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Abstract. Our NFS implementation, NFSP aims at providing some trans-
parent way to aggregate unused disk space by means of dividing a usu-
ally centralized NFS server into smaller entities: a meta-server and I/O
servers. This paper illustrates what are the issues related to increasing
the performances of such an implementation by using two different ap-
proaches: distributing the load across several servers or implementing the
server in a more efficient and intrusive way. Performances of the different
versions are given and compared to the first implementation.

1 Introduction

Today’s low-cost clusters are often built by using off-the-shelf hardware: each
node has its own storage capability, usually only used to store the operating
system and the runtime environment. As the hard disk capacity increases, most
of the disk space of the nodes remains unused but for temporary files since
the users prefer having their files available on every nodes. Partial solutions
imply investing in an expensive storage architecture (SAN or RAID servers),
yet the disk space is still wasted on the disks of the nodes. Systems providing
an aggregation of the unused disk space and the existing ones often implement
new protocols or file system types, which may not be considered as a seamless
integration for the clients.

Such issues try to be solved by the NFSP project. When the NFSP project was
started in mid 2001[1], we chose to use standard and well defined protocols to
implement a new kind of NFS server. The first prototype implemented was based
on the Linux user-mode server. The first experimental results we got with this
implementation highlighted the cost of running the daemon in user-mode. To im-
prove this we tried two methods: balancing the load between several servers and
making a more efficient implementation of the server itself. This paper presents
these two approaches and compare them from a performance point of view. Af-
ter this introduction, some related works in the distributed file systems field are
shown in 2. Then the NFSP principles are explained in section 3 and the two

? This work is a part of the research project named “APACHE” which is supported
by CNRS, INPG, INRIA and UJF. Some resources were provided by the ID/HP
i-cluster (More information is available at http://icluster.imag.fr/)



methods for improving performances are detailed in sections 4 and 5 which con-
tain performances evaluation. Eventually, some future tracks of research will be
tackled in section 6.

2 Related works

A large amount of work has been carried out in the network file system since the
1980s. Among the first ones, still used nowadays are Sun NFS and Carneggie
Mellon’s AFS. NFS is aimed at sharing files among nodes in the same LAN
whereas AFS is more suited for WAN architecture. A NFS [2, 3] server is made
of a node exporting its local file system to the clients who access it through a
remote mounting operation. NFS is a stateless protocol, no state is kept on the
server side so every operation is self sufficient. This gives NFS some protection
against temporary faults. However since the access point is unique for all clients
the implementation is inherently centralized and so the storage space is limited
to the one on the server. This is not the case for AFS which is a fully distributed
file system: servers across different sites cooperate to share the same space and
offer all the data they contain to their clients which use as a mounting point a
server node part of the global architecture. Contrary to NFS, AFS is a stateful
system and so coherency is different from the one found in NFS: when a node
opens a file a memory of this operation is kept on the server so when another
node access the same file for a write operation a cache invalidation message is
sent to all the nodes who opened it. However, this strong coherency implies in
high cost in terms of network latency, and thus requires a fast network.

In both cases, the goal of these systems is to provide shared storage for users,
which is usually different from the needs of current cluster workloads. Indeed,
the development of scientific applications has incurred in new constraints (huge
amount of data, level of coherency, fine-grained sharing) on the previous file
systems, which led to the design of new storage systems.

A first group of solutions, in order to meet the above needs, might be seen
as hardware-based. File systems such as Sistina’s GFS[4] and IBM’s GPFS[5]
are thought for specialized SAN architectures. Both systems have their data and
metadata distributed across the SAN and offer advanced locking and sharing
facilities of files. However, the performances of such a system is intimately related
to the performances of the storage system underneath. For instance, the GFS
handling of coherency relies on an extended SCSI instruction sets. As for GPFS,
providing things such as fine-grained coherency by means of software requires a
fast and low-latency network like those of the SAN’s. Another quite promising
new system, LUSTRE, being developed since 2000[6, 7] by ClusterFS Inc. aims
at satisfying huge storage and transfers requirements as well as offering a Posix
semantics. To achieve these goals, clients, meta-data servers (MDS) and object
storage targets(OST)1 are connected by means of a fast network.

Unlike GFS and GPFS being based on very specific hardware, Berkeley’s
xFS[8], as well as LUSTRE, only requires a fast network in order to implement

1 Some kind of specialized smart storage.



its cooperative multiprocessor cache. This serverless design results from LFS[9]
and Zebra[10] file systems. It is built as a totally distributed system where data
and meta-data are spread (and may migrate) among the available trusted ma-
chines. A different approach is Frangipani[11]/Petal[12] which aims at providing
a distributed shared file system (similarly to GFS). The lower-level layer, Petal,
implements a logical disk distributed over physical disks. The Frangipani part
builds a file system on top of it.

All those systems each offer interesting performances heavily depending on
the underlying hardware which doesn’t make them well-suited for Beowulf clus-
ters built with common hardware. So another way was developed using purely
software solutions and thus, more suited to Beowulf clusters. For example, In-
termezzo[13] is a distributed file system relying upon concepts developed in
CODA[14]2, which intends to solve high-availability and scalability issues. A
kernel module on the client side handles local and remote operations by means
of user-mode helpers, it makes this solution somewhat intrusive since it supposes
modifications of the configuration on the client nodes.

On the other hand, the omnipresence of NFS centralized servers has led
to develop new designs to improve the throughput without tackling the other
specificities, such as temporal coherency, security and fault tolerance. The most
common solution has been to aggregate several nodes, either by putting some
smartness into the client (Bigfoot-NFS[15], Expand Parallel File System[16])
or by putting some kind of load balancer between the client and the servers
(NFSˆ2[17]).

An alternative is to modify the NFS server by using a meta-data server
and storage daemons similarly to the PVFS [18] architecture. Standing from
this point, this led us to develop NFSP as a way to offer non-intrusive use and
administration.

3 NFSP overview

NFSP [1] is a NFS server implementation using techniques developed in PVFS.

The architecture falls into three parts: the clients, the meta-data server (re-
ferred to as meta-server or NFSPd for simplicity) and the storage servers (referred
to as iod(s), which stands for I/O daemon(s)).

The figure 2 illustrates the sequence of events occurring when a client wants
to access a file. The numbers 1-2-3 and 4-5-6 correspond to clients accessing
files. This figure also illustrates the fact that a same physical machine may host
a client and a storage entity. For both sequences, the meta-server acts as a fixed
point (the client only knows it) as it knows to which storage server it has to
forward the request to have it processed.

In the NFS protocol (see figure 1), the first step to manipulate files is always
to get a NFS handle on the file. This operation is achieved by sending a LOOKUP

request to the server which will reply by computing a unique file handle based on

2 A child of AFS.
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some file layout properties (inode, device, etc . . . ). The way the handle is found
does not matter to the client as this field is opaque, which means the client has
only to use this field as a file identifier. Once the client has managed to get a
file handle, the following sequence of events occurs to read the file: 1) it sends
a request to the server containing the file handle, the offset, the size and 2) it
receives the results sent by the server.

As we have chosen to split the server into smaller entities (a meta-data server
and storage servers), this scheme is slightly modified (from an overall view):

1. send a request to the server containing the file handle, the offset, the size, . . .
(See fig. 2, arrow #1 or #4)

2. the server receives the client’s request and checks the meta-data it holds,
3. based on some information stored in the meta-data it looks for the storage

node that holds the requested data,
4. the request is then modified (a copy of the meta-data required to generate the

NFS reply is added) and forwarded to the storage node (see fig. 2, arrow #2
or #5),

5. the storage node processes the request (I/O) it has just received from the
server on behalf of the client,

6. the storage node sends the reply to the client (see fig. 2, arrow #3 or #6).

This scheme is inherently synchronous and adds obviously some latency since
a network hop is added. Yet, one has to keep in mind that there will most likely
be several clients that want to access some files on the server, which permits to
have overall performance gains by handling several requests at the same time
using multi-threading techniques.

Another source of performances increase in the NFSP model comes from the
fact that the time spent to forward the request on the meta-server is much smaller
than the time required to process the I/O’s. If the meta-data happen to be cached
on the meta-server – which is most likely as they are only a few bytes – then
the meta-server does not even have to do slow disk I/O. Another performance
boost dwells in the fact that by having several storage servers (iods), we have
indeed much more cache available than on a single server.

The first implementation of NFSP [1] was done extending an existing user-
mode NFS server. Unfortunately we found the performances disappointing due



to a saturation of the metaserver processor and I/O. More precisely, for 18
iods on our cluster, described in section 4, the optimal bandwidth is roughly
180Mbytes and the bandwidth we obtained was only 55Mbytes with the CPU
of the metaserver used at 100%. In the following we will study two approaches
to improve the performances of our prototype.

4 Multiplying NFSPd (or the number of access points)

Our preliminary work has shown that the main limitation of the current im-
plementation lies in the fact that all the clients use the same meta-server as a
mounting point, which causes contention. To bypass this bottleneck, we chose
initially to multiply the number of entry points, that is NFS servers.

The natural idea, in this approach, is to introduce several NFSPd that would
share the same pool of iods. However, the main underlying problem, though
eased by the NFS coherency, consists in keeping a synchronization between sev-
eral meta-data servers. We also tried to keep the level of modifications on the
meta-servers as low as possible in order to maintain the good level of perfor-
mances of the current implementation.

This preliminary work has been carried out to implement such a policy by
mixing NFS and NFSP exports and re-exports: the basic idea is that a set of
iods is handled by a NFSPd server only and that other NFSPd’s can mount it
as a regular NFS server. By using this technique, it is possible to share several
sets of iods with different NFSPd servers while keeping it completely transparent
for the user that always use a single mount point. Of course, if performances
are mandatory, it is important that a client mounts the NFSPd that will contain
most of the data it will access to minimize communication overhead.

Our tests have been launched on the i-cluster3 (Intel Pentium III 733MHz
CPU’s - 256MB RAM - 100Mb/s switched network). The bench we use is quite
simple: a 1GB file is stored on a NFSP volume and is then read again concurrently
by a varying number of clients. The aggregated bandwidth is found by dividing
the total amount of data served by the time of completion of the last client. The
graph in figure 3 contains three curves illustrating the aggregated bandwidth of
a NFSP system composed of 16 iods and successively 1,2 and 4 meta server. As
expected, the use of several meta-servers is much more efficient using only one.
The simple nfspd curve tends to stagnate then decrease slowly as the number
of clients increases. The 2meta-mode curve has almost the same behavior yet
the figures are often around at least twice higher. The curve for the optimal
bandwidth indicates the maximal peak performance expected (we considered
11.5MB per Ethernet 100 card) and grows till 16 (there need to be at least
16 client to saturate all the iods). The 4meta-mode curve decreases as the
number of clients increases. The growing communication cost implied by the
message passing between meta servers could explain this. An attempt with 20
iods, 64 clients and 12 meta servers (4 clients per server) gave 80% of the optimal

3 http://icluster.imag.fr



throughput. Nevertheless, in this particular case, each server was saturated and
that’s a real issue from scalability point of view. Hence, even if a good balance
between the number of clients and meta-server nodes could considerably improve
the performance, the meta-server is still the bottleneck. We try to address this
issue in the next section which presents a different implementation of the meta-
server itself.
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5 Kernel Implementation

Another way to improve performances is to make a more efficient implemen-
tation, especially to avoid time consuming context switches between user and
kernel mode by porting the NFSPd daemon to kernel. This section describes some
specificities and provides some indications on how the issues related to this kernel
port have been solved.

The kernel mode port has been devised to alleviate the performance limita-
tions observed with the user-mode port. Indeed, this has been found to be nec-
essary as extended tests have shown that at maximal speeds the user server has
its CPU completely saturated. The main reasons for this are the high user-mode
overheads (memory copies, I/O system calls and context switches). Moreover,
for architectural designs and history, UNFSPd is a mono-threaded application
and performant servers are nowadays based on a multithreaded paradigm. As
the NFS implementation of the Linux kernel was already multi-threaded (for
obvious reasons), it has been much more easier to start directly with a multi-
threaded architecture for KNFSP.

To manage several types of exports, the existing set of nfs-tools have been
extended by setting an unused bit when for a NFSP type export. This way, the



meta-server is able to handle both NFS and NFSP file systems exports at the
same time.

To illustrate this, the exports file only requires adding a nfsp option:

/nfs_export 1.2.3.4/255.255.255.0(rw,root_squash)

/nfsp_export 1.2.3.4/255.255.255.0(rw,root_squash,nfsp)

This example file assumes that /nfsp_export contains a meta-data tree and
/nfs_export a regular files tree.

We only present results for read operations, as write is mainly limited by the
meta-server bandwidth (currently 100Mbps). The bench we use is quite simple:
a 1GB file is stored on a NFSP volume and is then read again concurrently by a
varying number of clients. The aggregated bandwidth is found by dividing the
total amount of data served by the time of completion of the last client.
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The graph in figure 4 contains three curves illustrating the aggregated band-
width of a NFSP system composed of 16 iods. As expected the kernel version
is much more efficient than the user-mode one. The user-mode curve tends to
stagnate then decrease slowly as the number of clients increases. The kernel-
mode curve has almost the same behavior yet the figures are often around at
least twice higher. The curve for the optimal bandwidth indicates the maximal
peak performance expected (we considered 11.5MB per Ethernet 100 card) and
grows till 16 (there need to be at least 16 client to saturate all the iods). The
irregularity of the KNFSP curve is due to the timeout policy of the NFS protocol.
The slowdown from 10 to 25 clients may match with the first timeouts as the
meta-server is being increasingly stressed, then as these wait costs are recovered
when there are more clients, it grows again.

The figure 5 illustrates the performances reached as the number of iods

varies. For 8 iods the performances soon become quite good, yet for a higher



 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60

A
gg

re
ga

te
d 

B
an

dw
id

th
 (

M
B

/s
)

# concurrent clients

Maximal value - 8 iods
kNFSp - 8 iods

Maximal value - 16 iods
kNFSp - 16 iods

Maximal value - 32 iods
kNFSp - 32 iods

Fig. 5. Comparison user-mode server - kernel-mode NFSP server - with a varying num-
ber of iods

number the optimal level is much higher. We think this is due to the saturation
of the Ethernet switch. Nevertheless the performance increases compared to the
user-level version are significant.

6 Conclusion and future works

This paper has shown the evolution through which our previous prototype has
gone. It also illustrates the costs of a pure user-level implementation of the meta-
server against a kernel one. There are currently several improvements underway:
NFSv3 port, implementation of the kernel meta-server replication and developing
a RAID mode to improve fault tolerance regarding iods. Some work is also
currently being carried out to add a GRID support to WAN transfers between
2 NFSP clusters. Assuming each node of a cluster may be linked to a switch and
that they may be IP-connected to another cluster, we expect to obtain efficient
cluster-to-cluster data transfers by connecting directly remote and local iods
thus filling more easily the multi-gigabit pipes within a WAN.
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