TD 6 - Zero-knowledge protocol

The Guillou-Quisquater authentication protocol is the following one. A trusted third part (TTP), issuer of smart cards, has a public key (n, v). The integer n is the product of two large primes p and q; it is assumed that factorization of n is intractable. The integer $2 \leq v \leq n / 2$ is chosen such that extracting v-root $\bmod n$ is considered intractable.
For her public key, Alice uses the public information of her card, that corresponds to a string of characters (for instance, name of the issuer $\|$ card number $\|$ validity date $\| \ldots$...); this string is a sequence of bits that correspond to an integer $J(\bmod n)$.
The private key of Alice is an integer B such that $J . B^{v}=1 \bmod n$.
The authentication protocol involves the 3 folowing communications:

1. Alice chooses at random $r \in\{1, \ldots, n-1\}$, computes $T=r^{v} \bmod n$ and sends T to Bob.
2. Bob chooses at random $d \in\{0, \ldots, v-1\}$ and sends d to Alice.
3. Alice computes $D=r . B^{d} \bmod n$ and sends D to Bob.

To authenticate Alice, Bob computes $T^{\prime}=D^{v} . J^{d} \bmod n$. If $T^{\prime}=T$ then Alice is authenticated; else she is rejected.

1. Prove that authentication is correct (soundness and completeness).

Completeness: if Alice, who knows B, answers correctly, then we have; $T^{\prime}=D^{v} . J^{d} \bmod n=$ $\left(r . B^{d}\right)^{v} . J^{d} \bmod n=r^{v} .\left(B^{v} . J\right)^{d} \bmod n=r^{v} \bmod n=T$.
Soundness: if Eve, who doesn't know B, is correctly authenticated by Bob, then she has sent a correct couple (T, D) to Bob, with D v-root of $T . J^{-d} \bmod n$. But she cannot compute v-root; thus the only way for Eve is to compute a couple (T, D) verifying $T=D^{v} . J^{d}$, then such that $J^{d}=D^{v} . T \bmod n$, also $D^{v} \cdot T=B^{-v d} \bmod n$. This may be possible for some values of d, for $d=0$ for instance. But she does not know d; her only possibility is thus to bet on the value of d before sending T : she bets on d, chooses D and computes $T=D^{v} . J^{d} \bmod n$. Her probability of success in correclty guessing d is only $\frac{1}{v} \leq \frac{1}{2}$.
2. We assume that $r^{v} \bmod n$ gives no knowledge on r. Argue that this authentication is a zeroknowledge protocol.
For any value of d, we have to proove that the transcript $\left(T=r^{v} \bmod n ; d ; D=r B^{d} \bmod n\right)$ gives no information on the secret key B.

- if $d=0$: we have $D=r \bmod n$ and $T=r^{v} \bmod n$. So there is no information on B.
- id $d=1: T=r^{v}$ and $D=r B$: due to assumption, T gives no knowledge on r; then knowing $r B \bmod n$ gives no information on B.
- if $d \geq 2$: Let $B^{\prime}=B^{d} \bmod n$. We have $T=r^{v} \bmod n$ and $D=r$. B^{\prime}; similarly to previous case, we have no information on B^{\prime} except it is a v-power $\bmod n$. But if we know B then we know B^{\prime} by polynomial computation; so, by contradiction, if we do not know B^{\prime}, we do not know B.

3. Previous protocol is extended as follows in order to provide Alice a protocol to sign any message M.
4. Alice computes $T=r^{v} \bmod n$ with r chosen at random.
5. Alice computes $d=H(M \| T)$ where H is a hash function on $\log _{2} v$ bits resistant to collisions.
6. Alice computes $D=r \cdot B^{d} \bmod n$.
7. The signed message is $(M ; \sigma)$ where $\sigma=(d\|D\| J)$ is the signature of M by Alice.

How Bob will verify the signature?
Bob takes the first $\log _{2} v$ bits of σ and computes $T^{\prime}=D^{v} J^{d} \bmod n$. Then it computes $d^{\prime}=$ $h\left(M \| T^{\prime}\right)$. The signature is verified iff $d=d^{\prime}$.

