Stochastic Automata Networks & Phase Type Distributions

I. Sbeity, L. Brenner, B. Plateau and W.J. Stewart

Motivations

- Stochastic Automata Networks (SAN): modelling very large and complex Markov chains in a campact and structured manner : tensor algebra.
- The passage of time in the evoluation of SAN components is modeled using an exponential distributions.
- The use of general distributions remains a desirable objective.
- How Phase-Type distribution can be used in SAN? the complexity of this step?..

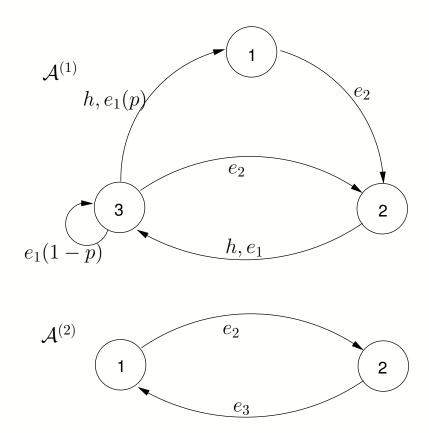
Related works

- Queueing Networks: [M.Neuts, P. Buchholz and others].
- Petri Nets:
 - The regeneration points [Ajmone Marsan and others]

Conditions on the model

- Рн transitions are replaced by a sub-net [Molloy and others].
- Рн distributions is taken into account during the generation of the RG [Cumani].

Related works


Petri Nets:

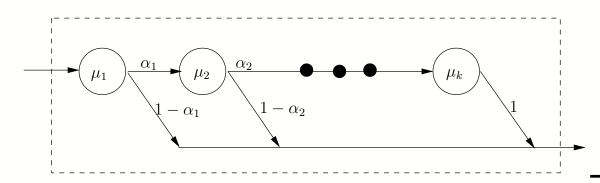
- The previous methods are ineffective when the state space is large.
- [Haddad-Moreaux-others]: A tensor formula to present the infinitesimal generator of a Рн-GSPN:
 - Structural decomposition basing on the Symmetric Structural Conflict among transitions.
 - Drawback: The size of elementary matrices depends on the partition! not compact in some cases.

SAN: an informal description

 Sample example: Here, the distribution of time before the occurrency of events is exponential

SAN: a formal description

- A SAN model is defined by $\mathcal{M} = (N, \mathcal{A}, \mathcal{E}, \hat{f})$:
 - \bullet N is the number of automata.
 - $\mathcal{A} = \{\mathcal{A}^{(1)}, \mathcal{A}^{(2)}, \dots, \mathcal{A}^{(N)}\}\$ is the set of automata. $\forall i, \mathcal{A}^{(i)} = (S^{(i)}, Edge^{(i)}, Label^{(i)}).$ $S = S^{(1)} \times S^{(2)} \times \dots \times S^{(N)}$ is the product state space, and $x = (x^{(1)}, x^{(2)}, \dots, x^{(N)}) \in S$ is a global satate.
 - \checkmark \mathcal{E} is the set of events.

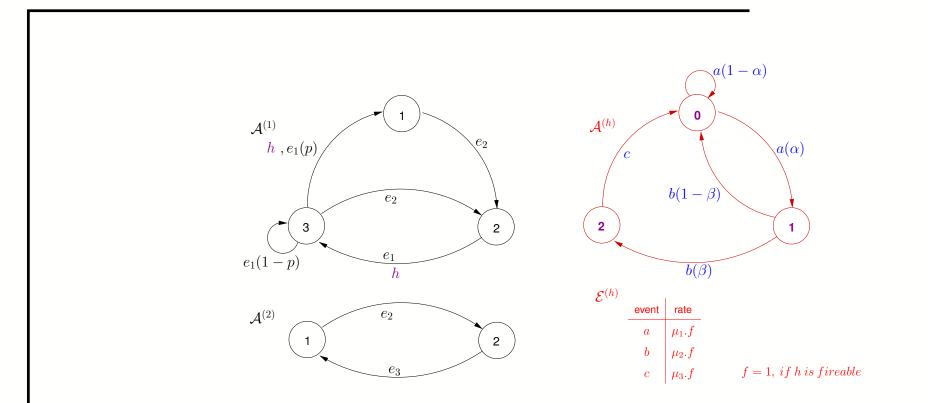

 $e = (loc|syn, master, \tau_e) \in \mathcal{E}$

 $\checkmark \ \hat{f}$ is the reachability function of the SAN .

 $\hat{S} = \{x \in S \mid \hat{f}(x) = 1\}$ is the reachable state space.

Phase Type (PH) Distribution

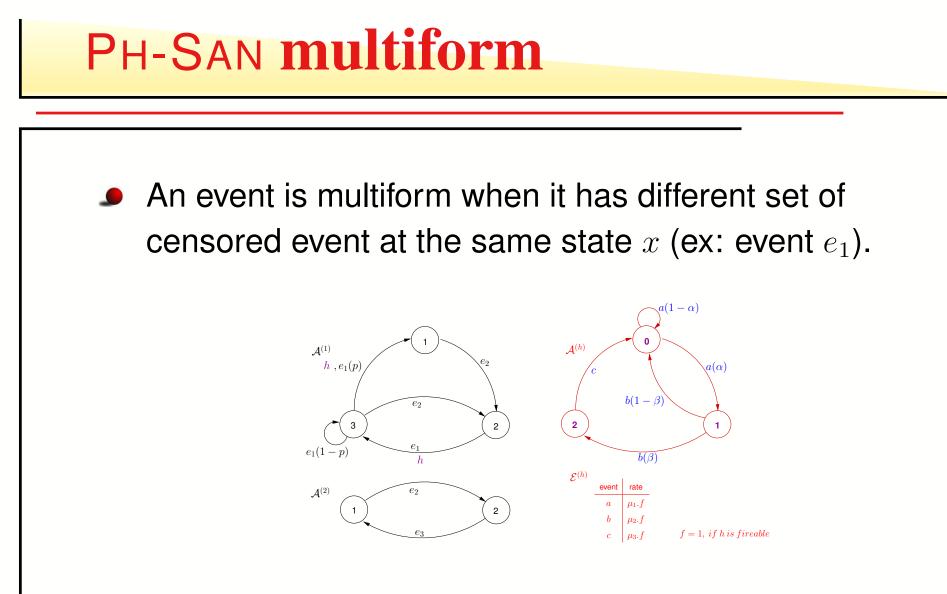
- Advantage: it permits to model more general distributions than the exponential.
- Definition: A passage through a succession of exponential phases.
- Memoryless property → 2 Preemption Policies (PP):
 Preempt-Resume (C) and preempt-Restart (B)
- Example: Cox distribution:


SAN with PH events

Our Approch

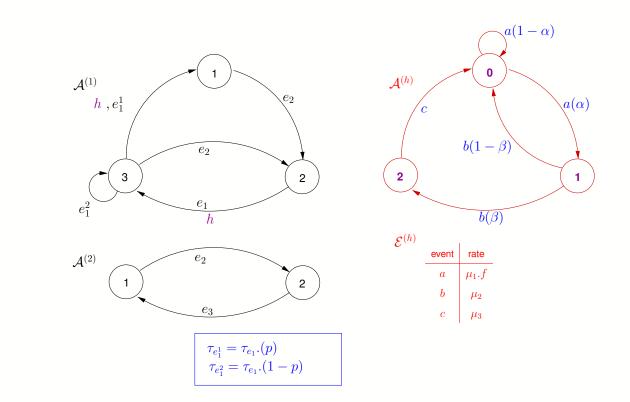
- Formal definition of a SAN model with PH distributions (PH-SAN model).
 - Each Рн distribution is described by an automaton.
- Transform a PH-SAN model to a regular SAN model by eliminating of the PH events.
 - A compact representation of the model is avoided (tensor product).
 - Matrices are small : base matrices and Рн matrices.

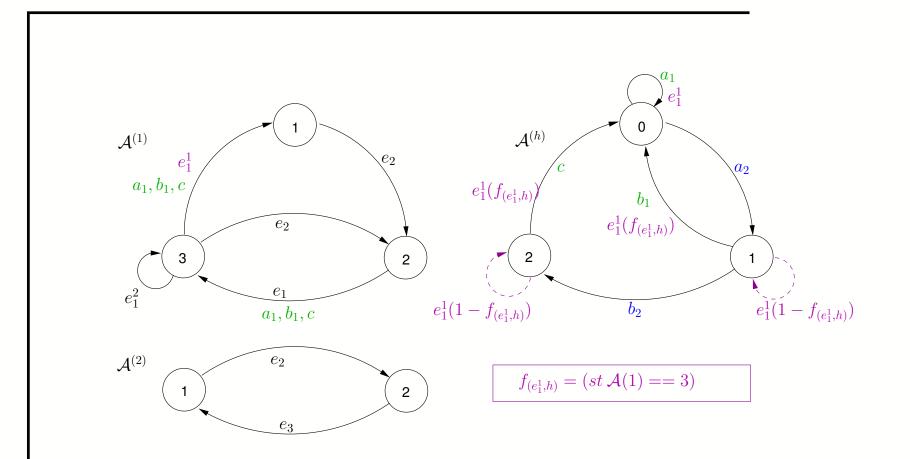
PH-SAN model - an example


- The distribution of time before the event *h* fires is Cox-3.
- A description $\mathcal{D}^{(h)} = (\mathcal{A}^{(h)}, \mathcal{E}^{(h)}, PP^{(h)})$ is associated with *h*.

Ihab.Sbeity@imag.fr - SURE-PATHS meeting, 19 october 2005 - SAN & PH distributions - S

The Conflict situation


- General Definition: An enabled event e is in conflict with a enabled Рн event h in a state x iff after the firing of e the Рн event h is disabled (h is a censored event of e).
 - "Disabling phenomena" can be structural or functionnal.
 - "Disabling phenomena" is not symmetric.
- In the example: h is a censored event of e₁, but not for e₂.


Transforming a multiform PH-SAN to a monoform PH-SAN: decompose the multiform events.

The PH-SAN monoform

- The multiform event e_1 is replaced by two monoform events e_1^1 and e_1^2
- A Pн event can be multiform !!

PH-SAN monoform to SAN

- h is replaced by the EoS events a_1 , b_1 and c.
- PP^(h) = B then e¹₁ may interrupt the work in progress of h.

Conclusions and Perspectives

- Phase-Type distributions may be incorporetad into SAN(s) formalism.
- The theorical part is done. The approach appears powerful.
- The algorithm is currently being incorporated into the PEPS software package.
- Numerical analysis.
- Development of hierarchical SAN.

