On the exact simulation of functionals of stationary Markov chains

J-M. Vincent

Decore-Imag and Apache-Inria Projects ID-IMAG Laboratory

Universities of Grenoble

http://www-id.imag.fr

IN RIA

Jean-Marc.Vincent@imag.fr - ACI SurePath - Rennes - 27/11/03 - 1

- 1. Motivations, simulation of Markov chains
- 2. Backward coupling techniques
- 3. Functional backward coupling
- 4. Implementation
- 5. Examples
- 6. Conclusion and future works

Jean-Marc.Vincent@imag.fr-ACI SurePath-Rennes-27/11/03-2

Modeling discrete event systems

Difficulties:

- complex structure
- large state space
- analytical/numerical method
- approximation/bounding techniques

 \Rightarrow reduction of the state space

Modeling discrete event systems

Difficulties:

- stopping criteria : burn in time
- simulation biases $||\pi_n \pi_\infty||$
- estimation biases : confidence intervals $\mathcal{O}(\frac{1}{\sqrt{n}})$

Modeling discrete event systems

Properties:

- Exact stopping criteria
 - \Rightarrow no simulation bias

Constraints:

- N parallel trajectories

Jean-Marc.Vincent@imag.fr - ACI SurePath - Rennes - 27/11/03 - 5

Iterated system of functions

 \mathcal{X} state space (size n); \mathcal{U} set of external input values Transition function Φ

If $\{U_n\}_{n\in\mathbb{Z}}$ is IID then

$$X_0 = x_0, \ X_{n+1} = \Phi(X_n, U_{n+1})$$

is a Markov chain (stochastic recursive sequence).

 $\{\Phi(.,u)\}_{u\in[0,1[}$

is an iterated system of function.

Reciprocally, given a transition matrix Q it is possible to build a family of function $\Phi(., u)$ such that the associated process is a markov chain with transition matrix Q. \implies Simulation kernel

Problem : several representation of Q

Representations examples

Forward simulation

Problems :

- choice of the initial state
- choice of stopping criterium
- error computation (bias)

Forward simulation

 $x \leftarrow x_0;$

repeat

 $u \leftarrow \mathsf{Random};$

$$x \leftarrow \Phi(x, u);$$

until stopping criterium return *x* compute statistics

Forward coupling simulation

Problems :

- generated state y(x)

does not follow the stationary distribution

Coupling time τ

 $\tau = \min\{n \in \mathbb{N}, |\Phi(\Phi(\cdots(\Phi(\mathcal{X}, U_1), \cdots), U_{n-1}), U_n)| = 1\}$

- Is au almost surely finite ? $\mathbb{P}(au < +\infty) = 1$?

Forward coupling algorithm

for all $x \in \mathcal{X}$ do $y(x) \leftarrow x$ end for repeat $u \leftarrow \text{Random};$ for all $x \in \mathcal{X}$ do $y(x) \leftarrow \Phi(y(x), u);$ end for until All y(x) are equal return y(x)

Backward coupling simulation

Idea :

Propp & Wilson(1996)

- reverse time
- run N parallel trajectories
- wait for coupling.

$$\mathcal{Z}_n = \Phi(\Phi(\cdots(\Phi(\mathcal{X}, U_{-n+1}), \cdots), U_{-1}), U_0).$$

potential set of reachable states at step n

for all $x \in \mathcal{X}$ do $y(x) \leftarrow x$ end for repeat $u \leftarrow \text{Random};$ for all $x \in \mathcal{X}$ do $y(x) \leftarrow y(\Phi(x, u));$ end for until All y(x) are equal return y(x)

Jean-Marc.Vincent@imag.fr - ACI SurePath - Rennes - 27/11/03 - 10

$$\mathcal{Z}_0 = \mathcal{X}$$

$$\mathcal{Z}_0 = \mathcal{X}$$

$$\mathcal{Z}_0 = \mathcal{X}$$

 $\mathcal{Z}_1 = \{0000, 0010, 0100, 1000\}$

$$\mathcal{Z}_0 = \mathcal{X}$$

 $\mathcal{Z}_1 = \{0000, 0010, 0100, 1000\}$

Jean-Marc.Vincent@imag.fr – ACI SurePath – Rennes – 27/11/03 – 15

 $\mathcal{Z}_0 = \mathcal{X}$

Jean-Marc.Vincent@imag.fr - ACI SurePath - Rennes - 27/11/03 - 22

Jean-Marc.Vincent@imag.fr - ACI SurePath - Rennes - 27/11/03 - 24

Process stops when $|\mathcal{Z}_n| = 1$ Stopping time $\tau^* = 8$ Number of computation of Φ (complexity) : $n.\tau^*$

Backward coupling simulation

Proposition 1 (Propp & Wilson) If $\tau^* < +\infty$ a.s. then the returned value is stationary distributed.

Proof :

 $\{\mathcal{Z}_n\}_{n\in\mathbb{N}}$ is non-increasing and constant for n sufficiently large $\Phi(\Phi(\cdots(\Phi(\mathcal{X}, U_{-n+1}), \cdots), U_{-1}), U_0) \stackrel{\mathcal{L}}{\sim} \Phi(\Phi(\cdots(\Phi(\mathcal{X}, U_1), \cdots), U_{n-1}), U_n)$

<u>Remarks :</u> Stopping times τ and τ^* have the same law, τ depends on Φ coding (not only on the transition matrix !)

 \Rightarrow optimization problem

Functional backward coupling

Idea:

- Directly compute the cost function \boldsymbol{C}
- Same backward scheme
- wait for coupling
- stopping time au_C^*

$$\tau_C^* \le \tau^* \ a.s.$$

 \Rightarrow speedup

 $\mathcal{Z}_n^C = C(\Phi(\Phi(\cdots(\Phi(\mathcal{X}, U_{-n+1}), \cdots), U_{-1}), U_0)). \quad \text{return}$

potential set of reachable costs at step n

for all $x \in \mathcal{X}$ do $y(x) \leftarrow C(x)$ end for repeat $u \leftarrow \text{Random};$ for all $x \in \mathcal{X}$ do $y(x) \leftarrow y(\Phi(x, u));$ end for until All y(x) are equal return y(x)

Jean-Marc.Vincent@imag.fr-ACI SurePath-Rennes-27/11/03-30

Backward functional simulation

$$\mathcal{Z}_0^C = \{0,1\}$$

Jean-Marc.Vincent@imag.fr - ACI SurePath - Rennes - 27/11/03 - 31

Backward functional simulation

Backward functional simulation

Is the coupling time reduction significant?

Implementation considerations

 Φ coding : choice of a representation

- Sparse description of Markov generators (m non negative elements)
- Discretization (Uniformization)
- Aliasing table
- Coupling condition

General architecture of Ψ

- * Walker (1974) algorithm \Rightarrow discrete distribution simulation.
- * Pre-computation : alias tables : threshold and alias valuse .

Algorithm :

```
u \leftarrow Random;
```

```
v \leftarrow Random;
```

```
ind \leftarrow (int)N * u;
```

```
If (v \leq Seuil[ind]) then return ind; {standard value.}
else return Alias[ind]; {alias value.}
```

endif;

X r.v. defined on $\{0,\ldots,5\}$ by :

$$\mathbb{P}(X=0) = \mathbb{P}(X=3) = \mathbb{P}(X=5) = 0.1$$

X r.v. defined on $\{0,\ldots,5\}$ by :

$$\mathbb{P}(X=0) = \mathbb{P}(X=3) = \mathbb{P}(X=5) = 0.1$$

X r.v. defined on $\{0,\ldots,5\}$ by :

$$\mathbb{P}(X = 0) = \mathbb{P}(X = 3) = \mathbb{P}(X = 5) = 0.1$$

X r.v. defined on $\{0,\ldots,5\}$ by :

$$\mathbb{P}(X=0) = \mathbb{P}(X=3) = \mathbb{P}(X=5) = 0.1$$

X r.v. defined on $\{0,\ldots,5\}$ by :

$$\mathbb{P}(X=0) = \mathbb{P}(X=3) = \mathbb{P}(X=5) = 0.1$$

X r.v. defined on $\{0,\ldots,5\}$ by :

$$\mathbb{P}(X=0) = \mathbb{P}(X=3) = \mathbb{P}(X=5) = 0.1$$

Coupling property

Exchange of columns or thresholds give an equivalent representative

Irreducibility \implies there exists a spanning tree conducting to a single state where coupling occurs.

Equivalent representation

Coupling property

Exchange of columns or thresholds give an equivalent representative

Irreducibility \implies there exists a spanning tree conducting to a single state where coupling occurs.

Equivalent representation

$$\mathbb{P}(\tau^* < +\infty) = 1.$$

 τ is geometrically bounded, so τ^* and $\tau^*_C.$

Examples

- Functionality tests : "random transition matrices"
- Resource sharing model : statistical verification
- Overflow model : sparsity and gain

Random transition coefficients:

Number of states	10	100	500	1000	3000
Mean coupling time	3.1	4.5	5.3	5.7	6.1
Mean execution time μ s	3	17	170	360	1100

Pentium III 700MHz and 256Mb memory. Sample size 10000. Remarks:

- very small coupling time

- Coefficients : same order of magnitude, aliasing enforces coupling

Comparison with birth and death process :

Number of states	10	100	500	1000	3000
Mean coupling time	41	557	2850	5680	17000
Mean execution time μ s	28	1800	88177	366000	3.5s
Pomarka:					

Remarks:

- large coupling time
- sparse matrix, large graph diameter

Resource sharing model

P resources *N* users; state = (x_1, \dots, x_N) ; access constraint $f = (\sum x_i < P)$ product form solution \Rightarrow statistical validation

Overflow model

K servers, priority on overflows input rate λ , different service rate state $(x_1, \dots, x_K), x_i \in \{0, 1\},$ size ~ 130000 low diameter non product-form structure, Parameter | Value

Parameter	Value		
minimum	113		
maximum	1794		
median	465		
mean	498		
Std	180		
exponential tail, low mean value			

Overflow model (2)

Marginal probabilities estimation

$$\mathbb{P}(X_i = 1)$$

Marginal distribution of the occupied servers

Overflow model (3)

Functional coupling time

- gain 20% for the first marginals
- utilization : best reduction

Conclusion (1)

Theoretical results :

- reverse scheme + contracting operator
- coupling condition
- functional reduction
- Algorithmic results:
 - general coding of a chain
 - guaranteed coupling algorithm
 - compact representation
- Experimental results
 - complexity reduction
 - significant results (depending on the diameter and the coding of the chain)

Conclusion (2)

```
Software tool: PSI : Perfect Simulator
```

```
http://www-id.imag.fr/Software/PSI/

Two versions : unix command / with a simple interface

psi_alias -i example.marca -o example

generates alias tables (example.simu)

psi_sample -i example.simu -d sample-size -c example.cost -o

example

example.cost associates to each state its cost

generates samples of costs stationary distributed (example.sample)
```


Future works

Theoretical improvements:

- deeper understanding of Φ properties and the spectrum of the transition matrix
- evaluation or bounds on the coupling time
- Algorithmic perspectives:
 - building of alias table,
 - transform of alias table,
 - parallelization
- Model based approach :
 - structuration of the matrix : adapted strategies (QN, SAN, GSPN, PA,...)
 - model properties : monotonicity, reversibility,...
- Experimental results
 - find limit models : (ex Birth and death)
 - significant results (depending on the diameter and the coding of the chain)
 - huge models (size 2^{22})

