Total Dual Integrality of Rothblum’s description of the stable matching polyhedron

Tamás Király Júlia Pap

MTA-ELTE Egreváry Research Group
Eötvös Loránd University, Budapest

Tenth Aussois Workshop on Combinatorial Optimization, 2006
Outline

1. Introduction
 - The stable marriage problem
 - Linear programming formulation

2. Rotations
 - Definitions
 - The structure of rotations

3. Calculating integer optimal solutions of (DR)
 - Preliminaries
 - Construction of the solution

4. Further research
Outline

1 Introduction
 - The stable marriage problem
 - Linear programming formulation

2 Rotations
 - Definitions
 - The structure of rotations

3 Calculating integer optimal solutions of (DR)
 - Preliminaries
 - Construction of the solution

4 Further research
What is a stable marriage scheme?

Given:

- The set of allowed marriages,
- For each man, a preference order of the women he can marry,
- For each woman, a preference order of the men she can marry.
What is a stable marriage scheme?

Given:
- The set of allowed marriages,
- For each man, a preference order of the women he can marry,
- For each woman, a preference order of the men she can marry.

Definition

A **stable marriage scheme** is an allowed matching between men and women with following property:
- There is no man-woman pair who prefer each other to their partners (if they have one).
Formal definition

Bipartite preference system

- $G = (U, V; E)$ a bipartite graph
- For every $w \in U \cup V$, \prec_w a linear order of the edges incident to w.
Formal definition

Bipartite preference system

- $G = (U, V; E)$ a bipartite graph
- For every $w \in U \cup V$, $<_w$ a linear order of the edges incident to w.

Black: U, white: V. Arrows point to the preceding edge in the order
Formal definition

Bipartite preference system

- \(G = (U, V; E) \) a bipartite graph
- For every \(w \in U \cup V \), \(<_w \) a linear order of the edges incident to \(w \).

Black: \(U \), white: \(V \). Arrows point to the preceding edge in the order

Definition

Edge \(e \) dominates edge \(f \) if \(\exists w \in U \cup V : e \leq_w f \).
Formal definition

$\varphi(e)$: the set of edges which dominate e

$\varphi(e)$
Formal definition

$$\varphi(e):$$ the set of edges which dominate $$e$$

Definition

A matching $$M$$ is a **stable matching** if $$\varphi(e) \cap M \neq \emptyset$$ for every edge $$e$$.
Basic properties of stable matchings

- (Gale, Shapley, 1962) Every bipartite preference system has a stable matching.
Basic properties of stable matchings

- **(Gale, Shapley, 1962)** Every bipartite preference system has a stable matching.
- **(Conway)** The stable matchings of a bipartite preference system have a lattice structure.
Basic properties of stable matchings

- (Gale, Shapley, 1962) Every bipartite preference system has a stable matching.
- (Conway) The stable matchings of a bipartite preference system have a lattice structure.
- There is a U-optimal stable matching (M_U) and a V-optimal stable matching (M_V).
Outline

1 Introduction
 - The stable marriage problem
 - Linear programming formulation

2 Rotations
 - Definitions
 - The structure of rotations

3 Calculating integer optimal solutions of (DR)
 - Preliminaries
 - Construction of the solution

4 Further research
The stable marriage polytope

\(D(w) \): The set of edges of \(E \) incident to \(w \).

Theorem (Rothblum, 1992)

The following linear system describes the convex hull of stable matchings:

\[
\begin{align*}
 x & \geq 0, \\
 x(D(w)) & \leq 1 \quad \text{for every } w \in U \cup V, \\
 x(\varphi(e)) & \geq 1 \quad \text{for every } e \in E
\end{align*}
\]

Corollary
A minimum cost stable matching can be found in polynomial time.
The stable marriage polytope

\(D(w) \): The set of edges of \(E \) incident to \(w \).

Theorem (Rothblum, 1992)

The following linear system describes the convex hull of stable matchings:

\[
\begin{align*}
 x & \geq 0, \\
 x(D(w)) & \leq 1 \quad \text{for every } w \in U \cup V, \\
 x(\varphi(e)) & \geq 1 \quad \text{for every } e \in E
\end{align*}
\]

Corollary

A minimum cost stable matching can be found in polynomial time.
The dual linear system

c: cost function on the edges

$\psi(e)$: the set of edges which are dominated by e

The dual of Rothblum’s system when minimizing cx

\[
\begin{align*}
 y(e) &\geq 0 \quad (e \in E) \quad (1) \\
 \pi(w) &\geq 0 \quad (w \in U \cup V) \quad (2) \\
 y(\psi(uv)) - \pi(u) - \pi(v) &\leq c(uv) \quad \text{if } uv \in E, \quad (3) \\
 \max \sum_{e \in E} y(e) - \sum_{w \in U \cup V} \pi(w). &\quad (4)
\end{align*}
\]
The dual linear system

\(c \): cost function on the edges
\(\psi(e) \): the set of edges which are dominated by \(e \)

The dual of Rothblum’s system when minimizing \(cx \)

\[
\begin{align*}
y(e) & \geq 0 & (e \in E) \quad (1) \\
\pi(w) & \geq 0 & (w \in U \cup V) \quad (2) \\
y(\psi(uv)) - \pi(u) - \pi(v) & \leq c(uv) & \text{if } uv \in E, \quad (3) \\
\max \sum_{e \in E} y(e) - \sum_{w \in U \cup V} \pi(w). & \quad (4)
\end{align*}
\]

Is there a better way to solve the primal system (PR) and dual system (DR) than general LP techniques?
Outline

1. Introduction
 - The stable marriage problem
 - Linear programming formulation

2. Rotations
 - Definitions
 - The structure of rotations

3. Calculating integer optimal solutions of (DR)
 - Preliminaries
 - Construction of the solution

4. Further research
Motivation for introducing rotations

- Introduced by Gusfield and Irwing (1987)
- Nice description of the structure of stable matchings
- \((PR)\) can be reduced to a max flow problem on rotations
Motivation for introducing rotations

- Introduced by Gusfield and Irwing (1987)
- Nice description of the structure of stable matchings
- \((PR)\) can be reduced to a max flow problem on rotations

Our contribution

Integer optimal solutions to \((DR)\) can be obtained from the dual solution of the max flow problem.

Corollary

The system \((PR)\) is totally dual integral.
Definition of rotations

Definition

A rotation \(\rho \) is a cycle in \(G \) for which there is a stable matching \(M \) s.t.

1. every second edge of \(\rho \) is in \(M \),
2. the edges ranked between two edges of \(\rho \) are not in any stable matching
3. \(M \Delta \rho \) is a stable matching which covers \(M \) in the lattice
Definition of rotations

Definition

A **rotation** ρ is a cycle in G for which there is a stable matching M s.t.

1. every second edge of ρ is in M,
2. the edges ranked between two edges of ρ are not in any stable matching
3. $M \Delta \rho$ is a stable matching which covers M in the lattice

The figure illustrates a rotation ρ_1 and a modified stable matching M_U. The notation $M \Delta \rho$ refers to the symmetric difference of M and ρ.
Definition of rotations

Definition

A rotation ρ is a cycle in G for which there is a stable matching M s.t.
1. every second edge of ρ is in M,
2. the edges ranked between two edges of ρ are not in any stable matching,
3. $M\Delta \rho$ is a stable matching which covers M in the lattice

ρ_1

$M_U \Delta \rho_1$
Outline

1. Introduction
 - The stable marriage problem
 - Linear programming formulation

2. Rotations
 - Definitions
 - The structure of rotations

3. Calculating integer optimal solutions of (DR)
 - Preliminaries
 - Construction of the solution

4. Further research
How rotations determine stable matchings?

Elimination of ρ from M: $M \rightarrow M \Delta \rho$

Fact

All stable matchings can be obtained by eliminating a sequence of rotations from M_U.

Theorem (Gusfield, Irving)

The rotations of a system can be computed in $O(n^2)$ time.
How rotations determine stable matchings?

Elimination of ρ from M: $M \rightarrow M\Delta\rho$

Fact

All stable matchings can be obtained by eliminating a sequence of rotations from M_U.

To compute stable matchings using rotations, we have to
1. Compute all rotations
2. Characterize valid elimination sequences
How rotations determine stable matchings?

Elimination of ρ from M: $M \rightarrow M \Delta \rho$

Fact

All stable matchings can be obtained by eliminating a sequence of rotations from M_U.

To compute stable matchings using rotations, we have to

1. Compute all rotations
2. Characterize valid elimination sequences

Theorem (Gusfield, Irving)

The rotations of a system can be computed in $O(n^2)$ time.
Elimination obstacles

All rotations in our example:

ρ_2 ρ_1 ρ_3
Elimination obstacles

All rotations in our example:

- $M_U \Delta \rho_2$ is not a matching $\rightarrow \rho_2$ cannot be eliminated from M_U
Elimination obstacles

All rotations in our example:

- $M_U \Delta \rho_2$ is not a matching \rightarrow ρ_2 cannot be eliminated from M_U

- $M_U \Delta \rho_3$ is not stable \rightarrow ρ_3 cannot be eliminated from M_U
Digraph of elimination obstacles

\textbf{Definition}

Let the directed graph \(D = (R, A) \) contain the following arcs:

- \((\rho, \rho')\) is a \textbf{type 1 arc} if they have an edge in common
- \((\rho, \rho')\) is a \textbf{type 2 arc} if there is an edge \((u, v)\) which is between the two edges of \(\rho'\) at \(u\) and is between the two edges of \(\rho\) at \(v\)
Definition

Let the directed graph $D = (R, A)$ contain the following arcs:

- (ρ, ρ') is a **type 1 arc** if they have an edge in common
- (ρ, ρ') is a **type 2 arc** if there is an edge (u, v) which is between the two edges of ρ' at u and is between the two edges of ρ at v
Digraph of elimination obstacles

\(R \): The set of rotations

Definition

Let the directed graph \(D = (R, A) \) contain the following arcs:

- \((\rho, \rho')\) is a **type 1 arc** if they have an edge in common
- \((\rho, \rho')\) is a **type 2 arc** if there is an edge \((u, v)\) which is between the two edges of \(\rho'\) at \(u\) and is between the two edges of \(\rho\) at \(v\)

The digraph \(D \) can be computed in \(O(n^2) \) time.
Properties of D

Theorem (Gusfield, Irving)

*There is a one-to-one correspondence between the stable matchings and the 0-indegree sets of D.***
Properties of D

Theorem (Gusfield, Irving)

There is a one-to-one correspondence between the stable matchings and the 0-indegree sets of D.

For an integer cost function c and a rotation $\rho = (v_1, u_1, \ldots v_k, u_k)$ let $c'(\rho) := -c(v_1 u_1) + c(u_1 v_2) - c(v_2 u_2) + c(u_2 v_3) \cdots + c(u_k v_k)$.
Properties of D

Theorem (Gusfield, Irving)

There is a one-to-one correspondence between the stable matchings and the 0-indegree sets of $D.

For an integer cost function c and a rotation $\rho = (v_1, u_1, \ldots v_k, u_k)$ let $c'(\rho) := -c(v_1 u_1) + c(u_1 v_2) - c(v_2 u_2) + c(u_2 v_3) \cdots + c(u_k v_k)$.

![Diagram of rotations and cost functions](chart.png)
Properties of D

Theorem (Gusfield, Irving)

There is a one-to-one correspondence between the stable matchings and the 0-indegree sets of D.

For an integer cost function c and a rotation $\rho = (v_1, u_1, \ldots, v_k, u_k)$ let $c'(\rho) := -c(v_1 u_1) + c(u_1 v_2) - c(v_2 u_2) + c(u_2 v_3) \cdots + c(u_k v_k)$.

Fact

Then a minimum c-cost stable matching corresponds to a minimum c'-cost 0-indegree set of D.
Properties of D

Polyhedron of the 0-indegree sets of D

$$0 \leq x \leq 1,$$

$$x(\rho) - x(\rho') \geq 0 \quad \text{if} \ (\rho, \rho') \in A.$$
Properties of D

Polyhedron of the 0-indegree sets of D

\[0 \leq x \leq 1, \]
\[x(\rho) - x(\rho') \geq 0 \quad \text{if} \ (\rho, \rho') \in A. \]

- The constraint matrix is totally unimodular
- Optimal integer primal and dual solutions can be obtained using max flow

Corollary

A minimum cost stable matching can be found in $O(n^4)$ time.
Outline

1. Introduction
 - The stable marriage problem
 - Linear programming formulation

2. Rotations
 - Definitions
 - The structure of rotations

3. Calculating integer optimal solutions of (DR)
 - Preliminaries
 - Construction of the solution

4. Further research

Tamás Király, Júlia Pap (EGRES) TDI-ness of Rothblum’s description Aussois 2006
The dual of the 0-indegree system

$$\Delta^+(\rho):$$ set of edges of D leaving $\rho,$
$$\Delta^-(\rho):$$ set of edges of D entering $\rho.$

Integer optimal dual solution

There is a vector $z \in \mathbb{Z}^{RU+A}_+$ such that

$$-z_\rho + z(\Delta^+(\rho)) - z(\Delta^-(\rho)) \leq c'(\rho)$$

for every $\rho \in R,$

$$\sum_{\rho \in R} z_\rho = c(M_U) - c(M_{opt}).$$
The dual of the 0-indegree system

\[\Delta^+(\rho) : \text{set of edges of } D \text{ leaving } \rho, \]
\[\Delta^-(\rho) : \text{set of edges of } D \text{ entering } \rho. \]

Integer optimal dual solution

There is a vector \(z \in \mathbb{Z}^R_+ \cup \mathbb{A} \) such that

\[-z_\rho + z(\Delta^+(\rho)) - z(\Delta^-(\rho)) \leq c'(\rho) \]

for every \(\rho \in R \),

\[\sum_{\rho \in R} z_\rho = c(M_U) - c(M_{opt}). \]
Modified DR

Using the vector z, we want to construct a vector $y \in \mathbb{Z}^E$ that satisfies:

\[
\begin{align*}
 y(e) & \geq 0 & \text{if } e \in E \setminus E_{st}, \\
 y(\psi(e)) & \leq c(e) & \text{if } e \in E_{st}, \\
 \sum_{e \in E} y(e) &= c(M_{opt}),
\end{align*}
\]

Where E_{st} is the set of edges that appear in at least one stable matching.

This y can be easily turned into an integer optimal solution of (DR).
Modified DR

Using the vector z, we want to construct a vector $y \in \mathbb{Z}^E$ that satisfies:

Modified DR (MDR)

\[
\begin{align*}
y(e) & \geq 0 & \text{if } e \in E \setminus E_{st}, \\
y(\psi(e)) & \leq c(e) & \text{if } e \in E_{st}, \\
\sum_{e \in E} y(e) & = c(M_{opt}),
\end{align*}
\]

Where E_{st} is the set of edges that appear in at least one stable matching.

This y can be easily turned into an integer optimal solution of (DR).

In the following we describe the construction of y.
Outline

1. Introduction
 - The stable marriage problem
 - Linear programming formulation

2. Rotations
 - Definitions
 - The structure of rotations

3. Calculating integer optimal solutions of (DR)
 - Preliminaries
 - Construction of the solution

4. Further research

Tamás Király, Júlia Pap (EGRES)
Construction of y

$\rho_1, \rho_2 \ldots \rho_r$: a topological order of D

Construction method

Recursively define vectors y_0, y_1, \ldots, y_r in \mathbb{Z}^E such that

1. $y_t(e) \geq 0$ if $e \in E \setminus E_{st}$,
2. $y_t(\psi(e)) \leq c(e)$ if $e \in M_U \cup \rho_1 \cup \rho_2 \cup \ldots \cup \rho_t$,
3. $\sum_{e \in E} y_t(e) = c(M_U) - \sum_{i=1}^{t} z_i$.

Here y_r is an integer dual optimal solution of (MDR).
Construction of y

$\rho_1, \rho_2 \ldots \rho_r$: a topological order of D

Construction method

Recursively define vectors y_0, y_1, \ldots, y_r in \mathbb{Z}^E such that

1. $y_t(e) \geq 0$ if $e \in E \setminus E_{st}$,
2. $y_t(\psi(e)) \leq c(e)$ if $e \in M_U \cup \rho_1 \cup \rho_2 \cup \cdots \cup \rho_t$,
3. $\sum_{e \in E} y_t(e) = c(M_U) - \sum_{i=1}^t z_i$.

Here y_r is an integer dual optimal solution of (MDR).
Construction of y

$\rho_1, \rho_2 \ldots \rho_r$: a topological order of D

Construction method

Recursively define vectors y_0, y_1, \ldots, y_r in \mathbb{Z}^E such that

1. $y_t(e) \geq 0$ if $e \in E \setminus E_{st}$,
2. $y_t(\psi(e)) \leq c(e)$ if $e \in M_U \cup \rho_1 \cup \rho_2 \cup \cdots \cup \rho_t$,
3. $\sum_{e \in E} y_t(e) = c(M_U) - \sum_{i=1}^{t} z_i$.

Here y_r is an integer dual optimal solution of (MDR).

$$y_0(e) := \begin{cases} c(e) & \text{if } e \in M_U, \\ 0 & \text{otherwise} \end{cases}$$
Construction of y

$\rho_1, \rho_2 \ldots \rho_r$: a topological order of D

Construction method

Recursively define vectors y_0, y_1, \ldots, y_r in \mathbb{Z}^E such that

1. $y_t(e) \geq 0$ if $e \in E \setminus E_{st}$,
2. $y_t(\psi(e)) \leq c(e)$ if $e \in M_U \cup \rho_1 \cup \rho_2 \cup \cdots \cup \rho_t$,
3. $\sum_{e \in E} y_t(e) = c(M_U) - \sum_{i=1}^{t} z_i$.

Here y_r is an integer dual optimal solution of (MDR).
An almost good vector

Let $\rho_t = (e_0^t, e_1^t, \ldots, e_{2k}^t)$ where e_0^t is better at U than e_1^t.

Lemma

Using only edges of ρ_t and z_t, we can define vectors y_t' that satisfy all conditions except those for the edges e_0^t.
An almost good vector

Let $\rho_t = (e^t_0, e^t_1 \ldots e^t_{2k})$ where e^t_0 is better at U than e^t_1.

Lemma

Using only edges of ρ_t and z_t, we can define vectors y'_t that satisfy all conditions except those for the edges e^t_0.

y'_t in our example:

\[y'_3 : \]

![Diagram showing vectors and edge conditions](image)
Correcting y'_r

Correction:

If (ρ_l, ρ_t) is of type 1

If (ρ_l, ρ_t) is of type 2
Correcting y'_r

Correction:

If (ρ_l, ρ_t) is of type 1

If (ρ_l, ρ_t) is of type 2

In our example:
Theorem

After the corrections the vectors y_i satisfy all conditions.

In our example the integer dual optimal solution is:

y_3:

```
  1  2  1  1  1
-1  1 -1  1 -1
0  -1  1  1  2
1  1  1 -1
```
Is there a known class of TDI systems which includes this?
Further research

- Is there a known class of TDI systems which includes this?
- Generalizations of stable marriage:
 - Stable b-matchings
 - Preference systems with partial orders
 - Preference systems with choice functions

Thank you!
Further research

- Is there a known class of TDI systems which includes this?
- Generalizations of stable marriage:
 - Stable b-matchings
 - Preference systems with partial orders
 - Preference systems with choice functions
- Polyhedral approach to non-bipartite stable matchings
Further research

- Is there a known class of TDI systems which includes this?
- Generalizations of stable marriage:
 - Stable b-matchings
 - Preference systems with partial orders
 - Preference systems with choice functions
- Polyhedral approach to non-bipartite stable matchings
- Approximation algorithms
Further research

- Is there a known class of TDI systems which includes this?
- Generalizations of stable marriage:
 - Stable b-matchings
 - Preference systems with partial orders
 - Preference systems with choice functions
- Polyhedral approach to non-bipartite stable matchings
- Approximation algorithms

Thank you!