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Abstract

Much attention has been paid recently to the use of Kronecker or tensor product modelling
techniques for evaluating the performance of parallel and distributed systems. While this approach
facilitates the description of such systems and mimimizes memory requirements, it has suffered in the
past from the fact that computation times have been excessively long. In this paper we propose a suite
of modelling strategems and numerical procedures that go a long way to alleviating this drawback.
Of particular note, are the benefits obtained by using functional transitions that are implemented via
a generalized tensor algebra. Examples are presented which illustrate the reduction in computation
time as each suggested improvement is deployed.

Key words: Markov chains, Stochastic automata networks, Generalized tensor algebra, Vector-descriptor
multiplication.

1 Introduction

Stochastic processes in general, and Markov chains in particular, constitute a modeling paradigm that
has broad applicability to many branches of science and engineering. Markov chain models have been
proposed as an effective tool for analyzing a great variety of systems. However, their use has not been
as widely accepted as one would have hoped or expected. This is an unfortunate situation since the
theory and application of Markov chain techniques constitute a unifying theme in the application of
mathematics to many problems in biology, engineering, economics, physical science, and social science; the
numerical computation of stationary and transient probabilities associated with large scale applications is
a fundamental concern. A major reason for this is the well-known state-space explosion problem, whereby
even simply stated models generate huge numbers of states. This leads to computational difficulties, both
from the point of view of memory requirements (for storing the states, transition matrix and solution/work
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vectors) and from the point of view of computation time, since large state-space models frequently require
large amounts of time to compute transient and/or stationary distributions.

These obstacles were apparent from the very first modeling packages. Indeed, when Wallace and
Rosenberg [37] presented their RQA-1 (Recursive Queue Analyzer) software package in 1966, they incor-
porated a compact storage scheme that took advantage of the special structure of the transition matrices
their package could handle. Wallace and Rosenberg identified within the nonzero structure of the matrix,
linear patterns (generally parallel to the diagonal) in which the elements were all identical. They then
represented all these elements by specifying a nonzero value and the beginning and ending position of
the linear structure in the matrix. The numerical solution method used was the power method of Von
Mises. There has been much progress since 1966 both in terms of storage requirements and numerical
solution techniques. Novel ways of model representation were developed and these in turn instigated
further savings in storage and computation time. Chief among these are stochastic Petri nets (SPNs)
and stochastic automata networks (SANs). Each of these approaches has benefited from advances in the
other.

Stochastic Petri nets, and later Generalized SPNs (GSPNs) and Superposed GSPNs have a Markov
chain as their underlying stochastic structure, [1, 11, 12, 17, 18, 25]. This Markov chain may be stored in
any number of ways. Memory efficient implementations favor an implementation that is based either on
a Kronecker product formalism or on a structured tree format such as binary decision diagrams (BDDs)
[4, 5, 34], Multi-Terminal BDDs (MTBDDs) [23] and matrix diagrams [15, 28]. Using these techniques, the
transition matrix can be stored extremely compactly, to such an extent, indeed that memory requirements
for this matrix is negligible. These efficient means for storing the transition matrix may be accompanied
with efficient techniques for storing the state space of the Markov chain [13, 14, 29]. The state space is
required during the matrix generation phase and again after stationary or transient solutions have been
found in order to relate computed stationary or transient measures to the initial model itself. The only
remaining storage sink is the solution vector itself, plus work vectors that are used in computing solution
vectors. Some numerical solution methods (e.g., Gauss-Seidel, [38]) need only a single vector (although
for slowly converging processes it may be necessary to keep the computed approximation from several
tens of iterations prior to the current iterate) and even here some recent work aims to mimimize this in
certain types of model, specifically those that can be represented as Kronecker products.

Stochastic Automata Networks (SANs) have been discussed in the literature for over a decade, [7, 17,
20, 22, 24, 30, 31, 32]. It has been observed that they provide a natural means of describing parallel and
distributed systems. Each component of the system is represented by a separate, low-order matrix which
describes, probabilistically, how this component makes a transition from one possible state to another.
Thus, if a component were completely independent, its representing matrix would define a Markov chain
whose evolution in time mimics that of the component. Since components generally do not function
independently of each other, information must also be provided which details their interaction. For
example, the actions of one component might be synchronized with those of another, or again the behavior
of one component might depend on (i.e., be a function of) the internal state of a second component.

With this information, it is of course possible to construct a global matrix representing the entire
system, to manage this global matrix in a compacted format and to apply sparse matrix technology
to obtain both transient and stationary distributions from which all manners of system performance
measures may be derived. However, the key element of the SAN approach is that a global matrix is never
generated. The individual component matrices and information concerning component interactions are
combined into what is called the SAN Descriptor, and is written as a sum of tensor products.

The SAN descriptor approach keeps memory requirements within manageable limits and avoids the
state space explosion associated with some state based approaches. We wish to stress that in order to
benefit from this compact form, the descriptor is never expanded into a single large matrix. Consequently,
all subsequent operations must necessarily work with the model in its descriptor form and hence numerical
operations on the underlying Markov chain transition matrix become more costly. Previously, this cost
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was sufficiently high to discourage the application of SAN technologies. Recent results obtained by
the authors and others [9, 10, 21] will most likely change this situation. In this paper we show how
the application of successive modelling strategems and numerical savoir-faire reduce the time needed
to compute stationary distributions by several orders of magnitude, thereby reducing considerably this
perceived disadvantage.

In the next section, we shall describe SANs more formally and introduce a number of results and
theorems of which we shall have need in this paper. Section 3 presents a suite of approaches for reducing
computational costs and memory requirements. In particular, we shall emphasize the essential role that
functional transitions play in this scenario, and introduce new forms of the basic shuffle algorithm that
works exclusively with vectors that are the size of the reachable state space. We shall also consider some
reordering strategies and the effect of grouping large numbers of very small automata into a much fewer
number of larger automata. We also briefly describe our efforts in attempting to derive preconditioners
for a number of iterative solution methods. Section 4 describes two rather different types of model,
a resource sharing model and a queueing network model, on which the various strategies described in
Section 3 are tested. In the final section, we discuss the results obtained and exhibit the benefits that
can be obtained from the complete suite of time-reducing strategies.

2 Stochastic Automata Networks

A SAN is a set of automata whose dynamic behavior is governed by a set of events. Events are said to
be local if they provoke a transition in a single automaton, and synchronizing if they provoke a transition
in more than one automaton. It goes without saying that a single event can generate more than one
transition. A transition that results from a synchronizing event is said to be a synchronized transition;
otherwise it is called a local transition. We shall denote the number of states in automaton i by ni and
we shall denote by N the number of automata in the SAN.

The behavior of each automaton, A(i), for i = 1, . . . , N , is described by a set of square matrices, all
of order ni. In our context, a SAN is studied as a continuous-time Markov chain. The rate at which
event transitions occur may be constant or may depend upon the state in which they take place. In this
last case they are said to be functional (or state-dependent). Synchronized transitions may be functional
or non-functional. Functional transitions allow a system to be modeled as a SAN using fewer automata
and fewer synchronizing transitions. In other words, if functional transitions cannot be handled by the
modelling techniques used, then a given system may be modeled as a SAN if additional automata are
included and these automata are linked to others by means of synchronizing transitions.

In the absence of synchronizing events and functional transitions, the matrices which describe A(i)

reduce to a single infinitesimal generator matrix, Q(i), and the global Markov chain generator may be
written as

Q =
N⊕

i=1

Q(i) =
N∑

i=1

In1 ⊗ · · · ⊗ Ini−1 ⊗Q(i) ⊗ Ini+1 ⊗ · · · ⊗ InN
. (1)

The tensor sum formulation is a direct result of the independence of the automata, and the formulation
as a sum of tensor products, a result of the defining property of tensor sums, [16]. The probability
distribution at any time t of this independent N -dimensional system is known to be

π(t) =
N⊗

i=1

π(i)(t). (2)

Now consider the case of SANs which contain synchronizing events but no functional transitions and
let us denote by Q

(i)
l , i = 1, 2, . . . , N , the matrix consisting only of the transitions that are local to A(i).

Then, the part of the global infinitesimal generator that consists uniquely of local transitions may be
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obtained by forming the tensor sum of the matrices Q
(1)
l , Q

(2)
l , . . . , Q

(N)
l . As is shown in [30], stochastic

automata networks may always be treated by separating out the local transitions, handling these in
the usual fashion by means of a tensor sum and then incorporating the sum of two additional tensor
products per synchronizing event. The first of these two additional tensor products may be thought of
as representing the actual synchronizing event and its rates, and the second corresponds to an updating
of the diagonal elements in the infinitesimal generator to reflect these transitions. Equation (1) becomes

Q =
N⊕

i=1

Q
(i)
l +

∑
e∈E

(
N⊗

i=1

Q
(i)
e+ +

N⊗
i=1

Q
(i)
e−

)
. (3)

Here E is the set of synchronizing events. Furthermore, since tensor sums are defined in terms of a matrix
sum of tensor products, the infinitesimal generator of a system containing N stochastic automata with
E synchronizing events (and no functional transition rates) may be written as

Q =
2E+N∑

j=1

N⊗
i=1

Q
(i)
j . (4)

This formula is referred to as the descriptor of the stochastic automata network.
Let us momentarily return to equation (3) to consider how best to handle the diagonal elements

of Q. Since the numerical methods used to compute solutions of SANs are usually iterative, the most
important operation is that of multiplying the descriptor with a vector and hence it is essential to keep
the cost of this multiplication to a minimum. One way to reduce costs is to precompute the diagonal of
the descriptor. In this case, the descriptor may be considered as being composed of two parts:

• D, a vector containing the diagonal of the descriptor

• Q̄, the descriptor itself with the exception that all the diagonal elements of the matrices of each
tensor product term are set to zero.

From a practical point of view, this is most easily accomplished by setting all the diagonal elements of
local matrices Q

(i)
l to zero. In each tensor product term corresponding to a synchronizing event e, the

diagonal elements of the matrices corresponding to the automaton which “owns” this event must also be
set to zero. A second advantage of this astuce now becomes apparent. Normally each synchronizing event
generates two tensor product terms. The first term contains the rates of occurrence of the synchronizing
event and the second contains exclusively the elements with which to adjust the diagonal. This second
term, once computed, only generates elements on the diagonal of the descriptor. Precomputing the
diagonal therefore allows us to eliminate the second tensor product term of each synchronizing event
thereby reducing the number of terms requiring manipulation during the multiplication phase. The
diagonal elements arising from synchronization terms are added to the diagonal elements corresponding
to the tensor sum part of the descriptor and the number of tensor product terms in the descriptor is
reduced from 2E + N to E + N . Precomputing the diagonal brings about even greater savings when
the descriptor has functional elements, since the evaluation of functions on the diagonal must all be
precomputed, but only once.

Precomputation of the diagonal does have a cost associated with it, although this cost manifests itself
only once, namely, during the preparation of the descriptor. On the other hand, the benefits derived
from this approach occur each time a vector–descriptor product is computed. A second disadvantage
of this approach is the necessity of storing the diagonal elements themselves. Since the representation
of the matrix is extremely small, this has the effect of almost doubling the amount of memory needed.
However, the augmentation in memory use nevertheless remains low compared to the needs of storing
the entire matrix using sparse matrix technology. To counterbalance these inconveniences, this approach
provides rapid access to the diagonal of the descriptor with the resulting advantages of
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- Easy computation of the largest element of the descriptor, since, given that the descriptor is a
representation of the infinitesimal generator, the largest element will always be found along the diagonal.

- Ease of use for implementing certain preconditioning techniques, which, as we shall see later, require
access to the diagonal.

Now consider the effect of introducing functional transitions into SANs. It should be apparent that
the introduction of functional transition rates has no effect on the structure of the global transition
rate matrix other than when functions evaluate to zero in which case a degenerate form of the original
structure is obtained. In other words, the placement of zero versus nonzero elements essentially remains
unchanged. What may change is the value of nonzero elements. The nonzero structure of the SAN
descriptor is just as before (except in the case when a function evaluates to zero but even here, the sparse
data structures used need not be altered). However, because of possible value changes, the usual tensor
operations are no longer valid. Since regular tensor products are unable to handle functional transitions
it is necessary to use a Generalized Tensor Algebra, (GTA) [20], to overcome this difficulty. In particular,
this GTA provides some associativity, commutativity, distributivity and compatibility over multiplication
properties that enable the descriptor of a SAN with synchronizing events and functional transitions to be
handled with algorithms almost identical to those of SANs with no functional transitions. We shall use
B[A] to denote a matrix B, associated with the automaton B, which may contain transitions that are a
function of the state of the automatonA; A(m)[A(1),A(2), . . . ,A(m−1)] indicates that the matrix A(m) may
contain elements that are a function of one or more of the states of the automata A(1),A(2), . . . ,A(m−1).
The notation ⊗g denotes a generalized tensor product. Thus A ⊗g B[A] denotes the generalized tensor
product of the matrix A (having only constant entries) with the functional matrix B[A].

With this background information, we are now ready to explore a suite of approaches destined to
minimize memory requirements and computational burden of applying the SAN modelling concepts.

3 A Suite of Approaches for Reducing Computation Costs

3.1 Functional Transitions via Generalized Tensor Algebra

In real systems, most events do not simply occur of and by themselves. They occur as a result of activities
and constraints that, if not global to the system are, at a minimum, dependent on various aspects of
it. In other words, they are functions of the state of different components in the system. Thus it is
natural when building mathematical models of complex systems to include transitions that are functions
of the different components. Although this is the most natural manner with which to model functional
transitions, it is not the only way.

We can always create a model without functional transitions, but this implies a possibly substantial
increase in the number of automata and synchronizing transitions needed. Each different function often
requires one additional automaton and a synchronizing transition for each automaton associated with
the function.

There is yet another reason why we should work with functional transitions. The incorporation of
functional transitions into SANs generally leads to a small number of matrices that are relatively full. On
the other hand, avoiding functional transitions using additional automata and synchronizing events leads
to many very sparse matrices. Given that the SAN approach is especially effective when the matrices
are full, (Indeed, for a large number of sparse matrices, the SAN approach is less effective than a general
sparse matrix, [20]), it behooves us to work with functional transitions whenever possible.

However, we saw in Section 2 that to permit the use of functional transitions in SANs, it is necessary
to work with a generalized tensor algebra. It now remains to examine the cost of using this generalized
tensor approach. When the matrices which represent the automata contain only constant values and are
full, the cost of performing the operation basic to all iterative solution methods, that of matrix-vector
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multiply, or in this case, the product of a vector with the SAN descriptor, is given by

ρN =
N∏

i=1

ni ×
N∑

i=1

ni, (5)

where ni is the number of states in the ith automaton and N is the number of automata in the network.
When the matrices are sparse, the cost is even less. In [20] it is shown that for sparse matrices, the
complexity is of the order of

N∑
i=1

zi

N∏
i=1,i 6=j

ni =
N∏

i=1

ni

N∑
j=1

zj

nj
, (6)

where zi denotes the number of nonzero entries in Q(i). To compare this complexity with a global sparse
format, the number of nonzero entries of ⊗N

i=1Q
(i) is

∏N
i=1 zi. It is hard in general to compare the

two numbers
∏N

i=1 zi and
∏N

i=1 ni

∑N
j=1

zj

nj
. Note however that if all zi = N1/(N−1)ni, both orders of

complexity are equal1. If all matrices are sparse (e.g., below this bound), the sparse approach is probably
better in terms of computation time. This remark is valid for a single tensor product. For a descriptor
which is a sum of tensor products and where functions in the matrices Q(i) may evaluate to zero, it is
hard to compute, a priori, the order of complexity of each operation.

The savings are due to the fact that once a partial product is formed, it may be used in several places
without having to re-do the multiplication, [36]. With functional rates, the elements in the matrices may
change according to their context so it is conceivable that this same savings is not always be possible.
It was observed in [36] that in the case of two automata A and B with matrix representations A and
B[A] respectively, the number of multiplications needed to premultiply A⊗B[A] with a vector x remains
identical to the nonfunctional case and moreover, exactly the same algorithm could be used. Furthermore,
it was also observed that when A contains functional transition rates, but not B, the computation could
be rearranged (via permutations) to compute x(A[B] ⊗ B) in the same small number of multiplications
as the nonfunctional case. When both contained functional transition rates (i.e., functions of each other)
no computational savings appeared to be possible.

3.2 A Reduced Memory Shuffle Algorithm

SANs allow Markov chains models to be described in a memory efficient manner because their storage
is based on a tensor structure (descriptor). However, the use of independent components connected
via synchronizations and functions may produce a representation with many unreachable states. In the
following, we denote by PSS the product state space, and by RSS the reachable state space.

Within this tensor (Kronecker) framework, a number of algorithms have been proposed to compute
the product of a probability vector and the descriptor. The first and perhaps best-known, is the shuffle
algorithm [2, 19, 20], which computes the product but never needs the matrix explicitly. However, this
algorithm needs to use “extended” vectors π̂ with the size of PSS. This algorithm is denoted E-Sh, for
extended shuffle. When there are many unreachable states (|RSS| � |PSS|), E-Sh is not efficient,
because of its use of extended vectors. The probability vector can therefore have many zero elements,
since only states corresponding to reachable states have nonzero probability. Moreover, computations
are carried out for all the elements of the vector, even those elements corresponding to unreachable
states. Therefore, the computation gain obtained by exploiting the tensor formalism can be ruined if
many useless computations are performed, and memory is used for states whose probability is always, by
definition of unreachable states, zero.

The use of reduced vectors (vectors π which contains entries only for reachable states, i.e., vectors
of size |RSS|) allows a reduction in memory needs, and some useless computations are avoided. This

1The value N1/(N−1) lies between 1 and 2
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leads to significant memory gains when using iterative methods such as Arnoldi or GMRES which can
possibly require many probability vectors. A modification to the E-Sh shuffle algorithm permits the use
of such vectors. However, to obtain good performance at the computation-time level, some intermediate
vectors of size PSS are also used. An algorithm described in [2] allows us to save computations by taking
into account the fact that the probabilities corresponding to non-reachable states are always zero in the
resulting vector. This partially reduced computation corresponds to the algorithm called PR-Sh.
However, the savings in memory turns out to be somewhat insignificant for the shuffle algorithm itself.
In most cases, this algorithm performs |RSS| multiplications of a vector slice by a column of a matrix,
instead of the |PSS| multiplications required by E-Sh. However, sometimes we cannot reduce the number
of computations when there are synchronizations in the model. From a memory point of view, there is no
real gain even if we use vectors the size of RSS, because the algorithm uses intermediate data structures
whose size is PSS.

A final version of the shuffle algorithm concentrates on the amount of memory used, and allows us
to handle even more complex models. This fully reduced computation corresponds to the algorithm
called FR-Sh. This algorithm is described in [3]. In this new algorithm, all intermediate data structures
are stored in reduced format. Two arrays of size RSS must be used to keep all information, instead
of one array the size of PSS. This algorithm will be more efficient in terms of memory only when less
than half of states are reachable. As far as computation time is concerned, the number of multiplications
is reduced to the order of |RSS| ×

∑N
j=1

zj

nj
. However, we introduce some supplementary costs, most

notably, the cost of a sort which could reach O(|RSS|log(|RSS|)).

3.3 Further Strategies for Reducing Vector–Descriptor Computation Costs

We saw in Section 3.1 that generalized tensor product algorithms are available that, in most cases, keep
the cost of multiplying a vector with a tensor product to that of the usual nongeneralized case. This
is most important in the presence of functional transitions, which would otherwise require considerably
more terms. However, it should be borne in mind that a SAN descriptor is a sum of tensor products. In
this section we recommend two different procedures which when implemented reduce the computational
costs of forming the product of a vector with a complete SAN descriptor. The first concerns the manner
in which normal factors should be processed; the second is that of automata grouping.

3.3.1 Re-ordering Normal Factors

Generally, in a descriptor, there are terms with functions and terms without functions; furthermore the
function arguments have various forms. It is obvious that when a term includes functions, it incurs an
overhead. This cost is mainly due to:

a. The computation of individual automata states (the arguments) from a global state index,

b. The function evaluation itself knowing the individual automata states,

c. The number of these evaluations.

The actual cost of all three of these is model dependent. However, the number of these evaluations and
the cost may be reduced as shown below.

Remark

The operators ⊗ and ⊕ are not commutative. However, we shall have need of a pseudo-commutativity
property that may be formalized as follows. Let σ be a permutation of the set of integers [1, 2, . . . , N ].
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Then there exists a permutation matrix, Pσ, of order
∏N

i=1 ni, such that

N⊗
i=1

A(i) = Pσ

N⊗
i=1

A(σ(i))PT
σ .

A proof of this property may be found in [32] wherein Pσ is explicitly given. Intuitively, the Pσ trans-
formation boils down to considering the probability vector entries according to different lexicographic
orders. PT

σ is the transpose (and inverse) of this permutation matrix. In the sequel, we assume that,
using a permutation σ, the tensor product is well ordered as given in [20].

Algorithms

We have tested different algorithms based on the algorithm E-Sh without functional elements to show
how we can use reordering in order to develop improved algorithms. The basic version is an algorithm
without normal factor permutations. The function evaluations are performed in an inner loop (the so-
called r loop, see [2, 3]). The cost of function evaluations can be reduced by choosing an appropriate
order for each normal factor. If we use a permutation, we minimize the number of function evaluations by
moving all the function evaluations out of the inner r loop. Evaluation takes place only when a parameter
value has changed (in the l loop, in the terminology of [2, 3]). This improved algorithm reorders each
normal factor, for all terms of the descriptor.

A final algorithm applies the reordering of each normal factor, if and only if necessary. Indeed, the
choice of the multiplication procedure may be different for each tensor term. We wish to point out two
simple cases in which the number of function evaluations cannot be reduced. The first occurs if the
ranking 1, . . . , N is best; the second when there is a single functional normal factor whose parameters are
all the other automata. These features are discussed in detail in [2].

3.3.2 Automata Grouping

We now examine a computation-saving strategy that is based on the reduction of a SAN to an equivalent
SAN having fewer automata. The concept of equivalence is made by means of an algebraic transformation
of the infinitesimal generator to which the SAN corresponds. As we have seen, the descriptor of a well
defined SAN may be written as

Q =
N⊕

i=1

g Q
(i)
l +

∑
e∈E

[
N⊗

i=1

g Q
(i)
e+ +

N⊗
i=1

g Q
(i)
e−

]
. (7)

Let us now define B groups called b1, . . . , bB and, without loss of generality, let us suppose that the
group bi is composed of indices [ci + 1, . . . , ci+1] with c1 = 0 and cB+1 = N . Thus b1 = [1, . . . , c2],
b2 = [c2 + 1, . . . , c3], . . ., and bB = [cB + 1, . . . , N ]. Letting di = ci + 1 and using the associativity of
generalized tensor sums and products, the descriptor may be rewritten as

Q =
B⊕

i=1

g

ci+1⊕
j=di

g Q
(j)
l

+
∑
e∈E

 B⊗
i=1

g

ci+1⊗
j=di

g Q
(j)
e+

+
B⊗

i=1

g

ci+1⊗
j=di

g Q
(j)
e−


Let us define the following matrices

R
(i)
l =

ci+1⊕
j=di

g Q
(j)
l
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R
(i)
e+ =

ci+1⊗
j=di

g Q
(j)
e+

R
(i)
e− =

ci+1⊗
j=di

g Q
(j)
e−

By definition, these matrices correspond to a grouped automata, which we shall call G(i), of a SAN that
is equivalent to the one defined in (7), i.e.,

Q =
B⊕

i=1

g R
(i)
l +

∑
e∈E

[
B⊗

i=1

g R
(i)
e+ +

B⊗
i=1

g R
(i)
e−

]
(8)

The product state space of each automata G(i) is
∏ci+1

j=di
nj . This purely algebraic formulation is the basis

for a computation reducing strategy obtained by grouping automata. Grouping may be used to achieve
a number of objectives including those of

- Eliminating synchronizing events
- Eliminating functional transitions
- Reducing the size of the state space

Grouping can bring about many benefits. The limit of this process is a single automaton containing all
the states of the Markov chain. However we do not wish to go to this extreme. Observe that just four
automata each of order 100 brings us to the limit of what is currently possible to solve using regular
sparse matrix techniques yet memory requirements for four automata of size 100 remain modest. More
details may be found in [33].

3.4 Projection Methods and Preconditioning for Sums of Tensor Product
Matrices

In searching to minimize computation time, we first examined how the use of functional transitions can
keep SAN models relatively simple without increasing computational complexity. Then we turned our
attention to two ways of reducing the computational burden of forming vector-descriptor products. The
final step in the use of the SAN methodology is the computation of stationary distributions by means of
iterative or projection methods. It is to this final aspect that we now direct our attention.

As we have seen, an operation that can be carried out with little difficulty is that of forming the
product of the compact descriptor of a SAN and a vector. This means that numerical iterative methods
whose basic operation is a vector-matrix multiply may be applied with little difficulty. In the modelling
community, the best known of these methods is the power method, [35]. Unfortunately this is often a
very slow method. More sophisticated projection methods also have a matrix vector multiplication as
their basic operation and these generally converge much more quickly. However, in order for projection
methods to perform to their potential, they need to be complemented with preconditioners, a means
whereby the distribution of the eigenvalue spectrum is modified to achieve a better rate of convergence.
Our primary purpose in the remainder of this section is to address this issue, to examine what types of
preconditioners can be used within the SAN context and to observe which ones work and which ones
do not. Some previous results concerning the application of projection methods to compute stationary
solution of SANs have been presented in [36]. Strategies used so far to find such approximations in
stochastic automata networks have been based on two principles. The first is that multiplication by A
does not require that A be stored explicitly: one can find approximations to A−1 in terms of powers of
A. The second is that although it is expensive to invert the sum of the Ai’s, it is relatively easy to invert
each of the component matrices Ai.
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The first approach was previously tested and proved to be unsatisfactory, [36]. For example, it is
possible to use polynomial preconditioning, or to obtain the Neuman series expansion of the inverse of
A. In [36], it was shown that the cost of such preconditionings was prohibitive. This was again found
to be the case in [19]. Other results can be found in [8] but they do not address functional transition
rates. Consequently, we will not address these techniques further. More information, including much
experimentation may be found in the references. Instead, we will move on to alternative approaches.

3.4.1 Incomplete Factorizations

The most common, and general-purpose, approach to preconditioning a sparse linear system is to obtain
the incomplete factorization of A,

A = LU + R

in which L is a sparse unit lower triangular matrix, U is a sparse upper triangular matrix and R, the
residual matrix, is supposedly small, i.e., close to zero. The reader is referred to [35] for details. For
example, the ILU(0) factorization obtains factors L and U which have the same structure as the lower
and upper parts of A respectively. For this to be possible, the matrix A must be available explicitly. A
SAN descriptor can not directly use these options because of the maner in which the matrix (descriptor)
is stored, not in a standard sparse format, but as a sum of tensor products. Nevertheless we point out
that a tensor product A = ⊗N

i=1A
(i) may still be able to benefit from such incomplete LU factorizations.

Indeed, the property of compatibility of tensor product with traditional matrix multiplication and the
property of associativity implies that

A =
N⊗

i=1

A(i) =
N⊗

i=1

[
L(i)U (i)

]
=

N⊗
i=1

[
L(i)

] N⊗
i=1

[
U (i)

]
(9)

where L(i) and U (i) are the LU factors of the sequence {A(i)}. It should be noticed that the tensor
product of two upper (lower) triangular matrices is also an upper (lower) triangular matrix. This allows
us to factor a tensor product A =

⊗N
i=1 A(i) by factoring the A(i). Furthermore, an algorithm similar to

the one used to multiply a vector by a tensor product may be used to obtain the product of an arbitrary
vector v by the inverse of a triangular tensor term (

⊗N
i=1

[
L(i)

]
or
⊗N

i=1

[
U (i)

]
).

3.4.2 ILU Preconditioning for Functional Tensor Terms

As shown by equation (9), each tensor product term of a descriptor can be decomposed into matrices L
and U in a tensor format. We shall work with the descriptor, equation (4), before the diagonal elements
are removed, since removing diagonal terms may aversely affect the LU decomposition of local matrices.
In addition to this, two problems may hinder and indeed prevent us from obtaining the LU decomposition
of tensor terms and their subsequent use in preconditioning. This results from the nature of the individual
matrices to be decomposed. They may contain functional elements and they may be singular.

Matrices containing functional elements

The first restriction to the individual decomposition of each tensor term is the existence of functional
elements in local matrices. Given that we only require an approximation, it is possible to use heuristics
to eliminate such elements. In our experiments five possibilities were tested.

• Replace functional elements with zero

• Replace functional elements by one of their values, chosen at random

• Replace functional elements by their largest value

10



• Replace functional elements by their smallest value

• Replace functional elements by their average value

Our experiments showed that all these options are pretty much the same, with a slight advantage for
the choice of the average value. However, these experiments showed that to obtain satisfactory precondi-
tioning, it is necessary to reduce, if not completely eliminate functional elements by means of automata
grouping.

Matrices that are singular

It is possible that during the application of the decomposition algorithm, pivot elements become zero,
even when a full pivoting strategy is employed. This is guaranteed to happen when the matrix is singular.
A number of approaches were used to try to mitigate this situation. One possibility is to incorporate
a regularization of the matrices before their decomposition. These regularization techniques transform
the local matrices, while retaining some of their properties. We experimented with two such forms of
regularization

• A translation which consists of adding a small value to all of the diagonal elements of the matrix

• A transformation which consists of replacing each of the diagonal elements by the largest (in mod-
ulus) of all diagonal elements.

as well as with no regularization at all. In this latter case, only the unit upper triangular matrix, L,
available at the moment at which the decomposition breaks down, was used, (the corresponding upper
triangular matrix U is ignored).

Having described how the experiments handle incomplete factorizations we now move on to describe
how they are incorporated into preconditioning strategies. We shall use the following notation:

• Q — The descriptor obtained with the elimination of all of the functional elements of the descriptor
Q and replaced by their average values.

• M(i) — The matrix that regroups the i-th term of the sum of the descriptor Q
(Q ≡

∑(N+2E)
i=1 M(i))

• L(i) (U (i)) — The lower (upper) triangular matrix that results from the LU decomposition of the
matrix M(i)(≡

[
L(i)U (i)

]
)

Note that the inverse of each M(i) may be easily obtained by means of equation (9). In attempting to
form incomplete LU factorizations we experimented with combinations of the inverses of the individual
tensor terms. We tried three different possibilities.

• The sum of the inverses of all the tensor terms M(i)

• The product of the inverses of all the tensor terms M(i)

• The inverse of a single tensor term M(i).

These approaches, which may seem naive, are actually derived from the Additive Schwarz and Multiplica-
tive Schwartz methods. Just as in these methods, the principle is to use the inverse of each term as a
component of the problem. In this way, the use of combinations of components permits us to develop
modular preconditioning. Intuitively, this type of preconditioning will be most beneficial when applied
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to a model in which there is little interaction among the components. In the option which uses the sum
of the inverses of each matrix M(i) as a preconditioner, we need to multiply the descriptor by

(N+2E)∑
i=1

[
M(i)

]−1

We call this additive preconditioning. For example, in applying this preconditioning to the power method,
the iteration becomes

x(k+1) = x(k)Q

(N+2E)∑
i=1

[
M(i)

]−1

.

Notice that the execution of this algorithm requires an additional vector in which to store intermediate
values of the multiplication by each of the (N + 2E) terms.

In the second option, we use the product of the inverses of each matrix M(i) as the preconditioning
matrix. In the power method, the corresponding iteration becomes

x(k+1) = x(k)Q

(N+2E)∏
i=1

[
L(i)U (i)

]−1

We call this multiplicative preconditioning. Unlike the previous preconditioning, multiplicative precondi-
tioning does not require an additional vector.

The third and final preconditioning option is the least expensive, because a single term M(i) is chosen
and its inverse used as the preconditioning matrix.[

M(i)
]−1

with i ∈ [1 . . . (N + 2E)]

Furthermore, it is possible to use each of the terms M(i) in an alternating manner so that all are used at
one point or another during the execution of the algorithm. We refer to this as alternating preconditioning.

Unfortunately, the results we obtained with ILU decompositions of the tensor terms did not turn
out to be very successful. Although we did get convergence in several cases, there was only one case in
which this was achieved with a better computation time than the non-preconditioned case. In fact, in
the power method, almost none of these preconditioning approaches worked. It turned out that among
all three types of preconditioning, the alternating type worked best. It has the advantage of being simple
to handle and only minimally increases the computation time of an iteration.

3.4.3 Diagonal Preconditioning

Having failed to develop good preconditioners based on either the inverse written in terms of its powers
or on incomplete factorizations, we turned our attention to the simplest of all preconditioning strategies:
the use a diagonal matrix D, whose diagonal elements are simply those of the diagonal of Q. The system
to be solved then becomes

xQD−1 = 0.

In the case of a matrix stored as a descriptor, this type of preconditioning is extremely easy to use. Indeed,
the diagonal of the descriptor is already calculated and even stored in a vector format. Furthermore,
the computation of the inverse of a diagonal matrix is elementary. Although we found that diagonal
preconditioning performed better than the other preconditioning techniques tried, in the final analysis, all
that can be said is that diagonal preconditioning is sometimes marginally better than no preconditioning.
Much research remains to be carried out in this area.
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4 Examples

4.1 A Model of Resource Sharing

We shall use a well-known “Resource Sharing” model as a test example. In the model, N distinguishable
processes share a certain resource. Each of these processes alternates between a sleeping state and a
resource using state. However, the number of processes that may concurrently use the resource is limited
to P where 1 ≤ P ≤ N so that when a process wishing to move from the sleeping state to the resource
using state finds P processes already using the resource, that process fails to access the resource and
remains in the sleeping state. Notice that when P = 1 this model reduces to the usual mutual exclusion
problem. When P = N all of the processes are independent. We shall let λ(i) be the rate at which
process i awakes from the sleeping state wishing to access the resource, and µ(i), the rate at which this
same process releases the resource when it has possession of it.

Model with Functions

In our SAN representation with functions, each process is modeled by a two state automaton A(i), the
two states being sleeping and using. We shall let sA(i) denote the current state of automaton A(i). Also,
we introduce the function

f = δ

(
N∑

i=1

δ(sA(i) = using) < P

)
,

where δ(b) is an integer function that has the value 1 if the boolean b is true, and the value 0 otherwise.
Thus the function f has the value 1 when access is permitted to the resource and has the value 0 otherwise.
This model, which we shall call Mutex1, is graphically illustrated in Figure 1.

A(1) A(N)

sleeping

using

sleeping

using

µ(1)

λ(1)f

µ(N)

λ(N)f

Figure 1: Resource Sharing Model — Mutex1

The SAN product state space for this model is of size 2N . Notice that when P = 1, the reachable state
space is of size N +1, which is considerably smaller than the product state space, while when P = N the
reachable state space is the entire product state space. Other values of P give rise to intermediate cases.

Model without Functions

Let us now look at how this same system may be modeled without using functional transitions. One
possibility is to introduce an additional automaton, a resource pool automaton, which counts the number
of units of resource available at any moment. The action of a process in acquiring a resource could then
be represented as a synchronizing event requiring the cooperation of the demanding process and the
resource pool. A further synchronizing event would be needed for a process to return resource to the
resource pool. Figure 2 illustrates the Resource Sharing system modeled using an additional “resource
pool” automaton and synchronizing events. To differentiate it from the previous implementation, we
shall call this model Mutex2.
In this model, each process i wishing to acquire a resource must synchronize its action (by means of the
synchronizing event si) with that of the resource pool automaton. Likewise, when finished with a unit of
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A(1) A(N)

A(N+1)0 1 P

sleeping

t(1)

s(1)

using

sleeping

using
s(N)

t(N)

s(1), ..., s(N)

t(1), ..., t(N)

s(1), ..., s(N)

t(1), ..., t(N)

Figure 2: Resource Sharing Model without functions — Mutex2

the resource, its return to the resource pool is governed by the synchronizing event ti. The SAN product
state space for this model is of size 2N ∗ (P + 1), and the reachable state space size is identical to that of
Mutex1.

4.2 A Model of Queueing Network

The second example refers to an open queueing network model with finite capacity queues (with blocking
and loss patterns), different classes of customers, priority and complex load dependent service rates2. We
shall use a four-queue system with two classes of customer as indicated in Figure 3.

We assume that both classes of customer enter the first service center (queue 0) with rates λ1 for class
1 and λ2 for class 2. Let the capacity of queue 0 be K0 for customers of both classes. Once served at
this center, customers of classes 1 and 2 go, respectively, to service centers 1 and 2. If queue 1 is full (its
capacity is denoted by K1), customers of class 1 will be blocked in service center 0. On the other hand,
class 2 customers are lost if queue 2 is full. The capacity of queue 2 is denoted by K2.

Figure 3: Queueing network example with four queues and two classes of customer - QN model
2Usually the term “load dependent service rate” refers to a service rate that depends only on the number of customers

in the current queue. We use the term “complex load dependent service rate” to indicate a different kind of dependency
where the service rate depends on the number of customers in other queues.
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In service center 0, customers of class 1 are served with a variable rate that is inversely proportional
to the number of class 1 customers present in service center 3. Similarly, in this same service center,
class 2 customers are served with a variable rate that is inversely proportional to the number of class
2 customers in service center 2. There is no priority between customers of classes 1 and 2 in this first
service center.

In service center 1, which serves class 1 customers only, the service rate is given by µ11. After service
here, customers enter the final service center (queue 3) if there is an available slot in the queue. Otherwise
the customer is blocked. In service center 2, which serves class 2 customers only, the service rate is given
by µ22 and again, exiting customers attempt to enter the final service center, but may be blocked.

Service center 3 provides service to both classes of customer giving priority to class 1 over class 2.
Class 2 customers are served only if there are no customers of class 1 in the queue. The service rates in
the service center are given by µ31 and µ32 respectively and its capacity is denoted by K3.

Model with Functions

A SAN model equivalent to the queueing network model just presented may be defined with 6 automata
and functional transition rates. Two automata are needed to describe each of the service centers visited
by both classes of customer and one automaton to describe each of the service centers visited by only
one class of customer. This SAN model is represented graphically in Figure 4 and we shall refer to it as
QN1.

Arrivals to and departures from the system are represented by local events since they affect only
one automaton. The routing of customers between service centers occasions synchronized events since
the state of two automata are altered simultaneously. We denote such events by eij representing the
departure of a customer from service center i to service center j. The event e01 represents the departure
of a class 1 customer from service center 0 to service center 13. The departure of class 2 customers from
service center 0 (loss behavior) is also represented by a synchronized event even though it only changes
the state of the automaton representing class 2 customers in service center 0 (A(02)). However since this
only happens when queue 2 is full (automaton A(22) is in its last state) a synchronized event synchronizes
the transition representing the departure of a customer from queue 0 (an arc from state i to state i− 1
in automaton A(02)) with the “circular” transition of the last state of automaton A(22).
Functional rates are used to represent:

• the capacity restriction of queues represented by automata 0 and 3

• the dependent service rates in service center 0

The function f0 represents the capacity restriction in queue 0. It is evaluated as true (1) if there is room
for another customer in queue 0, i.e., if the number of class 1 plus class 2 customers is less than the
capacity of the queue. Hence both rates λ1 and λ2 must be multiplied by f0 where

f0 =
(
stA(01) + stA(02)

)
< K0.

Analogously, function f3 represents the capacity restriction in queue 3, and the transition rates (µ11 and
µ22) of the synchronized events e13 and e23 in automata A(11) and A(22) respectively must be multiplied
by the function

f3 =
(
stA(31) + stA(32)

)
< K3.

The dependent service rates in service center 0 are represented by two functions called respectively g1

and g2. The function g1 is inversely proportional to the number of class 1 customers in service center 1
3Notice that it is unnecessary to specify the class of the customer in the name of the event.
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Figure 4: Queueuing Network Model — QN1
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(the state of automaton A(31)), i.e.:
g1 =

µ01

(1 + stA(31))
.

The service rate of class 2 customers is analogously represented by:

g2 =
µ02

(1 + stA(32))
.

The last function, h3, represents the priority of class 1 over class 2 customers in service center 3. This
function must be multiplied by the rate µ32:

h3 = stA(31) = 0.

The product state space of this model is given by

pss = (K0 + 1)2 × (K1 + 1)× (K2 + 1)× (K3 + 1)2.

However, only some of these states are reachable since obviously, the sum of the states of automata
representing the same service center cannot be greater than the capacity of the service center.

Model without Functions

Unlike the previous Mutex example, the equivalent functionless SAN model has the same number and size
of automata and will therefore have the same product state space. In fact, to remove the functions of the
previous model (QN1) we must introduce a large number of synchronized events that mostly represent
possible (non-zero) evaluations of each function.

The function f0 is replaced with several synchronized events to handle the two automata that represent
the first service station. These events allow the arrival of a customer only if queue 0 is not full. It is
necessary to include two synchronized events (one for each customer class) for each state in which an
arrival is possible (states 0 through K0 − 1).

The function f3 already appears in synchronized events (events e13 and e23) in QN1. These events
synchronize the automaton from which a customer departs and the automaton to which the customer
arrives. To remove the function, it is necessary to include into these synchronizations, a third automaton
which is used to verify if queue 3 has an available slot into which the incoming customer can be placed.
This can be achieved using a similar technique to that employed to remove function f0. It is necessary
to replace each of the synchronized events e13 and e23 by as many synchronized events as the number of
states of the automata for which an arrival is possible (i.e., K3 − 1).

The functions g1 and g2 also appear in synchronized events in QN1. Each event synchronizes only
two automata (A(01) and A(11) for event e01 and A(02) and A(22) for event e02). However these functions
refer to the automata describing the state of service center 3. In order to remove these functions it is
necessary to extend the synchronized events e01 and e02 to include the corresponding automaton (A(31)

for e01 and A(32) for e02). Not only is the complexity of these synchronized events increased, but it is
also necessary to split these events into different events with different rates according to the number of
clients in service center 3.

Function h3 is the most easily eliminated. It transforms local events consisting of the departure of
class 2 customers in service center 3 (transitions from state i to state i−1 state of A(32)) into events that
are always synchronized with the first state of automaton A(31).

5 Numerical Results

The numerical experiments where conducted in a IBM PC-like environment with an Intel Xeon processor,
1700 MHz clock speed, and 1.5 Gb memory running the software PEPS [32] on Linux OS (Mandrake
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8.0)4.
The memory use is taken from the system during execution. It represents the totality of memory

used by PEPS during its execution (i.e., during the solution of a model). This includes the data, memory
structures reserved by the procedure, and also the process stack. The only parameters that change from
one algorithm to the next are the memory structures reserved by the algorithms (probability vectors,
intermediate array structures, and so on).

5.1 Mutex Models

In the Mutex models, we used the following parameter values: N = 20 and P = 16 with λ1 through
λ8 = 6, λ9 through λ15 = 5, λ16 through λ20 = 3, and, for all customers, µ = 5. This model has 1,047,225
reachable states.

The table below displays the results obtained. The results obtained with the base model (Mutex 2;
the model with no functional transitions) are shown in the first row. The solution method used is the
standard power method. Each successive row adds an additional feature to this base model. The second
row incorporates functional transitions (Mutex1). The third row includes the concept of re-ordering
automata (which is meaningless for this example, since all automata are identical). The fourth row
groups the automata in two groups (each group having 10 automata). The fifth row uses the GMRES
method with 10 vectors in the Krylov subspace. The last row indicates the use of diagonal preconditioning
and fails to converge in this example.

Where appropriate, results are given in both PSS and RSS implementations. Notice however, that
for this example, it is inappropriate to continue the series of optimizations in the RSS context. Observe
that in the row “ordering” the solution in the PSS context is better both from the execution time and
memory use points of view. This is as should be expected. For this example, once the concept of func-
tional transitions is introduced, the number of states in the product space becomes close to the number
of reachable states. This fact, together with the greater complexity of the algorithms in the RSS context,
dictate that the solution in the PSS is preferable.

Common Information Solution in PSS Solution in RSS
Technique PSS Convergence Time per it. Mem. use Time per it. Mem. use
No Func. 17,825,792 st. 111 it. 53.63 s. 564.1 Mb 44.27 s. 88.9 Mb
Functions 1,048,576 st. 111 it. 20.32 s. 35.4 Mb 33.85 s. 72.2 Mb
Ordering 1,048,576 st. 111 it. 20.32 s. 35.4 Mb 33.85 s. 72.2 Mb
Grouping 1,048,576 st. 111 it. 4.55 s. 35.9 Mb — —
Project. 1,048,576 st. 39 it. 7.06 s. 109.7 Mb — —
Precond. — — — — — —

5.2 Queueing Network Models

In the queueing network models, the parameter values used are K0 = K1 = K2 = K3 = 9 (10 states to
each automaton), λ1 = 3, λ2 = 2, µ01 = 9, µ02 = 8, µ11 = 7, µ22 = 5, µ31 = 6, and µ32 = 4. This model
has 302,500 reachable states.

The layout of the table of results is similar to that of the first model. The first row in the table
concerns the base model model, without functions (QN2); no reordering of automata, the use of the
power method, and so on. The second row shows the results obtained when functional transitions (QN1)
are incorporates (QN1). The third row shows the effects of re-ordering automata. The fourth row presents
the results obtained when the automata are combined into three groups, the first containing the automata

4The examples used in this paper are available in the PEPS format with the software package PEPS at
http://www-id.imag.fr/Logiciels/peps
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that represent service center 1, the second contains the automata that represent service centers 1 and
2, and the third contains the automata representing service center 3. The fifth row shows the results
obtained with the Arnoldi method using 10 vectors in the Krylov subspace and the final row indicates
the use of diagonal preconditioning.

Observe that in these results, the effect of the grouping strategy is to reduce the number of states in
the PSS to exactly the reachable state space. Thus, it is inappropriate to continue the suite of experiments
in the RSS context.

Common Information Solution in PSS Solution in RSS
Technique PSS Convergence Time per it. Mem. use Time per it. Mem. use
No Func. 1,000,000 st. 3,286 it. 4.61 s. 33.9 Mb 11.06 s. 26.3 Mb
Functions 1,000,000 st. 3,286 it. 4.61 s. 33.8 Mb 4.68 s. 26.2 Mb
Ordering 1,000,000 st. 3,286 it. 1.40 s. 33.8 Mb 3.58 s. 26.2 Mb
Grouping 302,500 st. 3,286 it. 0.05 s. 12.1 Mb — —
Project. 302,500 st. 488 it. 0.06 s. 33.1 Mb — —
Precond. 302,500 st. 315 it. 0.07 s. 33.1 Mb — —

5.3 Analysis of the Results

A number of important observations may be made concerning the results just presented. Notice first that
the use of functions may result in a decrease in the size of the product state space and the number of
synchronizing events in a model. This decrease results in memory savings in the PSS context (obviously,
the probability vectors are smaller), and also in the RSS context because functions reduce the size of the
descriptor. This may be observed in the Mutex example.

To analyze the impact of functions on execution time, the analysis is a little more complex: As a
rough guideline, working in the RSS context is beneficial when the ratio between the RSS and PSS is
greater than 50%. The use of functions can, in some cases reduce the size of the PSS (the RSS remains
the same), as can be seen for example, in the Mutex example and it should be noted that a decrease in
the size of the PSS can diminish the benefits of working in the RSS context. The table below provides
additional data when the ratio RSS over PSS is below 50% for models with and without functions (line 1,
P = 4); when the ratio is below 50% for the model without function, and above 50% for the model with
functions (line 2, P = 16); and when the ratio is above 50% for the model with and without function
(line 3, queue). (Note that the fourth configuration is impossible). In the case P = 4, the solution in RSS
with function is significantly better, and the solutions in RSS are globally better. In the case P = 16, the
solution in PSS with function is the best, it is better than the solution in RSS without function. In the
case queue, the solution in PSS with function is significantly better, and the solutions in PSS are globally
better. The benefits obtained from the use of functions is clearly shown in this table: functions simplify
the descriptor, leading to less terms in the summation and to local matrices that are less sparse. Indeed,
Kronecker algorithms are most efficient on models that are “not too sparse” and the use of functions
helps significantly in this direction.

Model Sol. in PSS Sol. in PSS Sol. in RSS Sol. in RSS
Functions No Func. Functions No Func.

time mem time mem time mem time mem
P = 4 19.68 35.4 15.51 167.9 2.68 3 4.88 4.5
P = 16 20.32 35.4 53.63 564.1 33.85 72.2 44.27 88.9
queue 1.4 33.8 4.6 33.9 3.58 26.2 11.06 26.3

In the queuing network example, the use of functions does not lead to a diminished PSS, and the
simplification of the descriptor seems to be offset by the cost of function evaluations. Although the use
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of functions seems to be beneficial in terms of memory use and in many cases, in terms of execution time
too, we noticed that the cost of function evaluations can be rather high. The module which implements
function evaluation in our software package Peps can probably be optimized, thus reducing this model-
dependent additional cost. One possibility is to reduce the cost of a function evaluation using a more clever
implementation; another is to reduce the number of function evaluations. We investigated two directions
to reduce this number, one related to the shuffle algorithm itself (re-ordering normal factors) and the
second related to the model representation (automata grouping). It can be observed that re-ordering does
not bring any benefit to the Mutex example, as every functional rate in this model depends on the global
state. Nevertheless, re-ordering brings significant gain for the queuing network example, for obtaining
the solution in the PSS. Grouping of automata is very beneficial for both models. Unfortunately, this is
not always the case, for we have encountered models where grouping adds complexity to the function set
and leads to worse performance.

The last two optimization attempts do not concern functions, but they show how far one can go. In
both examples, projection methods bring an important reduction in the number of iterations with only
a small increase in iteration time. Preconditioning does not lead to convergence for the Mutex example,
and brings little benefit to the queuing network example.

It can be observed that, for the Mutex example, in going from 111 iterations of 53s each to 39
iterations of 7s each we gain a factor of 21, and for the queuing network example in going from 3286
iterations of 4.61s each to 315 iterations of 0.07s each, we gain a factor 687. This illustrates the fact
that the generalized shuffle algebra is an important concept, but that its efficient use requires technical
optimizations and hence should be used in conjunction with enhancement techniques such as those found
in the Markov chain literature: techniques such as the use of projection methods. It also argues for the
need of further research in the area of preconditioning techniques that are effective and well adopted to
SANs.
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