
1

Parallel Algorithms

Design
and

Implementation

 Jean-Louis.Roch at imag.fr

MOAIS / Lab. Informatique Grenoble, INRIA,
France

2

Overview

•  Machine model and work-stealing!
• Work and depth!
•  Fundamental theorem : Work-stealing theorem !
•  Parallel divide & conquer!
•  Examples!

• Accumulate!
• Monte Carlo simulations!

•  Part2: Work-first principle - Amortizing the overhead of parallelism!
• Prefix/partial sum!

• Sorting and merging "

•  Part3: Amortizing the overhead of synchronization and communications!
• Numerical computations : FFT, marix computations; Domain decompositions "

3

Interactive
Distributed
Simulation
3D-reconstruction
+ simulation
+ rendering
[B Raffin &E Boyer]
- 1 monitor
- 5 cameras,
- 6 PCs

Any application is “parallel”:
• composition of several programs / library procedures (possibly concurrent) ;
• each procedure written independently and also possibly parallel itself.

Interactive parallel computation?

4

!  Parallel chips & multi-core architectures: "
-  MPSoCs (Multi-Processor Systems-on-Chips)"
-  GPU : graphics processors (and programmable: Shaders; Cuda SDK)"
-  MultiCore processors (Opterons, Itanium, etc.)"
-  Heteregoneous multi-cores : CPUs + GPUs + DSPs+ FPGAs (Cell)"

!  Commodity SMPs:"
-  8 way PCs equipped with multi-core processors (AMD Hypertransport) + 2 GPUs"

!  Clusters: "
-  72% of top 500 machines"
-  Trends: more processing units, faster networks (PCI- Express)"
-  Heterogeneous (CPUs, GPUs, FPGAs)"

!  Grids:"
- Heterogeneous networks"
-  Heterogeneous administration policies"
-  Resource Volatility"

!  Dedicated platforms: eg Virtual Reality/Visualization Clusters:"
-  Scientific Visualization and Computational Steering"
-  PC clusters + graphics cards + multiple I/O devices  

" "(cameras, 3D trackers, multi-projector displays)"
!  "

New parallel supports from small too large

Grimage platform

5

Dynamic architecture : non-fixed number of resources, variable speeds
 eg: grid, … but not only: SMP server in multi-users mode

The problem
To design a single algorithm that computes efficiently prefix(a) on

an arbitrary dynamic architecture

Sequential
algorithm

parallel
P=2 parallel

P=100

parallel
P=max

. . .

Multi-user SMP server Grid Heterogeneous network

?
Which algorithm

to choose ?

… …

6

Dynamic architecture : non-fixed number of resources, variable speeds
 eg: grid, SMP server in multi-users mode,….

 => motivates the design of «processor-oblivious» parallel algorithm that:

 + is independent from the underlying architecture:
 no reference to p nor !i(t) = speed of processor i at time t nor …

 + on a given architecture, has performance guarantees :
 behaves as well as an optimal (off-line, non-oblivious) one

Processor-oblivious algorithms

7

2. Machine model and work stealing

!  Heterogeneous machine model and work-depth framework"
!  Distributed work stealing  

!  Work-stealing implementation : work first principle  

!  Examples of implementation and programs:  
" "Cilk , Kaapi/Athapascan  

!  Application: Nqueens on an heterogeneous grid "

8

Processor speeds are assumed to change arbitrarily and adversarially:!
model [Bender,Rabin 02] !i(t) = instantaneous speed of processor i at time t

 (in #unit operations per second)
 Assumption : Maxi,t { !i(t) } < constant . Mini,t { !i(t) }

Def: for a computation with duration T

•  total speed: !tot = (!i=0,..,P !t=0,..,T !i(t)) / T

•  average speed per processor: !ave = !tot / P

Heterogeneous processors, work and depth

“Work” W = #total number operations performed

“Depth” D = #operations on a critical path

 (~parallel “time” on " resources)

For any greedy maximum utilization schedule:
 [Graham69, Jaffe80, Bender-Rabin02]

 makespan

!

"
W
p.#ave

+ 1$ 1
p

%

&
'

(

)
*

D
 #ave

9

The work stealing algorithm

!  A distributed and randomized algorithm that
computes a greedy schedule :
"  Each processor manages a local task (depth-first execution)

P0 P2 P1 P3

10

P0 P2 P1 P3

"  When idle, a processor steals the topmost task on a remote -non idle- victim processor
 (randomly chosen)

"  Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]

"  #steals = O(p.D) and execution time

"  Interest:
 if W independent of p and D is small, work stealing achieves near-optimal schedule

steal

The work stealing algorithm

!  A distributed and randomized algorithm that
computes a greedy schedule :
"  Each processor manages a local stack (depth-first execution)

!

"
W
p.#ave

+O D
#ave

$

%
&

'

(
)

Proof

!  Any parallel execution can be
represented by a binary tree:!
! Node with 0 child = TERMINATE instruction"

-  End of the current thread"
! Node with 1 son = sequential instruction"
! Node with 2 sons: parallelism = instruction that"

-  Creates a new (ready) thread "
•  eg fork, thread_create, spawn, …"

-  Unblocks a previously blocked thread "
•  eg signal, unlock, send"

11

Proof (cont)
!  Assume the local ready task queue is stored in

an array: each ready task is stored according to
its depth in the binary tree"

!  On processor i at top t :!
! Hi(t) = the index of the oldest ready task"

!  Prop 1: When non zero, Hi(t) is increasing"
!  Prop 2: H(t) = Min(i active at t){ Hi(t) } is increasing"
!  Prop 3: Each steal request on i makes  

! !Hi strictly increases. "
!  Corollary: if at each steal, the victim is a

processor i with minimum Hi then 
"#steals ≤ (p-1).Height(tree) ≤ (p-1).D"

12

Proof (randomized, general case)
!  Group the steal operations in blocks of

consecutive steals: [Coupon collector problem]"
!  Consider p.log p consecutive steals requests after top t,  

Then with probability > ½, any active processor at t have
been victim of a steal request. "
-  Then Mini Hi has increased of at least 1"

!  In average, after (2.p.log p.M) consecutive
steals requests, ! !Mini Hi ≥ M !
!  Thus, in average, after (2.p.log p.D) steal requests,

the execution is completed ! "
!  [Chernoff bounds] With high probability (w.h.p.),!

!  #steal requests = O(p.log p.D)!

13

Proof (randomized, additional hyp.)

!  With additional hypothesis:!
-  Initially, only one active processor"
-  When several steal requests are performed on a same

victim processor at the same top,  
only the first one is considered (others fail)"

!  [Balls&Bins] Then #steal requests = O(p.D) w.h.p."

!  Remarks:!
!  This proof can be extended to"

-  asynchronous machines (synchronization = steal)"
-  Other steal policies then steal the “topmost=oldest”

ready tasks, but with impact on the bounds on the steals "

14

Steal requests and execution time

!  At each top, a processor j is!
!  Either active: performs a “work” operation "

-  Let wj be the number of unit work operations by j"
!  Either idle: performs a steal requests"

-  Let sj be the number of unit steal operations by j"

!  Summing on all p processors :  

Execution time"

15

!

"
W
p.#ave

+O D
#ave

$

%
&

'

(
)

16

Work stealing implementation

Difficult in general (coarse grain)
But easy if D is small [Work-stealing]

 Execution time

 (fine grain)

Expensive in general (fine grain)
But small overhead if a small
number of tasks

 (coarse grain)

Scheduling
efficient policy

(close to optimal)
control of the policy

(realisation)

If D is small, a work stealing algorithm performs a small number of steals

=> Work-first principle: “scheduling overheads should be borne by the critical path
of the computation” [Frigo 98]

Implementation: since all tasks but a few are executed in the local stack, overhead
of task creation should be as close as possible as sequential function call

At any time on any non-idle processor,
 efficient local degeneration of the parallel program in a sequential execution

!

"
W
p.#ave

+O D
#ave

$

%
&

'

(
)

17
Work-stealing implementations following
the work-first principle : Cilk
!  Cilk-5 http://supertech.csail.mit.edu/cilk/ : C extension

!  Spawn f (a) ; sync (serie-parallel programs)
!  Requires a shared-memory machine
!  Depth-first execution with synchronization (on sync) with the end of a task :

-  Spawned tasks are pushed in double-ended queue
!  “Two-clone” compilation strategy [Frigo-Leiserson-Randall98] :

•  on a successfull steal, a thief executes the continuation on the topmost ready task ;
•  When the continuation hasn’t been stolen, “sync” = nop ; else synchronization with its thief

!  won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2,
SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

01 cilk int fib (int n)  
02 {  
03 if (n < 2) return n;  
04 else  
05 {  
06 int x, y;  
07  
08 x = spawn fib (n-1);  
09 y = spawn fib (n-2);  
10  
11 sync;  
12  
13 return (x+y);  
14 }  
15 }"

18
Work-stealing implementations following
the work-first principle : KAAPI
!  Kaapi / Athapascan http://kaapi.gforge.inria.fr : C++ library

!  Fork<f>()(a, …) with access mode to parameters (value;read;write;r/w;cw) specified
in f prototype (macro dataflow programs)

!  Supports distributed and shared memory machines; heterogeneous processors
!  Depth-first (reference order) execution with synchronization on data access :

•  Double-end queue (mutual exclusion with compare-and-swap)
•  on a successful steal, one-way data communication (write&signal)

• 

!  Kaapi won the 2006 award “Prix special du Jury” for the best performance at NQueens contest, Plugtests-
Grid&Work’06, Nice, Dec.1, 2006 [Gautier-Guelton] on Grid’5000 1458 processors with different speeds.

 1 struct sum {  
 2 void operator()(Shared_r < int > a, "
 3 Shared_r < int > b, "
 4 Shared_w < int > r) "
 5 { r.write(a.read() + b.read()); }"
 6 } ;"
 7"
 8 struct fib {"
 9 void operator()(int n, Shared_w<int> r) "
 10 { if (n <2) r.write(n);"
 11 else "
 12 { int r1, r2;"
 13 Fork< fib >() (n-1, r1) ;"
 14 Fork< fib >() (n-2, r2) ;"
 15 Fork< sum >() (r1, r2, r) ;"
 16 } "
 17 } "
 18 } ;!

19 Experimental results on SOFA
 [Allard 06]

[CIMIT-ETZH-INRIA]

Kaapi (C++, ~500 lines)! Cilk (C, ~240 lines)!

Preliminary results on GPU NVIDIA 8800 GTX!
•  speed-up ~9 on Bar 10x10x46 to Athlon64 2.4GHz!

• 128 “cores” in 16 groups!
• CUDA SDK : “BSP”-like, 16 X [16 .. 512] threads!
• Supports most operations available on CPU!
• ~2000 lines CPU-side + 1000 GPU-side!

Algorithm design
 Execution time !

!  From work-stealing theorem, optimizing
the execution time by building a parallel
algorithm with both!

-  W = Tseq!
and !
- small depth D!

!  Double criteria"
-  Minimum work W (ideally Tseq)"
-  Small depth D: ideally polylog in the work: = logO(1) W"

20

!

"
W
p.#ave

+O D
#ave

$

%
&

'

(
)

Examples

!  Accumulate!

!  => Monte Carlo computatons!

21

22
Example: Recursive and Monte Carlo
computations

!  X Besseron, T. Gautier, E Gobet, &G Huard won the nov. 2008 Plugtest-
Grid&Work’08 contest – Financial mathematics application (Options pricing)

!  In 2007, the team won the Nqueens contest; Some facts [on on Grid’5000, a grid
of processors of heterogeneous speeds]

-  NQueens(21) in 78 s on about 1000 processors
-  Nqueens (22) in 502.9s on 1458 processors
-  Nqueens(23) in 4435s on 1422 processors [~24.1033 solutions]
-  0.625% idle time per processor
-  < 20s to deploy up to 1000 processes on 1000 machines [Taktuk, Huard]
-  15% of improvement of the sequential due to C++ (template)

N
-Q

ue
en

s(
23

)!

G
rid

’5
00

0
fr

ee
!

C
om

pe
tit

or
 Z
!

C
om

pe
tit

or
 Y
!

C
om

pe
tit

or
 X
!

CPU!

6 instances Nqueens(22)!

Network!

Grid’5000 utilization!
during contest!

Algorithm design
!  Cascading divide & Conquer  

! W(n) ≤ a.W(n/K) + f(n) with a>1"
-  If f(n) << n^{logK a} => W(n) = O(n^{logK a})"
-  If f(n) >> n^{logK a} => W(n) = O(f(n))"
-  If f(n) = Θ(n^{logK a} => W(n) = O(f(n) log n) 

! D(n) = D(n/K) + f(n)"
-  If f(n) = O(logi n) => D(n) = O(logi+1 n)  

! D(n) = D(sqrt(n)) + f(n)"
-  If f(n) = O(1) => D(n) = O(loglog n)"
-  If f(n) = O(log n) => D(n) = O(log n) !!  

23

Examples

!  Accumulate"

!  Monte Carlo computations"

!  Maximum on CRCW!
!  Matrix-vector product – Matrix multiplication --

Triangular matrix inversion  

!  Exercise: parallel merge and sort!
!  Next lecture: Find, Partial sum, adaptive parallelism,

communications"

24

Algorithm design
 Execution time !

!  From work-stealing theorem, optimizing
the execution time by building a parallel
algorithm with both!

-  W = Tseq!
and !
- small depth D!

!  Double criteria"
-  Minimum work W (ideally Tseq)"
-  Small depth D: ideally polylog in the work: = logO(1) W"

25

!

"
W
p.#ave

+O D
#ave

$

%
&

'

(
)

