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1 - Generalities : ARMOR’s work on Monte Carlo

focus on the rare event case

static and dynamic (Markov) models

in the dynamic case, transient and stationary analysis

algorithm design and generic analysis of Monte Carlo

techniques
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More precisely :

(i) (static) reliability analysis (network reliability area),

(ii) transient analysis of Markov models : estimation of the

reliability at time t,

(iii) transient analysis of Markov models : Importance Sampling

applied to estimating the MTTF of a system,

(iv) theoretical analysis of properties of Monte Carlo evaluation

methods : illustration in the case of static models.

and variations around (performability, . . . ).
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Example of (i) :
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– a communication network

– nodes are perfect, lines (edges)

can fail

– lines are up or down, independently

– nodes 1 and 20 must talk to each

other

– network reliability R is the

probability that there is at least, a

path up between 1 and 20.
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Example of (ii), (iii) :

a multi-component system (say, a database),

K types of components (disks, power units, servers, . . . ),

type-k components fail with rate λk, possible failure

propagations

reparations following an exponential distribution

system is up iff at least nk type-k components are,

we get a Markov model, homogeneous, finite, with states

classed up or down.
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An interesting metric is

MTTF = mean time to system down.

A more detailed metric is the reliability at time t,

R(t) = Pr(system is up from time 0 to time t).
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2 - Standard Monte Carlo

Consider a real random variable X and a real function ψ().

Let γ = E(ψ(X)) and σ2 = Var(ψ(X)).

The standard estimator of γ :

– build n independent copies X1, · · · , Xn of X

– return γSTD

n =
1

n

n
∑

i=1

ψ(Xi).

E(γSTD

n ) = γ, Var(γSTD

n ) = σ2/n
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A centered confidence interval for γ with (confidence) level δ is

CSTD

n =
(

γSTD

n ± zδ

√

Var(γSTD
n )

)

– the meaning is Pr(CSTD

n 3 γ) = δ

– factor zδ is

zδ = N−1

(

1 + δ

2

)

,

where

N (x) =
1

2π

∫ x

0

exp(−u2/2)d u.

(zδ is the 1 − δ/2 quantile of the std. normal distr.).
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3 - Rarity

Rarity happens when γ � 1.

Examples :

In the network reliability problem,

X = 1{chosen nodes can not communicate},

and

ψ(x) = x.

(That is, γ = 1 −R).

When network components are very reliable, γ � 1.
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When estimating MTTF in a Markov model, we first write

MTTF =
E(min{U, V })
Pr(U < V )

,

where U is the r.v. “time to return to 0”, V is the r.v. “time to

absorption”, and 0 is the initial state of the chain, assumed to

be an “up” state.

Focus on estimating the denominator, the only difficult

component of the formula : γ = Pr(U < V ) and we can put

this into the general framework as before.

If the system is highly reliable, again γ � 1.
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Rarity parameter

We assume that X depends on some real parameter ε (and,

thus, γ, σ are also functions of ε).

We call ε a rarity parameter because it verifies

lim
ε→0

γ = 0.

Example : in the static model, we can assume that the reliability

of line i, ri, has the form

ri = 1 − aiε
bi.

where ai and bi are positive constants.
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In this case, we can prove that there exists some r > 0 such

that

γ = Θ(εr).

If we look at the relative error when estimating γ using the

standard estimator γSTD

n ,

lim
ε→0

zδ

√

Var(γSTD
n )

γ
=

zδ√
n

lim
ε→0

√

1 − γ

γ
= ∞.

This is why, in general, we can not use γSTD

n in case of rare

events.
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4 - Bounded Relative Error (BRErr)

Consider now any estimator γn of γ (for instance, an estimator

built using some Importance Sampling method).

Assume E(γn) = γ (that is, γn is unbiased) and denote

σ2
n = Var(γn).

We can again build a centered confidence interval for γ from

γn, writing

Cn = (γn ± zδσn)

The relative error is

RErr = zδ

σn

γ
.
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We say that we have a bounded relative error (BRErr) if RErr

remains bounded as ε→ 0.

This desirable property states that the relative size of the

confidence interval remains bounded as ε→ 0.

In the case of the standard estimator, σ2
n = γ(1 − γ)/n, and

RErr = zδ

σn

γ
= zδ

√

1 − γ

nγ
→ ∞ when ε→ 0.
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4.1 - Asymptotic Optimality

Often used in queuing theory when γn comes from the

Importance Sampling method.

γ = Ef [g(X)] = Ef∗[g(X)L(X)] where

L(x) = f(x)/f ∗(x).

γ̂IS
n is called asymptotically optimal, if

limε→0
lnEf∗ [g(X)2L(X)2]

ln γ
= 2.

Bounded Relative Error implies Asymptotic Optimality (recently

proved by Sandmann), the reciprocal being false.

Bounded Relative Error appears to be the right property.
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5 - Bounded Normal Approximation (BNA)

Berry-Esseen : if Fn() is the cdf of (γn − γ)/σ̂n, where σ̂2
n is

the standard estimator of σ2, we have that for all real x,

|Fn(x) −N (x)| ≤ a%

σ3
n

√
n
,

with % = E(|ψ(X)|3).

The estimator γn has Bounded Normal Approximation iff the

ratio %/σ3
n remains bounded when ε→ 0

Proved that BNA implies BRErr, the reciprocal being false.

This means again that BNA appears as the right property to

look for.
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6 - Need for an extension of BRErr : BREff

What is important in simulation ? the RErr for a given simulation

time, not for a number n of replications.

BRErr does not incorporate the second important characteristic

of an estimator : simulation time (the computational cost).

The average simulation time to get one replication can

– increase with ε, or

– decrease with ε.

We will illustrate next this last case for a simulation method

estimating the reliability of a static stochastic network.
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6.1 - Illustration : simulation for static reliability analysis

Consider the network reliability problem. Denote by G the undirected graph

modelling the network, made of M links.

Computing R, the probability that two fixed nodes s and t are connected, is

an NP-hard problem.

The method :

– Let P = {P1, P2, · · · , PH} be a set of elementary (disjoint) paths

connecting nodes s and t,

– Let πh be the event “all links of path Ph work” and ph = Pr(πh).

– Assume an infinite sequence of independent copies of G is built.

– Let F be the random variable “first element in the sequence where every

path in P has at least one link that does not work”.
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– Variable F is geometrically distributed with parameter

q =
∏H

h=1
(1 − ph) = Pr(no path in P “works”) :

Pr(F = f) = (1 − q)f−1q,

and, in particular,

E(F ) =
1

q
.

– Idea : sample first from the geometric distribution of F . The estimator is

then built assuming that in the first F − 1 copies, nodes s and t are

connected.

– Assume F = f . To know if they are connected in the f th copy, we must

sample the network conditioning on the fact that at least one edge in each

path is down.
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– Consider a path Ph. Call Wh the r.v. giving the first failed edge of Ph.

– Write Ph = (ih,1, ih,2, · · · , ih,Kh
).

We have

Pr(Wh = w) =
rih,1

rih,2
· · · rih,w−1

(1 − rih,w
)

1 − rih,1
rih,2

· · · rih,Kh

.

– Assume Wh = w. Edges ih,1, ih,2, · · · , ih,w−1 are set to “up”, edge

ih,w to “down”. Remaining edges in Ph are sampled from their a priori

Bernoulli distributions.

We have built (virtually) f copies of G by sampling F once and the

network configuration (the states of the M links) once.
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Observe that

– We have unbounded RErr (same variance than for crude Monte Carlo),

– We sample F and the network, on the average, nq (= n/(1/q)) times,

and we test the connectivity between s and t also nq times on the

average.

– The simulation time (or computing cost) is, on the average,

O(nq(M +K1 + · · · +KH)) (= O(nqM) if we wish).

It decreases with ε if ri = 1 − aiε
bi , since q decreases with ε.
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6.2 - Bounded relative Efficiency
It basically addresses the (relative) variance of an estimator obtained during

a given simulation time.

Consider an estimator γn of γ, with variance σ2

n, built from n replications

(possibly dependent), and denote by tn the average simulation time needed

to get these n replications.

The relative efficiency of γn is

REff =
γ2

σ2
ntn

.

The estimator γn has bounded relative efficiency (BREff) if there exists

d > 0 such that REff is minored by d for all ε.

21/31
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6.3 - Sufficient condition on the static reliability example

Let r > 0 be the real such that γ = Θ(εr).

∀Ph ∈ P , let Ph = (ih,1, · · · , ih,Kh
) and

bh = min1≤k≤Kh
bih,k

(bh is the exponent of ε in the most

reliable edge of Ph (as ε→ 0)).

Theorem : the estimator of the static unreliability described in

previous section verifies Bounded Relative Efficiency if
∑H

h=1 bh ≥ r.
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7 - Illustrations 7.1 - Illustration on a (very) small problem

s t

P1

P2

v

1−ε

1−ε

1−ε

γ = 1 −R = ε3 + 2ε2(1 − ε) ≈
2ε2

σ2 = γ(1 − γ) ≈ 2ε2

σ/γ ≈ 1/(
√

2ε) : no BRErr

p1 = 1 − ε, p2 = (1 − ε)2

q = (1 − p1)(1 − p2) ≈ 2ε2 ;

tn proportional to q

REff ≈ γ2

σ2q
bounded : BREff.

23/31



Illustrations ACI Sure-Paths, Oct. 2005

Results on the simple topology, with a number of replications fixed to n = 10
4 :

ri ∀i Est. Conf. interval RErr KS stat.

0.5 3.7790000e-01 (3.6839622e-01,3.8740378e-01) 2.51489e-02 5.6705e-02

0.9 1.9012678e-02 (1.8992726e-02,1.9032629e-02) 1.04937e-03 4.8610e-02

0.99 2.0000000e-04 (-7.7171997e-05,4.7717200e-04) 1.38586e+00 2.5436e-01

0.999 0 (0, 0) — 1

0.9999 0 (0, 0) — 1

Results for a simulation time T = 10 seconds :

ri ∀i Est. Conf. interval RErr

0.5 3.7498089e-01 (3.7466460e-01,3.7529718e-01) 8.43484e-04

0.9 1.9012678e-02 (1.8992726e-02,1.9032629e-02) 1.04937e-03

0.99 1.9905429e-04 1.9884527e-04,1.9926330e-04) 1.05005e-03

0.999 2.0003614e-06 (1.9982415e-06,2.0024813e-06) 1.05975e-03

0.9999 2.0014432e-08 1.9993102e-08,2.0035762e-08) 1.06572e-03
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7.2 - Illustration : efficiency on the dodecahedron topology
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with s = 1 and t = 20

ri ∀i Relative eff. w.r.t. crude MC

0.9 18.9

0.95 188.3

0.98 3800.2
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ri ∀i Est. Conf. interval RErr KS stat.

0.5 7.0820e-01 (6.99290e-01,7.17110e-01) 1.25818e-02 3.3896e-02

0.9 3.2000e-03 (2.09298e-03,4.30702e-03) 3.45945e-01 9.6531e-02

0.99 0 (0, 0) — 8.2840e-01

0.999 0 (0, 0) — 1

Results for a simulation time T = 5 seconds :

ri ∀i Est. Conf. interval RErr KS stat.

0.5 7.1201e-01 (7.0918e-01 , 7.1485e-01) 3.98e-03 4.3126e-02

0.9 2.8894e-03 (2.7776e-03 , 3.0012e-03) 3.87e-02 7.0679e-02

0.99 2.0527e-06 (1.9211e-06 , 2.1844e-06) 6.41e-02 3.3475e-02

0.999 2.0047e-09 (1.8705e-09 , 2.1388e-09) 6.69e-02 6.5625e-02

0.9999 1.9812e-12 (1.8474e-12 , 2.1150e-12) 6.75e-02 5.4364e-02
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8 - Generalized Bounded Normal Approximation

Again, in BNA, time (cost) not taken into account.

Fix time (computational budget) T and let n = n(T ) be the

corresponding average number of of iterations.

The estimator γn(T ) verifies GBNA if the ratio

%n(T )/(σ
3
n(T ) n(T )) remains bounded when ε→ 0.

It can be proved now that GNBA implies BREff and that in the

case of the static reliability problem, both properties are

equivalent.
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Coverage function

Confidence interval R(η,X) for γ, at confidence level η with

(random) data X.

We should have Pr[γ ∈ R(η,X)] = η.

If η∗ = inf{η ∈ [0, 1] : γ ∈ R(η,X)}, then, η∗ should be

uniformly distributed :

Fη∗(η) = Pr[η∗ ≤ η] = η.

Fη∗(η) is the actual coverage level : empirical estimation.
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Illustration on the simple topology
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Illustration on the Dodecahedron topology
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9 - Conclusions

Rare event simulation requires sophisticated techniques with robustness

properties.

Bounded Relative Error does not take into account the estimator’s full

information.

We have

defined Bounded Relative Efficiency to cope with this problem

defined Generalized Bounded Normal Approximation (and previously

BNA)

Illustrated the validity of the approach on a reliability analysis problem.

deep investigation of the coverage of the confidence interval
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