Problèmes de Muntz, Goyal et Carrasco: présentation et modélisation par des RAS

A. Bušić and J. M. Fourneau PRiSM, Université de Versailles
jmf@prism.uvsq.fr

Plan

- Cadre général
- Description du modèle
- Modélisation par des RAS

Cadre général

Des problèmes de disponiblité pour des systèmes à plusieurs composants de types différents.

- Les composants de même type ne sont pas différentiés.
- Des pannes et des réparations
- simples ou multiples
- les pannes exponentielles, les réparations exponentielles ou PH
- une discipline de service pour les réparations
- les réparations peuvent être prioritaires (en cas de PH, resume ou restart)
- il peut y avoir plusieurs réparateurs
- plusieurs modes de pannes (Soft, Hard); la réparation dépend du mode de la panne
- Représentation du système par le nombre de composants en panne dans chaque mode.
- Les états UP (système opérationnel) : un nombre minimal de composant en marche dans chaque type
- en grand nombre mais en très faible proportion par rapport au nombre total d'état (la chaine est très grande)

Description du modèle

Muntz et al. 1989, Carrasco 1999

- Les composants
- Processeurs : 2 types ($P A$ et $P B$) (attention : pas indépendants !) 4 processeurs de chaque type : un seul processeur par type fonctionne, les autres sont là en cas de pannes.
- Contrôleurs : 2 types ($C 1$ et $C 2$); 2 contrôleurs de chaque type.
- Disques : 6 piles de 4 disques. $D 1, D 2$ et $D 3$ liées aux contrôleurs $C 1$, et les piles $D 4, D 5$ et $D 6$ aux contrôleurs $C 2$.
- Les états UP :
- au moins un processeur en activité ($P A$ ou $P B$)
- au moins un contrôleur en activité pour chaque type ($C 1$ et $C 2$)
- au plus un disque en panne par pile
- Les pannes et les réparations:
- 2 modes de pannes : Soft et Hard; pour chaque type de composant
- une seule réparation à la fois, le choix uniforme
- les pannes simples (un seul objet à la fois) sauf la panne du processeur $P A$ qui peut entrainer la panne du processeur $P B$
- seul le processeur en activité peut tomber en panne
- les taux de pannes dépendent du type du composant et du mode de la panne

Modélisation par des RAS

Attention : les fonctions sont de vraies fonctions et ne respectent pas la syntaxe de PEPS.

Les processeurs

- Inactif, Actif, Panne Soft, Panne Hard
- suffisant de connaître le nombre de processeurs en Panne Soft et Panne Hard (par type)
Nombre de $P A$ en activité $: 1$ si $P A_{\text {Soft }}+P A_{\text {Hard }} \leq 3,0$ sinon. Nombre de $P A$ inactif : $\left(3-P A_{\text {Hard }}-P A_{S o f t}\right)^{+}$.
- 4 automates : $P A_{\text {Soft }}, P A_{\text {Hard }}, P B_{\text {Soft }}$ et $P B_{\text {Hard }}$

Chaque automate possède 5 états (de 0 à 4).

Les contraintes d'admissibilité :

$$
P A_{\text {Soft }}+P A_{\text {Hard }} \leq 4 \quad \text { et } \quad P B_{\text {Soft }}+P B_{\text {Hard }} \leq 4
$$

\rightarrow des taux fonctionnels.
Remarque: 15 configurations atteignables (parmi 25).
Utiliser un seul automate par type de processeur?
$f(u, v):=1_{u+v<4}$

Les transitions :

- Les pannes simples de $P A$:
- Soft : une transition locale fonctionnelle de taux $p \lambda_{P A, S} f\left(P A_{\text {Soft }}, P A_{\text {Hard }}\right)$.
- Hard : une transition locale fonctionnelle de taux $p \lambda_{P A, H} f\left(P A_{\text {Soft }}, P A_{\text {Hard }}\right)$.
- Les pannes simples de $P B$
- Les pannes doubles
- Soft double (transition synchronisée) : une panne $\operatorname{Soft} \operatorname{sur} P A$ qui provoque le même mode de panne sur B.
Le taux : $(1-p) \lambda_{P A, S} f\left(P A_{S o f t}, P A_{\text {Hard }}\right)$.
- Hard double (transition synchronisée) : une panne Hard sur $P A$ qui provoque le même mode de panne sur B. Le taux : $(1-p) \lambda_{P A, H} f\left(P A_{S o f t}, P A_{\text {Hard }}\right)$.

Attention : les pannes doubles ne sont pas détaillées dans Muntz et Goyal, 1989.
Ici : une panne de PA provoque la panne du même type sur PB.
Possible de considérer tout les quatre cas et leur probabilités.

- Les réparations (transitions locales) :

Taux : $F_{t, m}() \mu_{m}()$, où

- $\mu_{m}=$ le taux de réparation du réparateur pour le type de panne m; varie selon que le système est UP ou DOWN.

$$
\mu_{m}()=\mu_{m, U P} \operatorname{System}()+\mu_{m, D O W N}(1-\operatorname{System}())
$$

La fonction $\operatorname{System}()$ retourne 1 si le système est UP et 0 sinon.

$$
\begin{aligned}
\operatorname{System}()= & \left(1_{P A_{\text {Soft }}+P A_{\text {Hard }}+P B_{\text {Soft }}+P B_{\text {Hard }} \leq 7}\right) \\
& \times\left(1_{C 1 \leq 2} \times 1_{C 2 \leq 2}\right) \times\left(\prod_{x=1 . .6} 1_{D x \leq 2}\right)
\end{aligned}
$$

$-F_{t, m}()=$ la probabilité de choisir une composante de ce type t et avec le mode de panne m.

NPanne $(\mathrm{x}, \mathrm{y})=$ le nombre de panne de type y sur la composante x.
Simple pour les processeurs, par exemple

$$
N P a n n e(P A, S o f t)=P A_{\text {Soft }} .
$$

$$
F_{P A, S}()=\frac{N P a n n e(P A, \text { Soft })}{\sum_{x \in\{P A, P B, C 1, C 2, D 1, \ldots, D 6\}} \sum_{y \in\{\text { Soft }, \text { Hard }\}} N P \text { Panne }(x, y)}
$$

Les contrôleurs

- Actif, Panne Soft, Panne Hard
- 2 automates (C 1 et C 2); les états (x, y) où
$x=$ nombre de pannes Soft, $y=$ nombre de pannes Hard $\rightarrow 6$ états: $(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)$ (numérotés de 0 à 5)

4 transitions : réparations et pannes pour les modes Soft et Hard.

- Les pannes - transitions locales de taux fixes.

Le taux : $\lambda_{t, m}$ où $t=$ type de contrôleur, $m=$ le type de panne.

- Les réparations - transitions locales de taux fonctionnel Taux : $F_{t, m}() \mu_{m}()$ avec

$$
\begin{aligned}
& \operatorname{NPanne}(C 1, \text { Soft })=2 \times 1_{C 1=3}+1_{C 1=1}+1_{C 1=4} \\
& \operatorname{NPanne}(C 1, \text { Hard })=2 \times 1_{C 1=5}+1_{C 1=2}+1_{C 1=4}
\end{aligned}
$$

Les disques

On modélise chaque pile isolée $\rightarrow 6$ automates.
Etats: (x, y) où $x=$ le nombre de panne Soft, $y=$ nombre de panne Hard.
L'automate a 15 états numérotés de 0 à 14 :

0 $(0,0)$	1 $(1,0)$	2 $(0,1)$	3 $(2,0)$	4 $(1,1)$	5 $(0,2)$	6 $(3,0)$	7 $(2,1)$
8	9	10	11	12	13	14	
$(1,2)$	$(0,3)$	$(4,0)$	$(3,1)$	$(2,2)$	$(1,3)$	$(0,4)$	

Les pannes - des événements locaux et de taux fixe $\lambda_{t, m}$
($t=$ la pile de disque, $m=$ le type de panne).
Les réparations - des transitions locales de taux fonctionnels.

$$
\begin{aligned}
\text { NPanne }(D 1, \text { Soft }) & =4 \times 1_{D 1=10} \\
& +3 \times 1_{D 1=6}+3 \times 1_{D 1=11} \\
& +2 \times 1_{D 1=3}+2 \times 1_{D 1=7}+2 \times 1_{D 1=12} \\
& +1_{D 1=1}+1_{D 1=4}+1_{D 1=8}+1_{D 1=13} \\
\text { NPanne }(D 1, \text { Hard }) & =4 \times 1_{D 1=14} \\
& +3 \times 1_{D 1=9}+3 \times 1_{D 1=13} \\
& +2 \times 1_{D 1=5}+2 \times 1_{D 1=8}+2 \times 1_{D 1=12} \\
& +1_{D 1=2}+1_{D 1=4}+1_{D 1=7}+1_{D 1=11}
\end{aligned}
$$

Les valeurs numeriques des taux

Les deux types de panne (Soft et Hard) arrivent avec la même probabilité.
Les valeurs numeriques des taux (en h^{-1}) :

$$
\lambda_{t, S}=\lambda_{t, H}=0.5 \lambda_{t}, \forall t
$$

avec les constantes λ_{t} :

$\lambda_{P A}=\lambda_{P B}=\lambda_{C 1}$	$\lambda_{C 2}$	$\lambda_{D 1}$	$\lambda_{D 2}$	$\lambda_{D 3}$	$\lambda_{D 4}$	$\lambda_{D 5}$	$\lambda_{D 6}$
$1 / 2000$	$1 / 4000$	$1 / 6000$	$1 / 8000$	$1 / 10000$	$1 / 12000$	$1 / 14000$	$1 / 16000$

La panne du $P A$ entraine la panne du $P B$ avec la probabilité $0.1(p=0.9)$.
Les réparations sont 10 plus rapides quand le système est DOWN : $\mu_{m, D O W N}=10 \mu_{m, U P}, m \in\{$ Soft, Hard $\}$.

$\mu_{\text {Soft }, U P}$	$\mu_{\text {Hard }, U P}$
0.1	0.05

Taille du problème

Sans regroupement pour les processeurs, on a un espace d'états produit de taille gigantesque obtenu comme suit:

- Pour les processeurs : 5^{4}
- Pour les contrôleurs : 6^{2}
- Pour les disques : 15^{6}

En utilisant un seul automate par type de processeur $\rightarrow 15^{2}$ au lieu de 5^{4} (tous les états atteignables).
La taille : $6^{2} \times 15^{8}$, soit un peu plus de 92 milliards d'états.
Impossible de générer un tel modèle, même sur disque :
le degré moyen de $11 \rightarrow 10^{12}$ transitions;
10 octets par transition (structure creuse) \rightarrow l'ordre de grandeur de 10^{13} octets.

Faible pourcentage d'états UP :

- Pour un disque, il y a 3 états UP parmi les 15 états possibles
- Pour les contrôleurs, il y a 3 états UP parmi les 6 états possibles
- pas de réduction triviale pour les processeurs.
\rightarrow au plus $15^{2} \times 3^{2} \times 3^{6}=1476225$ états UP
Sur les $225\left(=15^{2}\right)$ états utilisés pour coder les deux ensembles de processeurs, 200 états correspondent à des états UP.

On a donc exactement 1300200 états UP
(vérifié en générant la matrice pour une analyse de fiabilité)

