# Evaluer la fiabilité de systèmes redondants 

J. M. Fourneau<br>Projet SurePaths entre ID, IRISA et PRiSM

November 19, 2005


- Indices stochastiques de fiabilité, de disponibilité ou de performabilité
- Transitoire (horizon fini) : probabilité d'être en panne à la date $t$ sachant l'état initial, durée d'activité entre 0 et $t$,
- Stationnaire (horizon infini) : probabilité d'un mode dégradé
- Chaîne de Markov (pour faire des calculs explicites)
- Evaluer numériquement ou estimer par simulation la probabilité d'un événement trop rare qui se produit dans un espace d'états trop grand

- Structurer l'espace
- Méthodes par composition de sous modèles en isolation et interaction par taux fonctionnels ou synchronisations (réseaux d'automates stochastiques B.Plateau)
- Description tensorielle de la matrice de la chaîne
- Calculer des garanties: bornes déterministes ou stochastiques
- Améliorer la convergence des estimateurs

Des problèmes de disponiblité pour des systèmes multi-composants

- Les composants de même type ne sont pas différentiés.
- Des pannes et des réparations, simples ou multiples, exponentielles ou de lois générales
- une discipline de service pour les réparations (par exemple avec des priorités)
- 1 ou plusieurs réparateurs
- plusieurs modes de pannes (Soft, Hard); la réparation dépend du mode de la panne et de l'état du système
- Les états UP (système opérationnel) : un nombre minimal de composant en marche dans chaque type
- Etats UP : en grand nombre mais en très faible proportion

Muntz et al. 1989, Carrasco 1999


- Les composants
- Processeurs : 2 types ( $P A$ et $P B$ ) non indépendants ! 4 processeurs de chaque type : un seul processeur par type fonctionne, les autres sont là en cas de pannes.
- Contrôleurs : 2 types ( $C 1$ et $C 2$ ); 2 contrôleurs de chaque type.
- Disques : 6 piles de 4 disques. $D 1, D 2$ et $D 3$ liées aux contrôleurs $C 1$, et les piles $D 4, D 5$ et $D 6$ aux contrôleurs $C 2$.
- Les états UP :
- au moins un processeur en activité ( $P A$ ou $P B$ )
- au moins un contrôleur en activité pour chaque type ( $C 1$ et $C 2$ )
- au plus un disque en panne par pile
- Les pannes et les réparations :
- 2 modes de pannes : Soft et Hard; pour chaque type de composant
- une seule réparation à la fois, choix uniforme
- Pannes simples sauf la panne du processeur $P A$ qui peut entrainer la panne du processeur $P B$
- seul le processeur en activité peut tomber en panne
- les taux de panne dépendent du type du composant et du mode
- Etats : $6^{2} \times 15^{8}$, soit un peu plus de 92 milliards.
- Degré moyen de $11 \rightarrow 10^{12}$ transitions;
- 10 octets par transition (structure creuse) $\rightarrow$ ordre de grandeur $10^{13}$ octets pour la matrice
- Impossible de générer raisonnablement un tel modèle, même sur disque

Mais on a exactement 1300200 états UP (seulement)

- 2 automates à 15 etats pour les processeurs
- 6 automates à 15 états pour les disques
- 2 automates à 6 états pour les contrôleurs
- Représentation très efficace
- Et surtout compatible avec les méthodes numériques itératives ou projectives (Arnoldi, GMRES)
- Mais il faut plusieurs vecteurs des états atteignables en mémoire
- En pratique, quelques millions.d'états
- Un logiciel disponible (PEPS)
- Calculer une borne sur la probabilité à l'aide d'un modèle plus simple obtenu automatiquement, la borne fournissant la garantie:
- Dérivation automatique de matrices de transition
- repose sur la comparaison de variables aléatoires, de processus et de trajectoires
- Monotonie des opérateurs (conservation de l'ordre entre distribution)
- Ordre strong sur V.A. avec espace des états totalement ordonné.
- On sait maintenant faire à partir des matrices de transition en forme creuse ou en forme tensorielle
- et pour calculer des distributions stationnaires et transitoires
- Ordre Strong sur une VA discrete:
$p<_{s t} q$ ssi $\sum_{j=k}^{n} p_{j} \leq \sum_{j=k}^{n} q_{j}$ pour tout $k$
- Exemple: $\alpha=(0.1,0.3,0.4,0.2)$ et $\beta=(0.1,0.1,0.5,0.3)$.
- On a $\alpha<_{s t} \beta$ car:

$$
\left[\begin{array}{ll}
0.2 & \leq 0.3 \\
0.2+0.4 & \leq 0.3+0.5 \\
0.2+0.4+0.3 & \leq 0.3+0.5+0.1
\end{array}\right.
$$

- Associé aux récompenses croissantes
- Monotonie de la matrice de transition: si les lignes sont croissantes.
- Repose sur l'agrégation (ou lumpabilité) et sur une partition en macro-états
- Une chaine est fortement agrégeable si la propriété de Markov reste vraie au niveau des macro-états
- Test algorithmique connu et simple (somme par bloc constante).
- Idée : Construire une borne agrégable.
- Constuire une borne agrégée sur deux états de:

$$
P=\left[\begin{array}{lllll}
0.5 & 0.2 & 0.1 & 0.2 & 0.0 \\
0.1 & 0.4 & 0.4 & 0.0 & 0.1 \\
0.2 & 0.1 & 0.5 & 0.2 & 0.0 \\
0.1 & 0.0 & 0.1 & 0.7 & 0.1 \\
0.0 & 0.2 & 0.2 & 0.1 & 0.5
\end{array}\right]
$$

- 2 macros états: $(1,2)$ et $(3,4,5)$.
- 2 étapes : borner et agréger

$$
\left[\begin{array}{cc|ccc}
0.5 & 0.2 & 0.1 & 0.2 & 0.0 \\
0.1 & 0.4 & 0.3 & 0.1 & 0.1 \\
\hline 0.1 & 0.2 & 0.5 & 0.1 & 0.1 \\
0.1 & 0 & 0.1 & 0.7 & 0.1 \\
0 & 0.1 & 0.1 & 0.3 & 0.5
\end{array}\right] \quad\left[\begin{array}{cc|ccc}
0.5 & 0 . & 0.3 & 0.2 & 0.0 \\
0.1 & 0.4 & 0.3 & 0.1 & 0.1 \\
\hline 0.1 & 0 . & 0.7 & 0.1 & 0.1 \\
0.1 & 0 & 0.1 & 0.7 & 0.1 \\
0 & 0.1 & 0.1 & 0.3 & 0.5
\end{array}\right] \quad\left[\begin{array}{ll}
0.5 & 0.5 \\
0.1 & 0.9
\end{array}\right]
$$



- Mieux choisir les agrégats
- Minimiser les contraintes de la monotonie et de l'ordre
- Composition de sous-systèmes : un ordre naturel partiel
- Actuellement l'ordre total est nécéssaire mais il impose trop de contraintes non naturelles
- Comment se limiter à un ordre partiel naturel.
- Développer d'autres techniques pour réduire la complexité.

- Selon la structure de départ: matrice creuse ou tenseur
- Selon l'ordre sur les V.A. (Strong ou icx) et sur les états (total ou partiel)
- Selon la méthode retenue pour réduire la complexité.
- Intégré dans certains cas à PEPS, ou à XBORNE

- Simulation à événements rares
- Simulation parfaite (couplage dans le passé)
- Règle le problème de la preuve de convergence
- Utilise facilement du parallélisme massif (Grille)
- Repose sur des concepts de monotonie stochastique identiques à ceux employés pour la garantie stochastique
- Un logiciel disponible (PSI).

- Méthodes de composition et de garantie stochastique
- Pour améliorer les techniques existantes (par exemple SAN et mesures transitoires pour la fiabilité)
- Ou développer de nouvelles approches
- Plus largement, méthodes utiles en évaluation de performances ou pour le modèle checking stochastique
- Mêmes problèmes de taille d'espace et d'événements rares
- Récompenses plus complexes (par exemple selon les trajectoires)

