Cours Modeles pour la sécurité

Organisation des 4 séances :

@ Cours 1 : Modeles d'attaques - Sécurité inconditionnelle,
prouvée, sémantique
Chiffrement symétrique inconditionnellement sfirs

@ Cours 2 : Sécurité prouvée d'un chiffrement asymétrique :
RSA

© Cours 3 : Fonctions de hachage cryptographiquement siires
Générateur aléatoire cryptographiquement siir et padding

@ Cours 4 : Protocoles a divulgation nulle de connaissance
(zero-knowledge)
Applications.

Ref : Théorie des Codes : compression, cryptage, compression.
JG Dumas, JL Roch, E Tannier, S Varrette. Dunod.
http ://www-id.imag.fr/" jlroch/perso_html/COURS/ISI-34/



QOutlines of lecture 2

Asymmetric protocols and provable security

@ Part 1 : Asymmetric cryptography, one way function,
complexity

@ Part 2 : arithmetic complexity and lower bounds :
exponentiation

@ Part 3 : Provable security and polynomial time reduction :
P, NP classes. Reduction. One-way function and NP class.

@ Part 4 : RSA : the algorithm
@ Part 5 : Provable security of RSA

@ Part 6 : Attacks and importance of padding.




Asymmetric cryptography : not unconditionally secure
Model of an asymmetric cryptosystem
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@ Let K.= public key; let Ky=secret key. The public key K. is fixed and
known ; then C gives all information about P :

H(P|C)=0
=—> asymmetric cryptography is not unconditionally secure.

@ Moreover, Dk, = E;el : then H(Ky|K.) = 0.

@ Shannon's information theory cannot characterize the security of an
asymmetric cryptosystem — complexity theory




Asymmetric cipher and

Definition : one-way function

A bijection (i.e. one-to-one mapping) f is one-way iff
@ (i) It is easy to compute f(x) from x;

o (ii) Computation of x = f~1(y) from y = f(x) is intractable,
i.e. requires too much operations, e.g. 101%° ~ 2400

How to prove one-way ?
@ (i) Analyze the arithmetic complexity of an algorithm that computes f.

@ (ii) Provide a lower bound on the minimum arithmetic complexity to
compute x = f~*(y) given y
e very hard to obtain lower bounds in complexity theory
e it is related both to the problem f~! and the input y (i.e. x)

In 2007, no proof is known of the existence of one-way function.
Provable security [Contradiction proof, by reduction] if computation of £~ is
not intractable, then a well-studied and presumed intractable problem could be

solved.



Provable security is based on complexity :

@ Remind about arithmetic complexity :
exponentiation and discrete logarithm

@ Remind P and NP classes :
relation to one-way function

@ Problems commonly used in provable security



Arithmetic complexity : an example

Exponentiation in a group (G, ®, e) with m = |G| elements

@ Input: xe G, ne{0,...,|G| — 1} an integer
@ Output : y € G such that y = x";

@ In practice : G is finite but has at least 10'*° elements

Naive algorithm

@ y=e; for (i=0; i < n; i++) y=y ® x;

@ This algorithm does not work in practice : why ?

What's about this one?

G power( G x, int n)

{

return (n==0)7 e : x ® power( x, n-1 ) ;

}

4

< Can you do better?
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Recursive binary exponentiation : x" = (x”/z) ®

G power( G x, int n)
{
if (n==0) { return e; }
elsif (n==1) { return x; }
else { G tmp = power( x, n/2) ;
tmp = tmp ® tmp;
return (n)2 ==0) 7 tmp : tmp ® Xx;

—
—
\

Arithmetic complexity

log, n < #multiplications < 2log, n

15 computed with 6 multiplications

Eg :x

v

— Can you do better?



Lower bound for #multiplications to compute x”

Notation : LB(n) = minimum number of multiplications to
compute x".

Evaluation of LB(n)

#multiplications | x”
1 x2
2 X3, x*
3 X2 x% x7, x®
4 50 10 11 12 13 L4 15 16
= recursive binary powering is not optimal (e.g. x'°)

Theorem : LB(n) > log, n

Proof : by recurrence [dynamic programming]
@ LB(2) =1;

@ LB(n) = minj=1,...n-1LB(/)+LB(n—i)+1>
minj=1,....n—1log, i + logy(n — i) + 1 = log, 1 + log,(n — 1) + 1 > log, n




