contains concluding  comments. 

One motivation for this paper is to provide  background 
for a subsequent  paper [5] in which the method is applied 
to the simulation of a more complex  queuing system.  The 
particular M / G /  1 queue considered corresponds  to a 
special case of the  system in [ 51 which,  generally, is not 
analytically tractable.  Other discussions of the applica- 
tion of regenerative simulation methods  to queuing sys- 
tems can  be found in the literature [ 6 - 81. 

Derivation of confidence  intervals 
Consider  an M / G /  1 queue, i.e., a single server  queue, 
with  Poisson  arrivals at  rate X, 0 < X < m, and i.i.d. ser- 
vice  times. Each service time is distributed as a non- 
negative  random  variable T having mean E[T]  = p, 0 < 
/3 < 00, and second  moment  E [ T'] = p2 ,  0 < p, < (E [.] 
denotes  expectation).  Let p = XP denote  the trafic in- 
tensity for  the M /G / 1 queue, let qk denote  the time  spent 
queuing for service by the kth customer  to  arrive, and 
denote by wk the waiting time for this customer (waiting 
time  equals  queuing  time plus service  time).  Then if p < 1 
the  average queuing  time 

Q = lim qk/n  

and the  average waiting time 

n 

n-x 
k=l  

n 
W =  lim w k / n  ,,-= 

k = l  

exist  with probability one and are finite. It is well known 
t h a t Q =  (X/2 ) (p2 / (1 -Ap) )andW=Q+p.Suppose ,  
however,  that Q or W is to  be  estimated via simulation. 
It is next shown  how  both a point estimate  and  an esti- 
mated  confidence  interval for Q can  be obtained  via simu- 
lation  based on  the regenerative structure of the M / G / 1 
queue. A point estimate and estimated confidence  inter- 
val for W can easily  be  obtained from  the  estimates  for  Q. 

Suppose  at time to = 0 a customer  arrives  at  the empty 
system.  It is known that if p < 1, the  event of a customer 
arriving at  the  empty system occurs infinitely often with 
probability one  as  the system evolves in time, and if p > 1 
there is a  positive  probability  this event will never recur. 
I t  is  assumed in what  follows that p < 1 .  Let { t ,  : k = 1 ,  
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2 , .  . .} denote  the infinite sequence of increasing  random 
times at which  a customer  arrives  at  the  empty system. 
The  stochastic  behavior of the system between  any  two 
such  successive  times is independent of and identical to 
the  stochastic behavior of the system  between any two 
other  such  successive times. Thus,  the  system stochasti- 
cally restarts at each time t,. The t ,  are regeneration 
points  and  the evolution of the system between  tk-,  and 
t ,  is the  kth  tour.  (The  above discussion is informal and 
suits  the  purpose of this  paper. For a more  rigorous dis- 
cussion see [ 2 ] . )  

Denote by uk the number of customers served  during 
the kth tour  and by uk the  sum of the queuing  times  for 
all customers  served during the kth tour. Clearly each of 
the  sequences { v ,  : k =  1,  2;..} and {uk : k =  I ,  2;..}is 
a sequence of i.i.d. random  variables. For each k ,  uk is 
distributed as a  random  variable v and uk is distributed 
as a  random  variable cr. It is known since p < 1 that 
E[ u] < m, E[ u]  < 30 and, with probability one, 

r n  

I,'" u,=E[u] /E[v] .  

This suggests that a point  rstimute of Q can be  obtained 
by observing  a fixed number, say n, of tours during a 
single run of a simulation of the M /  G /  1 queue and 
computing 

n I n  

Q(n)  = k=l  uk/c uk. 
k = l  

Note  that lim Q ( n )  = Q with probability one, in which 

case  Q(n) is said to be  a strongly consistent  estimate 
of Q. 

Consider  next  the random  variable vk - Qvk,  which has 
mean zero. It is known that p < 1 and p, < imply that 
E[v2] < m. If, in addition, T has a finite fourth moment, 
i.e., E[ 7 " ]  = p, < 00, then E[u2] < m so that uk - Qvk 
has finite variance 

V = Var[ CT - Qu] 

If+_ 

= Var[cr] - 2QCov[u, V] + Q'Var[v], 

where  Var[.]  denotes variance  and Cov[.,  .]  denotes 
covariance. The  central limit theorem [ 91 can be applied 
to  the  sequence {uk - Qv,  t k = I ,  2; . .} of i.i.d., mean 
zero, and  variance V random  variables, and yields 

~ im  P r{ [u (n )  - ~ v ( n ) ] / ( v / n ) i  < t }  = 4 ( t ) ,  ( 1 )  ,,-= 



Table 1 AnalyticresultsforM/G/1queue;T=7,+T,+7':3; 6 ( n , a )  = + " [ ( l + a ) / 2 ] [ V ( n ) / n ] t / v ( n )  
T ,  and T ,  uniform on [ 1, 31 and T ,  uniform on [4,  121. 

and +-'(.) is the  inverse of the function +(.). (If a = 
Number of 

Trafic Waiting Customers  Number of customers 
intensity time per tour tours n(0.95, 0.1) 

P W E[v]  n(0.95, 0.1) E[v] 

0.1 12.7 1 . 1  1 75 83 
0.2 13.6 1.25 196 245 
0.3 14.7 1.43 392 560 
0.4 16.2 1.67 929 1190 
0.5 18.3 2.00 1260 2520 
0.6 21.4 2.50 2240 5590 
0.7 26.6 3.33 4150 13,800 
0.8 37.0 5.00 8550 42,800 
0.9 68.3 10.0 23,400 234,000 

and +(t)  = (1  /27r)* fme-9/z  dx is the probability dis- 
tribution  function of a  normal  random  variable having 
mean zero  and  variance one. A strongly consistent esti- 
mate for V can be computed based on observing n tours 
as follows: 
Let 

n =E ['k"(n)12/((n- 1 1 ,  
k = l  

n 

vz(n) = E [vk- v ( n ) l 2 / ( n -  1 )  
k = l  

and 
n E [ m k " ( T ( n ) l [ v k - ~ ( ~ ) l / ( ~ -  1 ) .  

k = l  

Then 

v(n) = Vl(n) - 2Q(n)Vl,(n) + [Q(n)l'J',(n) 

is a strongly consistent  estimate of V .  It  can  be shown 
using Theorem 4.4.8 of Chung [ 101 that if V in (1) is 
replaced by a random  variable,  such a s   V ( n )  , which de- 
pends  on n and tends  to V with probability one in the 
limit as n -+ 00, then (1) still holds;  i.e., 

lim Pr{[u(n) - Q v ( n ) ] / [ V ( n ) / n ] t  < t }  = +( t ) .  ( 2 )  

It follows from (2)  that if t > 0, 

n - t m  

lim Pr ~ ( n )  - { t [ v ( n ) / n ] f / v ( n ) }  < Q < ~ ( n )  

+ { t [  v ( n ) / n I + / v ( n ) }  = 2+(t)  - 1. 

n"fm { 
I 

Thus,  for n sufficiently large, 

ZQ(n,  a )  = [ Q ( n )  - S(n ,  a ) ,  Q ( n )  + 6 ( n ,  a ) ]  

is approximately  a 100 . a% Confidence interval for Q 
(Le., the probability that Q is contained in ZQ(n, a )  is 

460 approximately a ) ,  where 

0.95, corresponding to a 95% confidence  interval,  then 
+-'[ ( 1 + a )  / 21 = 1.960.) The derivation of this approx- 
imate  confidence  interval makes  use of the regenerative 
structure of the M /  G /  1 queue. In addition, it is neces- 
sary  that E[ v] < w, E[ m] < 00, E[v2] < ~0 and E[ u 2 ]  < M, 

conditions which hold for  the M /  G /  1 queue ifp < 1 and 
p, < 00. A point estimate  for  the  average waiting time W 
is given by 

W ( n )  = Q ( n )  + P, (3) 

and  for n sufficiently large, 

ZW(% a )  = [ W ( n )  - S(n, a ) ,  W ( n )  + 6 ( n ,  all ( 4) 

is approximately a 100 . a% confidence  interval for W .  
(Law [ 81 shows  that  for a class of queues which  includes 
the M / G /  1 queue, it is more efficient to  estimate W by 
adding the mean service  time to  an  estimate of Q than 
it is to estimate W directly.) 

Simulation  duration 
In this  section results pertaining to simulation duration 
are presented  for an M / G /  1 queue whose service time 
T is equal to  the sum of three mutually independent ran- 
dom variables T , ,  T ,  and T ,  where T ,  and T ,  are uni- 
formly  distributed on  the interval [ 1, 31 and T ,  is uni- 
formly  distributed on  the interval [ 4, 121. This particular 
choice  for T is motivated by a subsequent  paper [5] 
where simulation of a  complex  queuing system is con- 
sidered.  The queuing system in [5]  degenerates to the 
above M / G /  1 queue in the simplest  case. 

First, analytic results pertaining to  the simulation dura- 
tion required to  achieve a given confidence  interval width 
for W are  presented.  Law [ 81 has shown that  for  the 
M /  G /  1 queue V = Var[cr - Qv] is given by 

V =  X(E[v])'[@,/4 + ( 1  + hp)P,/3 + 5hzE[v]/3,P,/6 

+ A3(E[v])2/3i/2 + A (  1 + XP)E[v]&/4] 

where pk = E[ Tk] , k = 2, 3, 4, and E[v] = 1 /  ( 1 - Ab). 
From ( 1 ), for n sufficiently large n'[Q (n) - Q] is ap- 
proximately  distributed as a normal  random  variable  hav- 
ing mean zero  and variance V /  E[ v]'. Thus,  for n suf- 
ficiently large the width of a 100 . a%confidence interval 
for Q is approximately 2A( n, a )  where 

A ( n , a )  =+"[ (1  + a ) / 2 ] ( V / n ) t / E [ v ] .  ( 5 )  

The quantity 2A( n, a )  is also  the  approximate width of a 
100 . a% confidence  interval for W .  It follows that  the 
number of tours required for  the width of a 100 . a% con- 
fidence  interval for W to be  equal to 6 . W is approxi- 
mately 
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Table 2 Simulation results for M / G /  1 queue of Table 1 based on 100 independent  replications for each row of the table. 

Trafic 
intensity 

P 

Waiting 
time 

W 

0.2 

0.5 

0.8 

13.6 

18.3 

37.0 

Number 
of tours 

n 
~- 

50 
100 
250 
500 

1000 
5000 

50 
100 
250 
500 

I000 
50 

100 
250 
500 

1000 

Point 
estimate 

W ( n )  
~ 

13.6 
13.5 
13.6 
13.6 
13.6 
13.6 
18.2 
18.2 
18.3 
18.1 
18.3 
37.1 
37.7 
36.3 
36.8 
36.5 

Approximute 
theoreticul  width 

2A(n ,  0.95)  

2.68 
I .90 
1.20 
0.848 
0.600 
0.268 
9.16 
6.48 
4.10 
2.90 
2.05 

48.4 
34.2 
21.6 
15.3 
10.8 

Estimuted 
width 

26(n, 0 . 9 5 )  

2.30 
1.62 
1.13 
0.819 
0.588 
0.268 
6.74 
5.04 
3.76 
2.75 
2.00 

27.2 
24.3 
16.0 
12.7 
9.64 

Estimuted 

c ( n ,  0.95)  
coveruge 

0.83 
0.8 1 
0.9 1 
0.93 
0.9 1 
0.97 
0.79 
0.9 1 
0.90 
0.9 1 
0.9 1 
0.68 
0.78 
0.79 
0.88 
0.87 

n ( a , 6 ) = 4 { 4 " [ ( 1  + a ) / 2 ] } 2 V / ( E [ v ] 6 .  W) ' .  

The  expected  number of customers  served during n(a ,  6) 
tours is n(a ,  6) E[v].  Computed values of W ,  E[ v], 
n(0.95, 0.1) and n(0.95, 0.1) E[v] for various traffic 
intensities p are given in Table 1. (The resulting M/  G/ 1 
queue h a s p =  12,p,= 150,p,= 1944andP4=25993.6.) 
Note  that both the number of tours and the  expected 
number of customers  per  tour  increase rapidly as p ap- 
proaches one. It is easy  to show that 

lim n(a ,  6) = SI+"[ (1 + a)/2]}'@P2/6'}/ lim ( 1  - AP) 
A - l l B  { A-lIP 

i so that n (  a, 6) increases  as 1 / ( 1 - p )  and n ( d ,  6) E[ v] 
increases  as I /  ( 1 - p ) ,  as p approaches one. 

The confidence  interval ZJn, a )  for  the  average wait- 
ing time W given by (4) is an approximate 100 . a% con- 
fidence interval,  i.e., the probability that W is contained 
in I w ( n ,  a) is approximately  equal to a ,  with the approxi- 
mation becoming better  as n is increased. For given n the 
probability that W is contained in I w ( n ,  a )  is called the 
true coverage.  Additionally, the point estimate W ( n )  
given by (3)  is, in general,  biased for finite n, i.e., 
E[  W(n)] # W ,  but for n sufficiently large the bias is 
small. A question arises  as  to how large n must be for  the 
confidence  interval  approximation to be  satisfactory 
(i.e., for  the  true  coverage  to  approach a )  and for  the 
bias to be small. Since W is known,  this question  can be 
empirically investigated by performing a  large number, 
say 100, of independent  replications of a  simulation; 
each replication is terminated after n tours and  a  point 
estimate  and a  confidence  interval estimate  for W are  ob- 
tained on each  replication. The  average of W (  n)  - W 
over  the replications is an  estimate of the bias. In addi- 

tion,  the fraction of replications  for which the estimated 
confidence  interval contains W is an  estimate of the  true 
coverage. 

The M/G/ 1 queue  was simulated in order  to  estimate 
the bias, true  coverage and  confidence  interval  width. 
Traffic intensities of 0.2, 0.5 and 0.8 were  considered  and 
simulation results  for different numbers of tours  are pre- 
sented in Table 2. Each  row of Table 2 presents  results 
obtained from 100 independent  replications of a simula- 
tion where  each replication  was  terminated after n tours 
had been completed.  In  the  table W ( n )  and 26(n,  0.95) 
denote  the  averages  over  the 100 replications  of, respec- 
tively, the point estimate of W and the width of the esti- 
mated 95% confidence  interval for W .  The quantity 
2 A ( n ,  0.95) is the  approximate theoretical width of a 
95% confidence  interval for W ,  computed using (5) .  The 
quantity c ( n ,  0.95) is the  estimate of the  true  coverage, 
i.e., the fraction of the 100 estimated 95% confidence in- 
tervals which contain W .  The following observations 
can  be made based on the  results in Table 2: 

1 .  Even  for small values of n (e.g., n = 5 0 ) ,  the bias of 
W ( n )  is not significant. (The bias is estimated by 

2. The width of the estimated 95% confidence  interval 
for W is less than the  approximate theoretical width 
and  the estimated width approaches  the  approximate 
theoretical width as n increases. Recall that  the ap- 
proximate  theoretical width is equal to  the estimated 
width with V (  n)  replaced by V and v ( n )  replaced by 
E[ VI . 

3. The estimated coverage is below 0.95 for small n, but 
the agreement is better  for larger  values of n. For n = 46tl 

- 
W ( n )  - W.) 
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500 reasonably good agreement is obtained for p= 0.2 service times. It is easy to show that  the  system in [ 51 
and p = 0.5. For p = 0.8 the estimated coverage is stochastically restarts  whenever a customer  arrives  at 
still quite low for n = 1000. the  empty system and,  thus,  the time of arrival of a cus- 

To summarize these  observations, it appears  that  for 
low and medium traffic intensities  confidence  intervals 
estimated on  the basis of the regenerative stochastic 
structure of the M /  G /  1 queue  are reasonably valid 
(i.e., the estimated coverage  does  not differ greatly  from 
0.95)  for n 1 500. For high traffic intensities  a  much larg- 
er  number of tours  must be  simulated in order  to  obtain 
reasonably valid confidence  intervals. Observing in 
Table 1 that several thousand  tours  must  be simulated 
at high traffic intensities if a narrow confidence  interval 
(width equal to 0.1 W )  is required, one might expect  that 
if (at a high traffic intensity) the number of tours is suf- 
ficiently large to yield a narrow confidence  interval for 
W ,  then the estimated  confidence  interval will be reason- 
ably valid. (The   M/G/  1 queue was not simulated  for 
several  thousand tours  at p = 0.8 due  to  the large amount 
of computer time  required for 100  replications. It took 
almost  20  minutes of computer time on a  large computer 
to run  100  replications for n = 1000  and p = 0.8.) 

Comments 
The method for estimating  confidence intervals, reviewed 
in this paper,  can only be applied if certain  requirements 
are met: 1)  the  stochastic  system being simulated must 
be regenerative  and 2)  certain random  variables  associ- 
ated with a tour must have finite first two  moments. I t  
is known that  these  requirements  are  met  for  the M / G / 1 
queue if and  only if the traffic intensity is less than one 
and the service  time has finite first four moments. The 
method,  however, is of little interest  for analytically 
tractable queuing systems  (such  as  the M/ G /  1 queue) 
except,  perhaps,  for  systems  whose analytic  solution 
requires  excessive computation. 

In general, one must  be concerned with whether  these 
requirements  are met. It  has been  proven that  certain 
queuing systems  are regenerative even though response 
variables for  the system cannot be  obtained  analytically 
(e.g.,  see [ 6, 1 I ]  in which open  systems  are considered 
and [ 121 in which  closed systems  are  considered; it has 
been  proven for  the closed systems in [ 121 that require- 
ment (2) is met  also).  For  other queuing systems it may 
not be  possible to  prove  that  the system is regenerative, 
even though  intuitively it appears  to be. For example, 
in a subsequent paper [ 51 a  complex open queuing  sys- 
tem is considered  with  Poisson  arrivals and  independent 

tomer  at  the  empty  system is a  regeneration  point. (This 
property holds for many open queuing systems.) While 
it is plausible for this  system that  at sufficiently low  input 
rates  the time between  successive regeneration  points 
is finite with probability one (i.e., the  system is regenera- 
tive), no proof could be found. Nevertheless, require- 
ments ( 1) and (2) were conjectured  to hold and the 
regenerative  method was successfully  applied to this 
system. 
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