
M2R Parallel Systems Training exercises

Exercises: Parallel merge and application to sort
Jean-Louis Roch

For this problem, a CREW Parallel Random Access Machine is considered: any processor can

readd data at any addres; but write operations on a given address are in mutual exclusion (concurrent

write are prohibited). In the sequel, merge and sort algorithms are based in comparizons between

elements. Costs of algorithms are uniquely evaluated in number of comparizons between elements;

comparizons between array indexes are not taken into account. For a parallel algorithm and an input

of size n, the following notations are used:

• W1(n) : the maximum number of comparizons performed; i.e. the time of the sequential execu-

tion, sometimes denoted T1(n);

• D(n) the depth, i.e. the maximum number of comparizons between elements that are in de-

pendence (critical path in the precedence DAG); i.e. the time of a parallel execution on an

unbounded number of identical processors, sometimes denoted T∞(n).

The MERGE problem is de�ned as follows:

• Input : two sorted arrays A = [a0, . . . , an−1] and B = [b0, . . . , bm−1] (by increasing order).

Moreover, all elements ai are bj assumed distincts : ai 6= bj for any 0 ≤ i < n and 0 ≤ j < m.

Thus: a0 < a1 < . . . < an−1 and b0 < b1 < . . . < bm−1.

• Output :a sorted array X = [x0, . . . , xn+m−1] (i.e. x0 < x1 < . . . < xn+m−1) that contains the

elements of both A and B.

I. Complexity of MERGE and sequential algorithm

This question provides a lower bound on the minimum number of comparizons required for MERGE.

1. Let A and B be two arbitrary arrays with respectively n and m elements; justify that there are

Cn
n+m = (n+m)!

n!.m! possible con�gurations for the array X that results from MERGE(A, B).

2. En déduire un minorant de la complexité de MERGE (on ne demande pas ici d'équivalent).

Deduce a lower bound on the complexity of MERGE.

3. Let remind Stirling formula : n! '
√

2πn
(

n
e

)n
. Provide a lower bound for MERGE when

n = m.

4. In this question, we consider the classical sequential merge algorithm:
for (k=0, ptA=0, ptB=0 ; (ptA 6= n) && (ptB 6= m); k += 1) {

if (B[ptB] < A[ptA]) { X[k] = B[ptB] ; ptB += 1 ; }

else { X[k] = A[ptA] ; ptA += 1 ; }

}

while (ptA 6= n) { X[k] = A[ptA] ; ptA += 1 ; k += 1 ; } ;

while (ptB 6= m) { X[k] = B[ptB] ; ptB += 1 ; k += 1 ; } ;

1

4.a. Justify that this algorithm performs W1(n, m) ≤ n + m − 1 comparizons; explicit a worst

case.

4.b. What is, in worst case, the depth D in number of comparisons (i.e. parallel time on an unbound

number of processors) ?

II. A parallel Divide&Conquer algorithm for MERGE

5. We consider the following parallel Divide&Conquer algorithm for MERGE:

1. We assume that n ≥ m > 0 (else MergePar(B,A, X) is called; if m = 0, the algorithm is

completed).

2. The array A is split into two sub-arrays A1 = [a0, . . . , an/2−1] and A2 = [an/2, . . . , an−1].

3. Let α = an/2; B is split into two subarrays B1 and B2 : B1 = [b0, . . . , bj−1] countains the elements

of B lesser than α and B2 = [bj , . . . , bm−1] the elements of B larger than α; i.e.
• if b0 > α then B1 is empty and B2 = B;

• else if bm−1 < α then B1 = B and B2 is empty;

• else: j is the unique index such that bj−1 < α < bj .

4. A1 and B1 are recursively merged in X[0, . . . , n/2 + j − 1] ;
and A2 and B2 are recursively merged in parallel in X[n/2 + j, . . . , n + m− 1].

5.a. Brioe�y justify that MergePar correctly merges the two sorted arrays A and B (all elements

are assumed distincts).

5.b. Explain how to compute, in sequential and with O(log2 m) comparaisons, the index j used to

partition B; the algrithm is not asked, just its principle.

5.c Brie�y justify the recurrence:


D(m,n) = D(n, m) si n < m
D(n, m) ≤ D(n/2,m) + O(log m) si n ≥ m
D(n, 0) = O(1)

Deduce that the depth of this parallel algorithm is: D(n, m) = O(log2(n + m)).

5.d. We admit that the number of operation performed by MergePar is W (n, m) = n+m+o(n+m)
(no justi�cation is asked). Give an upper bound on the execution time on p identical processors by

using a greedy work-stealing algorithm.

III. An ultrafast parallel algorithm for MERGE

6. This question aims to design a parallel algorithm MergeParFast with constant depth, but that

performs a large number of comparizons.

For the sake of simplicity, it is assumed that a−1 = b−1 = −∞ and an = bm = +∞.

Let i ∈ {0, . . . , n− 1} an arbitrary index in A; let k ∈ {0, . . . ,m} be the unique index in B such that

bk−1 < ai and bk > ai.

2

6.a. Justify that xi+k = ai.

6.b. Giove an algorithm to compute the index ki related to ai in depth O(1) with m comparisons.

6.c. Deduce a merge algorithm with parallel depth O(1); what is the number of comparisons

performed? Hint :in parallel, rank all elements of A and B in X.

IV. An e�cient cascading algorithm for MERGE

7. This question improves previous algorithm of question 6 in order to obtain a very fast parallel merge

algorithm that performs an asymptotic optimal number W1(n, m) = O(n + m) of comparaisons.

For i = 0, . . . , b
√

nc, let αi = ai
√

n. Conversely, for j = 0, . . . , b
√

mc, let βj = bj
√

m. Let

α−1 = β−1 = −∞ et αb
√

n c+1 = βb
√

m c+1 = +∞.

Finallyn for i = 0, . . . , b
√

nc, let the index µi ∈ {0, . . . , b
√

m c+1} be the one such that: βµi−1 < αi <
βµi .

and for j = 0, . . . , b
√

mc, let the index νj ∈ {0, . . . , b
√

n c+ 1} be such that: ανj−1 < βj < ανj .

7.a. Using question 6, prove that all the index µi and νj can be computed all together in depth

O(1) with O(n + m) comparisons.

7.b. Deduce a parallel algorithm for MERGE with depth O(log log n); and that performs O(n log log n)
comparisons.

7.c. Give an algorithm that computes MERGE in parallel depth D(n, m) = O(log log n) and that

performs O(n + m) comparisons only.

V. Application to parallel merge-sort

This part is dependent form the previous ones; it uses a blackbopx merge algorithm to compute the

sort. The recursive merge-sort algorithm (MERGE-SORT) is the following:
Algorithm SORT (T [0 .. n-1]) {

if (n == 1) return T ;

else {

A[0.. n/2 - 1] = TRI(T[0 .. n/2-1]) ;

B[0.. n- n/2 - 1] = TRI(T[n/2 .. n-1]) ;

return MERGE(A, B) ;

}

}

8. We denote D(M)(n) (resp. W
(M)
1 (n)) the parallel depth (resp. work or number of operations)

of the used MERGE algorithm. Explicit the depth and work of the above MERGE-SORT algorithm

when the MERGE operations is performed by:

9.a the sequential algorithm of question 4;

9.b the parallel algorithm of question 5 for which: D(M)(n) = log2 n and W
(M)
1 (n) = O(n);

9.c the parallel algorithm of question 8 for which: D(M)(n) = log log n et W
(M)
1 (n) = O(n).

3

