## Exercises lecture 2/JL Roch - Complexity

Exercise 1. Merkle-Hellman Consider Merkle-Hellman protocol (MH). Bob chooses a super-increasing secret sequence of $n=1000$ integers $a_{i}$ for $0 \leq i<n$. Alice signs a binary plain text $P$ (a block), computes $C=E_{B o b}(P)$ and sends $C$ to Bob.

1. What is the size of a $P$ ?
2. Give an algorithm that Bob uses to build its secret integers $a_{i}$.
3. Deduce that, if $a_{0}=c$, we may consider $a_{i} \leq 4^{i} . c$.
4. What is the order of the size of the cipher text $C$ ?
5. Write the algorithms for encoding and decoding and analyze their costs.
6. Conclude on the provable security of $\mathrm{DH}\left(b_{0}, \ldots, b_{n-1}, m\right)$.

Exercise 2. Primes, big factor and factorization Consider the following decision problems $I S$ COMPOSED and IS-PRIME.

## IS-COMPOSED :

## IS-PRIME :

- Input : a positive integer $n$;
- Input : a positive integer $n$;
- Output : YES iff $\exists 2 \leq a, b<n: n=a \times b$.
- Output : YES iff $n$ is prime.

1. Prove that IS-COMPOSED $\leq_{P}$ IS-PRIME and that IS-COMPOSED $\geq_{P}$ IS-PRIME.
2. Prove that IS-COMPOSED $\in N P$.
3. To what complexity class belongs IS-PRIME? You have to give a proof of your answer.
4. Indeed, in 2002 Agrawal, Kayal and Saxena provided a deterministic algorithm that computes IS$\operatorname{PRIME}(n)$ in time $\tilde{O}\left(\log ^{6} n\right)$. From this algorithm, what are the complexity classes of IS-PRIME and IS-COMPOSED?
5. We consider the following decision problem HAS-BIG-FACTOR :

- Input : two positive integers $n$ and $m$;
- Output : YES iff $n$ has a prime factor larger than $m$.

Prove that HAS-BIG-FACTOR $\in$ NP $\cap$ co-NP, i.e. is both in NP and co-NP.
6. The FACTORIZATION problem takes in input an integer $n$ and returns the list of prime factors of $n$. Prove that FACTORISATION $\leq_{P}$ HAS-BIG-FACTOR.
Is there a link between the question " $\mathrm{P}=$ ? NP $\cap c o-N P$ " and the provable security of RSA?

Exercise 3. RSA Provable security ; Factorization of $n$ from $d$ Consider a RSA system $(n, e, d)$. Let $s$ and $t$ be two integers such that $e d-1=t 2^{s}$.

1. Propose a randomized algorithm, based on a variant of Miller-Rabin primality test, that takes in input $n, e, d$ and return the factorization $n=p q$. (Making only one random choice of an element, the algorithm will return either both factors $p$ and $q$ of $n$, or a failure message.
2. What is the average number of calls required to factorize $n$ ?
3. Conclude on the provable security of the RSA secret key $d$.

Exercise 4. Discrete Log and highest significant bit Let $(G, \times)$ be a cyclic group of order $n$ generated by $g: G=\left\{g^{i}, 0 \leq i \leq n-1\right\}$.
Consider the following problems :
$-\mathbf{L O G}_{G}$ :

- Input : $x \in G$;
- Output : $i \in=\{0, \ldots, n-1\}$ such that $g^{i}=x$.
$-\mathbf{P L O G}_{G}$ :
- Input : $x \in G$ and an integer $t, 0 \leq t<n$.
- Output : YES iff $\mathrm{LOG}_{G}(x) \geq t$.


## Questions :

1. Prove that $\mathrm{PLOG}_{G} \in N P \cap c o-N P$.
2. Prove:
(a) $\mathrm{PLOG}_{G}<_{P} \mathrm{LOG}_{G}$,
i.e. if there exists a polynomial-time deterministic algorithm for $\mathrm{LOG}_{G}$, then there exists a polynomial-time deterministic algorithm for $\mathrm{PLOG}_{G}$.
(b) $\mathrm{LOG}_{G}<_{P} \mathrm{PLOG}_{G}$,
i.e. if there exists a polynomial-time deterministic algorithm for $\mathrm{PLOG}_{G}$, then there exists a polynomial-time deterministic algorithm for $\mathrm{LOG}_{G}$.
Conclude that $\mathrm{PLOG}_{G}$ and $\mathrm{LOG}_{G}$ are polynomially equivalent, i.e. there exists a polynomial-time algorithm for one problem iff there exists a polynomial-time algorithm for the other one.
3. Consider the two decision problems PLOG-LSB ${ }_{G}$ and PLOG-HSB ${ }_{G}$ that take both in input $x \in G$ and that compute respectively the least and highest significant bit of $\mathrm{LOG}_{G}(x)$ :
$-\mathrm{PLOG}^{-L S B}{ }_{G}(x)=\mathrm{YES}$ iff $\mathrm{LOG}_{G}(x) \equiv 1 \quad(\bmod 2) ;$ (least significant bit).

- PLOG-HSB ${ }_{G}(x)=$ YES iff $\log _{2} \operatorname{LOG}_{G}(x) \geq\left\lfloor\log _{2} \frac{p-1}{2}\right\rfloor ;$ (highest significant bit).

Compare the complexities of $\mathrm{PLOG}_{\mathrm{LSB}}^{G}$, $\mathrm{PLOG}^{-\mathrm{HSB}_{G}(x)}$ and $\mathrm{PLOG}_{G}$. What do you thing of a cryptographic protocol which security is based on the $\mathrm{PLOG}^{\mathrm{LSB}}{ }_{G}$ ?

Exercise 5. El Gamal protocol. Let $G$ a cyclic group of order $p-1$ generated by $\alpha$. Let $d$ be an integer, and $\beta=\alpha^{d}$. In the following asymmetric protocol (El Gamal), $\alpha$ and $\beta$ are public while $d$ is kept secret and known only by Bob.
The encoding function encodes $x$ using a random integer $k$ which is kept secret by the encoder. It is given by :

$$
\begin{array}{ll}
E_{\alpha, \beta}: G & \rightarrow G \times G \\
x & \mapsto\left(\alpha^{k}, x \cdot \beta^{k}\right)
\end{array}
$$

1. Bob receives a message $\left(y_{1}, y_{2}\right)$. How will he decode it?
2. Prove that a required condition for the protocol to be a one-way trap-door function is that the discrete logarithm is computationally impossible.

Exercise 6. Asymmetric decryption is in NP Consider an asymmetric crypto-system : the public encryption method is denoted $E$; the private decryption method is $D$. For any plain text $p$, the size of the corresponding cipher text $c=E(p)$ verifies : $|p| \leq|c| \leq|p|+O(1)$.
It is assumed that $E$ is computed in deterministic polynomial (in practice almost linear) time.
Let "COMPUTE-D" be the following problem (note it is not a decision problem) :

- input : an arbitrary cipher text $c$;
- output : the plain text $p=D(c)$.

1. Prove that "COMPUTE-D" can be solved in non-deterministic polynomial time.
2. Formulate decision problems related to "COMPUTE-D".
3. How would you preferably choose " D " (w.r.t. previous questions)?

## Exercise 7. Non-deterministic algorithm and certification algorithm We consider

- $N P_{\text {NonDet }}$ : the set of decision problems that can be solved by a non-deterministic algorithm in polynomial time.
$-N P_{C e r t i f}$ : the set of decision problems which output YES can be proved (or certified) by a deterministic algorithm in polynomial time.
Prove that $N P_{\text {NonDet }}=N P_{\text {Certif }}$.

Additional exercises. see CLRS, 2nd edition, Chap 34, NP-Completeness :

- 34.2-5 : Prove that any decision problem in NP can be computed by an algorithm running in time $2^{O\left(n^{k}\right)}$ where $n$ is the size of the input.
- 34.2-9 : Prove that $P \subset N P$ and $P \subset c o-N P$.
- 34.2-10 Prove that if $P \neq c o-N P$, then $P \neq N P$ (Hint : contradiction proof).
- Prove that $N P={ }_{P-\text { Cook }} c o-N P$. Do we have $N P={ }_{P-\text { Karp }} c o-N P$ ?

