Perfect simulation of finite capacity queueing networks

J-M. Vincent and B. Tanzi

Decore-Imag and Apache-Inria Projects ID-IMAG Laboratory

Universities of Grenoble

http://www-id.imag.fr

IN RIA

- 1. Motivations, simulation of Markov chains and availability
- 2. Markovian queueing networks
- 3. Perfect simulation
- 4. Events and monotonicity
- 5. PSI2 architecture
- 6. Examples and demo
- 7. Conclusion and future works

Modeling discrete event systems

Difficulties:

- complex structure synchronizations
- rare event probability estimation
- analytical/numerical method
- approximation/bounding techniques

 \Rightarrow reduction of the state space

Modeling discrete event systems

Difficulties:

- stopping criteria : burn in time
- simulation biases $||\pi_n \pi_\infty||$
- estimation biases : confidence intervals $\mathcal{O}(\frac{1}{\sqrt{n}})$

Modeling discrete event systems

Properties:

- Exact stopping criteria
 - \Rightarrow no simulation bias

Constraints:

- N parallel trajectories

Jean-Marc.Vincent@imag.fr - ACI SurePath - Paris - 14/10/04 - 5

Queueing systems models

Model of resource contention

Properties:

- Finite capacity queues
- Routing policies
- Blocking schemes
 - \Rightarrow estimation of losses and saturation
 - \Rightarrow rare events, availability

Basic model of resource contention : time (server) and memory (capacity)

Markovian queues :

- arrival Poisson process λ : +1 transition
- exponential service time μ : -1 transition
- Birth and Death process
 - \Rightarrow monotonous process

Basic queue : transition function

State space =
$$\{0, 1, \dots, C\}$$

Two types of events :
 $\Phi(x, arrival) = \min(x + 1, C)$
 $\Phi(x, departure) = \max(x - 1, 0)$
Monotonicity according to events :

$$x \leqslant y \Rightarrow \Phi(x, event) \leqslant \Phi(y, event)$$

Remark : link with the st-monotonicity

Network of queues : transition function

Queueing network

- K queues, capacity C_i for queue i
- State space
- $\mathcal{X} = \{0, \cdots, C_1\} \times \cdots \times \{0, \cdots, C_K\}$ Events : e_1, \cdots, e_m

$$\Phi(x, event) = next state$$

Iterated system of functions

 \mathcal{X} state space (size n); \mathcal{U} set of external input values Transition function Φ

If $\{U_n\}_{n\in\mathbb{Z}}$ is IID then

$$X_0 = x_0, \ X_{n+1} = \Phi(X_n, U_{n+1})$$

is a Markov chain (stochastic recursive sequence).

 $\{\Phi(.,u)\}_{u\in[0,1[}$

is an iterated system of function.

Reciprocally, given a transition matrix Q it is possible to build a family of function $\Phi(., u)$ such that the associated process is a markov chain with transition matrix Q. \implies Simulation kernel

Backward coupling simulation

Idea :

Propp & Wilson(1996)

- reverse time
- run N parallel trajectories
- wait for coupling.

$$\mathcal{Z}_n = \Phi(\Phi(\cdots(\Phi(\mathcal{X}, U_{-n+1}), \cdots), U_{-1}), U_0).$$

potential set of reachable states at step n

for all $x \in \mathcal{X}$ do $y(x) \leftarrow x$ end for repeat $u \leftarrow \text{Random};$ for all $x \in \mathcal{X}$ do $y(x) \leftarrow y(\Phi(x, u));$ end for until All y(x) are equal return y(x)

Jean-Marc.Vincent@imag.fr - ACI SurePath - Paris - 14/10/04 - 11

 $\mathcal{Z}_0 = \mathcal{X}$

$$\mathcal{Z}_0 = \mathcal{X}$$

$$\mathcal{Z}_0 = \mathcal{X}$$

 $\mathcal{Z}_1 = \{0000, 0010, 0100, 1000\}$

$$\mathcal{Z}_0 = \mathcal{X}$$

 $\mathcal{Z}_1 = \{0000, 0010, 0100, 1000\}$

 $\mathcal{Z}_0 = \mathcal{X}$

 $\mathcal{Z}_0 = \mathcal{X}$

Jean-Marc.Vincent@imag.fr - ACI SurePath - Paris - 14/10/04 - 25

Process stops when $|\mathcal{Z}_n| = 1$ Stopping time $\tau^* = 8$ Number of computation of Φ (complexity) : $n.\tau^*$

Backward coupling simulation

Proposition 1 (Propp & Wilson) If $\tau^* < +\infty$ a.s. then the returned value is stationary distributed.

Proof :

 $\{\mathcal{Z}_n\}_{n\in\mathbb{N}}$ is non-increasing and constant for n sufficiently large $\Phi(\Phi(\cdots(\Phi(\mathcal{X}, U_{-n+1}), \cdots), U_{-1}), U_0) \stackrel{\mathcal{L}}{\sim} \Phi(\Phi(\cdots(\Phi(\mathcal{X}, U_1), \cdots), U_{n-1}), U_n)$

<u>Remarks :</u> Stopping times τ and τ^* have the same law, τ depends on Φ coding (not only on the transition matrix !)

 \Rightarrow optimization problem

Partially ordered state space

 $\ensuremath{\mathcal{X}}$ is partially ordered :

- set \boldsymbol{M} of maximum
- set m of minimum
- example : vector and componentwise comparison

The global scheme is

Propp & Wilson : double period of simulation

Fill : interruptible forward algorithm

Monotonous Perfect

MONOTONICITY:

Propp & Wilson(1996)

- reverse time
- run parallel trajectories |M| + |m|
- wait for coupling.

$$\mathcal{Z}_n = \Phi(\Phi(\cdots(\Phi(M \cup m, U_{-n+1}), \cdots), U_{-1}), U_0)$$

potential set of reachable states from maxima and minima at time n.

n=0: repeat n=n+1; R[n]=Random; for all $x \in M \cup m$ do $y(x) \leftarrow x$ end for for i=n downto 1 do for all $x \in M \cup m$ do $y(x) \leftarrow \Phi(y(x), R[i])$ end for end for **until** All y(x) are equal return y(x)

Monotonous Perfect

MONOTONICITY:

Propp & Wilson(1996)

- reverse time
- run parallel trajectories |M| + |m|
- wait for coupling.

$$\mathcal{Z}_n = \Phi(\Phi(\cdots(\Phi(M \cup m, U_{-n+1}), \cdots), U_{-1}), U_0).$$

potential set of reachable states from maxima and minima at time n.

Optimal coupling time : complexity $\mathcal{O}(\mathbb{E} au)$

Storage of random sequence

n=1 repeat n=2n: for all $x \in M \cup m$ do $y(x) \leftarrow x$ end for for i=n downto n/2 do R[i]=Random; end for for i=n downto 0 do for all $x \in M \cup m$ do $y(x) \leftarrow \Phi(y(x), R[i])$ end for end for **until** All y(x) are equal return y(x)

Monotone routing (1)

Queueing network

- K queues, capacity C_i for queue i
- State space $\mathcal{X} = \{0, \cdots, C_1\} \times \cdots \times \{0, \cdots, C_K\}$
- event e

Routing strategy (overflow):

- origin queue i

```
- destination list j_1, \cdots, j_k
```

```
- rate \lambda_e
```

according to a state x event e route a customer from queue i to the first non-full queue in the list of destinations. If all destinations are full the customer is routed out of the network (rejection).

Proposition 2 The event *e* routing with rejection is monotonous.

 $x\leqslant y \ \Rightarrow \ \Phi(x,e)\leqslant \Phi(y,e)$

- If queue *i* is empty, nothing is done

- Arrival is a routing with overflow

Monotone routing (2)

Routing strategy (blocking):

- origin queue i
- destination list j_1, \cdots, j_k

- rate λ_e

according to a state x event e route a customer from queue i to the first non-full queue in the list of destinations. If all destinations are full the customer stay in its queue and run its service again.

Proposition 3 The event *e* routing with blocking is monotonous.

 $x\leqslant y \ \Rightarrow \ \Phi(x,e)\leqslant \Phi(y,e)$

- If queue i is empty, nothing is done
- destination list j_1, \cdots, j_k, i

Jean-Marc.Vincent@imag.fr-ACI SurePath-Paris-14/10/04-35

Monotone routing (3)

Routing strategy (JSQ):

- origin queue i
- destination list j_1, \cdots, j_k

- rate λ_e

according to a state x event e route a customer from queue i to the lowest non-full queue in the list of destinations. If all destinations are full the customer stay in its queue and run its service again or is rejected from the network.

Proposition 4 The event *e* routing with JSQ policy is monotonous.

 $x\leqslant y \ \Rightarrow \ \Phi(x,e)\leqslant \Phi(y,e)$

- If queue i is empty, nothing is done

Jean-Marc.Vincent@imag.fr-ACI SurePath-Paris-14/10/04-36

Each event is driven by a Poisson process

- λ_j rate of event e_j

Define $\Lambda = \sum \lambda_i$ the uniformized process with rate Λ With probability $\frac{\lambda_i}{\Lambda}$ event e_i occurs, if e_i is not admissible the transition is skipped.

Theorem 1 Markovian queueing networks with monotone routing policies have an uniformized version which is monotonous.

 \Rightarrow Monotonous Perfect Simulation

General architecture of $\Psi 2$

Model description specification : textual file

Coupling function : C file (optional)

Simulation parameters : textual file

Unix-like command : psi2_unix -i model.txt -o result.txt -p param.txt -c couplage.c

Example queue : model

```
#nombre de files
1
#capacite_des_files
10
#etat_initial_mini_des_files
0
#etat initial maxi des files
10
#nombre evenements
2
#tableau_des_evenements
#evt_id-evt_typ-taux-nb_fi_evt-origine-destin1-destin2-destina3
                0.4
0
        0
                        3
                              -1
                                        0
                                                -1
               1.7
                        2
1
        0
                               0
                                        -1
```


Example queue : param

```
#nombre_echantillons
10000
#taille_trajectoire_maxi
100000000
#germe_generateur
5
```


Example queue : result

<pre># numero d'echantillon ECHN # nombre d'iterations NBITER</pre>
etat final sup de la file de numero n EFSFN
etat final inf de la file de numero n EFIFN?
#ECHN: NBITER: EFSFN: 0 EFIFN: 0
#======================================
0 5 1 1
1 5 1 1
2 5 0 0
3 4 0 0
4 5 0 0
<pre># taille 5 duree d'un tirage : 136.200000 micro-secondes</pre>
valeur initiale du randomize 5

Validation

Analytical models :

- single queue
- erlang models
- \Rightarrow adequation statistical tests χ^2

Interconnexion networks

Interconnexion networks

Results

```
# taille 1000 duree d'un tirage : 135911.287000 micro-secondes
# valeur initiale du randomize 5
Coupling time : 2^{17} with probability 0.45 and 2^{18} with probability 0.55
Marginal distributions
Queue 63
```

"hist32-file63"

Conclusion (1)

Theoretical results :

- reverse scheme + contracting operator
- coupling condition
- monotonous transitions
- functional reduction
- Algorithmic results:
 - generic representation of QN
 - guaranteed coupling algorithm
 - compact representation

- **Experimental results**
- complexity reduction
- significant results (depending on the diameter and the coding of the network and capacities

Conclusion (2)

Software tool: PSI 2 : Perfect Simulator

http://www-id.imag.fr/Software/PSI2/

unix command / with a simple interface

psi2_unix -i example.txt -p param.txt -c cost.c -o example.out

example.cost associates to each state its cost

generates samples of costs stationary distributed (example.sample)

Future works

Theoretical improvements:

- deeper understanding of Φ properties and the spectrum of the transition matrix
- evaluation or bounds on the coupling time
- Algorithmic perspectives:
 - storage of random sequences,
 - memory utilization,
 - parallelization
- Model based approach :
 - generalization to other modelling frameworks (QN, SAN, GSPN, PA,...)
 - non-monotone events
 - model properties : monotonicity, reversibility,...
- Experimental results
 - find limit models
 - significant results (estimation of rare events probability)
 - more examples

