M2R PARALLEL SYSTEMS

TRAINING EXERCISES

Exercises: Parallel merge and application to sort Jean-Louis Roch

For this problem, a CREW Parallel Random Access Machine is considered: any processor can readd data at any addres; but write operations on a given address are in mutual exclusion (concurrent write are prohibited). In the sequel, merge and sort algorithms are based in comparizons between elements. Costs of algorithms are uniquely evaluated in *number of comparizons between elements*; comparizons between array indexes are not taken into account. For a parallel algorithm and an input of size n, the following notations are used:

- $W_1(n)$: the maximum number of comparizons performed; i.e. the time of the sequential execution, sometimes denoted $T_1(n)$;
- D(n) the depth, i.e. the maximum number of comparizons between elements that are in dependence (critical path in the precedence DAG); i.e. the time of a parallel execution on an unbounded number of identical processors, sometimes denoted $T_{\infty}(n)$.

The MERGE problem is defined as follows:

- Input : two sorted arrays $A = [a_0, \ldots, a_{n-1}]$ and $B = [b_0, \ldots, b_{m-1}]$ (by increasing order). Moreover, all elements a_i are b_j assumed **distincts** : $a_i \neq b_j$ for any $0 \leq i < n$ and $0 \leq j < m$. Thus: $a_0 < a_1 < \ldots < a_{n-1}$ and $b_0 < b_1 < \ldots < b_{m-1}$.
- Output : a sorted array $X = [x_0, \ldots, x_{n+m-1}]$ (i.e. $x_0 < x_1 < \ldots < x_{n+m-1}$) that contains the elements of both A and B.

I. Complexity of MERGE and sequential algorithm

This question provides a lower bound on the minimum number of comparizons required for MERGE.

1. Let A and B be two arbitrary arrays with respectively n and m elements; justify that there are $C_{n+m}^n = \frac{(n+m)!}{n!m!}$ possible configurations for the array X that results from MERGE(A, B).

2. En déduire un minorant de la complexité de MERGE (on ne demande pas ici d'équivalent). Deduce a lower bound on the complexity of MERGE.

3. Let remind Stirling formula: $n! \simeq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. Provide a lower bound for MERGE when n = m.

4. In this question, we consider the classical sequential merge algorithm: for (k=0, ptA=0, ptB=0; (ptA ≠ n) && (ptB ≠ m); k += 1) { if (B[ptB] < A[ptA]) { X[k] = B[ptB]; ptB += 1; } else { X[k] = A[ptA]; ptA += 1; } } while (ptA ≠ n) { X[k] = A[ptA]; ptA += 1; k += 1; }; while (ptB ≠ m) { X[k] = B[ptB]; ptB += 1; k += 1; }; **4.a.** Justify that this algorithm performs $W_1(n,m) \leq n+m-1$ comparisons; explicit a worst case.

4.b. What is, in worst case, the depth D in number of comparisons (i.e. parallel time on an unbound number of processors) ?

II. A parallel Divide&Conquer algorithm for MERGE

- 5. We consider the following parallel Divide&Conquer algorithm for MERGE:
 - 1. We assume that $n \ge m > 0$ (else MergePar(B, A, X) is called; if m = 0, the algorithm is completed).
 - 2. The array A is split into two sub-arrays $A_1 = [a_0, \ldots, a_{n/2-1}]$ and $A_2 = [a_{n/2}, \ldots, a_{n-1}]$.
 - 3. Let $\alpha = a_{n/2}$; B is split into two subarrays B_1 and $B_2 : B_1 = [b_0, \ldots, b_{j-1}]$ countains the elements of B lesser than α and $B_2 = [b_j, \ldots, b_{m-1}]$ the elements of B larger than α ; i.e.
 - if $b_0 > \alpha$ then B_1 is empty and $B_2 = B$;
 - else if $b_{m-1} < \alpha$ then $B_1 = B$ and B_2 is empty;
 - else: j is the unique index such that $b_{j-1} < \alpha < b_j$.
 - 4. A_1 and B_1 are recursively merged in $X[0, \ldots, n/2 + j 1]$; and A_2 and B_2 are recursively merged in parallel in $X[n/2 + j, \ldots, n + m - 1]$.

5.a. Brioefly justify that MergePar correctly merges the two sorted arrays A and B (all elements are assumed distincts).

5.b. Explain how to compute, in sequential and with $O(\log_2 m)$ comparaisons, the index j used to partition B; the algrithm is not asked, just its principle.

5.c Briefly justify the recurrence:
$$\begin{cases} D(m,n) = D(n,m) & \text{si } n < m \\ D(n,m) \le D(n/2,m) + O(\log m) & \text{si } n \ge m \\ D(n,0) = O(1) & \text{si } n \ge m \end{cases}$$

Deduce that the depth of this parallel algorithm is: $D(n,m) = O(\log^2(n+m))$.

5.d. We admit that the number of operation performed by MergePar is W(n,m) = n+m+o(n+m) (no justification is asked). Give an upper bound on the execution time on p identical processors by using a greedy work-stealing algorithm.

III. An ultrafast parallel algorithm for MERGE

6. This question aims to design a parallel algorithm MergeParFast with constant depth, but that performs a large number of comparizons.

For the sake of simplicity, it is assumed that $a_{-1} = b_{-1} = -\infty$ and $a_n = b_m = +\infty$.

Let $i \in \{0, \ldots, n-1\}$ an arbitrary index in A; let $k \in \{0, \ldots, m\}$ be the unique index in B such that $b_{k-1} < a_i$ and $b_k > a_i$.

6.a. Justify that $x_{i+k} = a_i$.

6.b. Give an algorithm to compute the index k_i related to a_i in depth O(1) with m comparisons.

6.c. Deduce a merge algorithm with parallel depth O(1); what is the number of comparisons performed? **Hint** : in parallel, rank all elements of A and B in X.

IV. An efficient cascading algorithm for MERGE

7. This question improves previous algorithm of question 6 in order to obtain a very fast parallel merge algorithm that performs an asymptotic optimal number $W_1(n,m) = O(n+m)$ of comparaisons.

For $i = 0, \ldots, \lfloor \sqrt{n} \rfloor$, let $\alpha_i = a_{i\sqrt{n}}$. Conversely, for $j = 0, \ldots, \lfloor \sqrt{m} \rfloor$, let $\beta_j = b_{j\sqrt{m}}$. Let $\alpha_{-1} = \beta - 1 = -\infty$ et $\alpha_{\lfloor \sqrt{n} \rfloor + 1} = \beta_{\lfloor \sqrt{m} \rfloor + 1} = +\infty$. Finallyn for $i = 0, \ldots, \lfloor \sqrt{n} \rfloor$, let the index $\mu_i \in \{0, \ldots, \lfloor \sqrt{m} \rfloor + 1\}$ be the one such that: $\beta_{\mu_i - 1} < \alpha_i < \beta_{\mu_i}$.

and for $j = 0, \ldots, \lfloor \sqrt{m} \rfloor$, let the index $\nu_j \in \{0, \ldots, \lfloor \sqrt{n} \rfloor + 1\}$ be such that: $\alpha_{\nu_j - 1} < \beta_j < \alpha_{\nu_j}$.

7.a. Using question 6, prove that all the index μ_i and ν_j can be computed all together in depth O(1) with O(n+m) comparisons.

7.b. Deduce a parallel algorithm for MERGE with depth $O(\log \log n)$; and that performs $O(n \log \log n)$ comparisons.

7.c. Give an algorithm that computes MERGE in parallel depth $D(n,m) = O(\log \log n)$ and that performs O(n+m) comparisons only.

V. Application to parallel merge-sort

This part is dependent form the previous ones; it uses a blackbopx merge algorithm to compute the sort. The recursive merge-sort algorithm (MERGE-SORT) is the following:

```
Algorithm SORT ( T [0 .. n-1] ) {
    if (n == 1) return T ;
    else {
        A[0.. n/2 - 1] = TRI( T[0 .. n/2-1] ) ;
        B[0.. n- n/2 - 1] = TRI( T[n/2 .. n-1] ) ;
        return MERGE(A, B ) ;
    }
}
```

8. We denote $D^{(M)}(n)$ (resp. $W_1^{(M)}(n)$) the parallel depth (resp. work or number of operations) of the used MERGE algorithm. Explicit the depth and work of the above MERGE-SORT algorithm when the MERGE operations is performed by:

9.a the sequential algorithm of question 4;

9.b the parallel algorithm of question 5 for which: $D^{(M)}(n) = \log^2 n$ and $W_1^{(M)}(n) = O(n)$;

9.c the parallel algorithm of question 8 for which: $D^{(M)}(n) = \log \log n$ et $W_1^{(M)}(n) = O(n)$.