Cours Modèles pour la sécurité

Organisation des 4 séances :

- Cours 1 : Modèles d'attaques Sécurité inconditionnelle, prouvée, sémantique Chiffrement symétrique inconditionnellement sûrs
- Cours 2 : Sécurité prouvée d'un chiffrement asymétrique : RSA
- Cours 3 : Fonctions de hachage cryptographiquement sûres Générateur aléatoire cryptographiquement sûr et padding
- Cours 4: Protocoles à divulgation nulle de connaissance (zero-knowledge)
 Applications.

Ref: Théorie des Codes: compression, cryptage, compression.

JG Dumas, JL Roch, E Tannier, S Varrette. Dunod.

http://www-id.imag.fr/~jlroch/perso_html/COURS/ISI-3A/

Outlines of lecture 2

Asymmetric protocols and provable security

- Part 1 : Asymmetric cryptography, one way function, complexity
- Part 2 : arithmetic complexity and lower bounds : exponentiation
- Part 3: Provable security and polynomial time reduction:
 P, NP classes. Reduction. One-way function and NP class.
- Part 4 : RSA : the algorithm
- Part 5 : Provable security of RSA
- Part 6: Attacks and importance of padding.

Asymmetric cryptography: not unconditionally secure

• Let K_e = public key; let K_d =secret key. The public key K_e is fixed and known; then C gives all information about P:

$$H(P|C)=0$$

 \implies asymmetric cryptography is not unconditionally secure.

- Moreover, $D_{K_d} = E_{K_e}^{-1}$: then $H(K_d|K_e) = 0$.

Asymmetric cipher and **Provable security**

Definition : one-way function

A bijection (i.e. one-to-one mapping) f is **one-way** iff

- (i) It is easy to compute f(x) from x;
- (ii) Computation of $x = f^{-1}(y)$ from y = f(x) is intractable, i.e. requires too much operations, e.g. $10^{120} \simeq 2^{400}$

How to prove one-way?

- \bullet (i) Analyze the arithmetic complexity of an algorithm that computes f.
- (ii) Provide a lower bound on the minimum arithmetic complexity to compute $x = f^{-1}(y)$ given y
 - very hard to obtain lower bounds in complexity theory
 - it is related both to the problem f^{-1} and the input y (i.e. x)

In 2007, no proof is known of the existence of one-way function.

Provable security [Contradiction proof, by reduction] if computation of f^{-1} is not intractable, then a well-studied and presumed intractable problem could be solved.

Provable security is based on complexity:

- Remind about arithmetic complexity : exponentiation and discrete logarithm
- Remind P and NP classes : relation to one-way function
- Problems commonly used in provable security

Arithmetic complexity: an example

Exponentiation in a group (G, \otimes, e) with m = |G| elements

- Input : $x \in G$, $n \in \{0, \dots, |G| 1\}$ an integer
- Output : $y \in G$ such that $y = x^n$;
- In practice : G is finite but has at least 10¹²⁰ elements

Naive algorithm

- y=e; for (i=0; i < n; i++) y=y \otimes x;
- This algorithm does not work in practice : why?

What's about this one?

```
G power( G x, int n)
{
    return (n==0)? e : x \otimes power( x, n-1 );
}
```


Recursive binary exponentiation : $x^n = (x^{n/2})^2 \otimes x^{n\%2}$

```
G power( G x, int n)
{
    if (n==0) { return e; }
    elsif (n==1) { return x; }
    else { G tmp = power( x, n/2);
        tmp = tmp ⊗ tmp;
        return (n%2 ==0)? tmp : tmp ⊗ x;
    }
}
```

Arithmetic complexity

 $\log_2 n \le \#$ multiplications $\le 2 \log_2 n$

E.g. : x^{15} : computed with 6 multiplications

Lower bound for #multiplications to compute x^n

Notation : $LB(n) = minimum number of multiplications to compute <math>x^n$.

Evaluation of LB(n)

```
#multiplications x^n

1 x^2
2 x^3, x^4
3 x^5, x^6, x^7, x^8
4 x^9, x^{10}, x^{11}, x^{12}, x^{13}, x^{14}, x^{15}, x^{16}
```

 \implies recursive binary powering is not optimal (e.g. x^{15})

Theorem : $LB(n) \ge \log_2 n$

Proof : by recurrence [dynamic programming]

- LB(2) = 1;
- $\mathsf{LB}(n) = \min_{i=1,\dots,n-1} \mathsf{LB}(i) + \mathsf{LB}(n-i) + 1 \ge \min_{i=1,\dots,n-1} \log_2 i + \log_2 (n-i) + 1 = \log_2 1 + \log_2 (n-1) + 1 \ge \log_2 n$