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Abstract

A high-performance file system is normally a key point
for large cluster installations, where hundreds or even thou-
sands of nodes frequently need to manage large volumes of
data. While most solutions usually make use of dedicated
hardware and/or specific distribution and replication pro-
tocols, the NFSP (NFS Parallel) project aims at improving
performance within a standard NFS client/server system.
In this paper we investigate the possibilities of a replica-
tion model for the NFS server which is based on Lasy Re-
lease Consistency (LRC). A prototype has been built upon
the user-level NFSv2 server and a performance evaluation
is carried out.

Keywords: Parallel file systems, NFS, Lazy Release Con-
sistency, parallel I/O.

1. Introduction

With the development of new technologies and conse-
quently lower prices of cluster components, clusters may
be seen growing each time larger and larger in size and ca-
pacity, for solving each time more and more complex prob-
lems. This continuous growth in cluster sizes implied a new
issue: how to manage permanent storage.

Given the potential bottleneck presented by traditional,
centralized systems like NFS [5], and the fact that hardware-
based solutions do not fit well in the Beowulf philosophy,
the research in the field of cluster file systems has followed
the direction of distributing the file service across the clus-
ter.

In an attempt to achieve a balance between performance
and management simplicity, the NFSP project [11] proposes
a distributed version of the traditional NFS server which
better handles the load generated by multiple concurrent ac-
cesses from the compute nodes, but still remains compati-
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ble with the NFS client present on every Linux system. In
this paper, we investigate the possibilities of a NFSP branch
in which the NFS server is replicated across several nodes,
and as a consequence consistency needs to be maintained
among the various clients. Our main goal with this work is
to propose an alternative for medium-to-large cluster sys-
tems which do not benefit from expensive data storage sys-
tems and whose administrators wish to keep management
tasks within the established common-knowledge.

Next section introduces the NFSP model in details in or-
der to provide a background for the work being developed;
in Section 3, we present the proposed replication model, and
in Section 4 the results of a performance evaluation. Sec-
tion 5 brings an overview of the related research activities
and makes some observations in relation to our work. Fi-
nally, Section 6 presents some final considerations and fu-
ture activities.

2. NFSP

NFSP — NFS Parallel — is an extension of the tra-
ditional NFS implementation, developed at the ID/IMAG
Laboratory1 of Grenoble, France. It distributes the function-
ality of the NFS daemon over several processes on the clus-
ter [11]. The idea behind NFSP is to provide an improve-
ment in performance and scalability and at the same time
keep the system simple and fully compatible with standard
NFS clients.

Inspired in PVFS [6], NFSP makes use of I/O daemons
running on several machines in the cluster in order to dis-
tribute regular files across a set of disks, in a mechanism
referred to as striping. A file is “striped” by having its
data separated into several blocks, which are then stored
over several distinct machines. When the file is accessed,
there can be potentially several data blocks being fetched at
the same time, consequently increasing performance. In the

1 http://www-id.imag.fr
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Figure 1: Request forwarding in NFSP

case of NFSP, the unit for striping is the NFS block (usu-
ally 8192 bytes).

The role of NFS server is played by nfspd, defined in
NFSP as the metaserver. This daemon appears to clients
as the regular NFS server; when a request for a given data
block is received, the metaserver forwards the request to the
corresponding I/O daemon, which in turn performs the op-
eration and sends the desired information directly to the
client2. Figure 1 illustrates this mechanism. The informa-
tion regarding where and how each file is stored is kept on
the metaserver’s local file system, being part of the meta-
data (i.e. date/time, ownership, permissions, size, and the
like).

This design of NFSP allows concurrent read operations
to be effectively performed in parallel, given that distinct
requests may correspond to distinct I/O daemons. How-
ever, write operations still need to be centralized at the
metaserver, since the data come from the clients. This is
one specific issue we are tackling with the model proposed
in this paper, presented next.

3. The Server Replication Model

The goal of this work is to reach an improved level of
performance in NFSP by replicating the metaserver. There
are mainly two aims in this approach: offering several en-
try points for the clients (and hence let them use more band-
width when doing write operations) and better balance the
load onto several metaservers instead of only one.

3.1. Replicating nfspd

In the original NFS design, there is one single server
(nfsd) to which all the client machines connect. An imme-
diate approach to try to improve scalability in this scenario
is to replicate the NFS server over several machines.

2 Techniques of IP spoofing may be necessary to achieve this goal of
transparency from the clients’ point of view, since some implementa-
tions require the answer to be originated from the server, not the I/O
daemon.
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Figure 2: Distributed metaserver design

The main idea is that a kind of grouping be established
among the compute nodes, so that each metaserver instance
serves only a given number of clients. For example, if the
metaserver is replicated over 10 machines and there are
50 compute nodes, then each metaserver instance would
be (considering a simple equal division of load) bound to
5 clients.

For each group of compute nodes accessing the same
metaserver, the situation is similar to the original NFS
model, i.e., all accesses to the file system are directed to
one single server. Besides reducing the scalability problem,
this approach allows a good deal of performance improve-
ment if the connections to the metaservers are faster than
that of the compute nodes, as often featured by Fast Ether-
net switches that provide one extra Gigabit Ethernet port.

The metaservers run independently from but in cooper-
ation with each other, by means of network communica-
tion, and together they form the notion of a single, global
metaserver (see Figure 2). With that picture in mind, it is
simple to observe that the goal here is to distribute the load
of metadata operations, so that a single server does not be-
come saturated in the face of multiple concurrent requests.
In addition, this design may allow for future enhancements
in terms of redundancy/fault tolerance.

3.2. Consistency Model

The direct implication of replicating the metaserver is to
keep consistency between the multiple instances. In order
to accomplish that task without incurring in too much over-
head (e.g. increasing the network load with control mes-
sages), we rely upon a relaxed consistency model, supported
by some characteristics that can be observed on a typical
cluster computing environment.

The usual procedure for running a parallel program on
a cluster is to allocate a given number of nodes, or parti-
tion, and then launch the application on it. Naturally, the
size of such partitions and the allocation time vary depend-
ing on the application, but also according to the local policy
of the site hosting the cluster, which depends on the users’
status, priorities, previous executions, and the like. In addi-



tion, each user is normally using a private account, in which
his files are stored, and thus the set of files being manipu-
lated by an application is usually not the same as that of an-
other application. This means that we do not need to have
all the files available everywhere all the time.

As a coherence protocol for the distributed metaserver
design, we make use of an adaptation of the Lazy Release
Consistency protocol [8], or LRC, as used in the Tread-
Marks distributed shared memory system [2]. The basic
principle is that the enforcement of coherence is postponed
until the moment a client taking part in the protocol effec-
tively needs it.

Similarly to TreadMarks, where consistency is checked
only when a new client signals entry upon a shared seg-
ment (given that other clients may have modified it), our
proposed system only checks for it when a client effectively
accesses a file.

Coherence-checking messages are issued when some
kind of error occurs, which is possibly an indication that
the metadata regarding that specific file has changed. For
example, if a file opening operation results in a ENOENT
(non-existent file) error code, it is possible that the file has
been created by a client bound to another metaserver, which
means that the corresponding metadata only exists on that
metaserver’s local file system. In this case, the metadata
needs to be copied to the current metaserver’s file system,
and then the operation (file opening) can proceed.

In some cases an operation can be executed even if the
metadata is outdated. For example, if a client needs to read
the first 4 kB of a file whose metadata indicate 10 kB of
length, the operation can be successfully executed even if
the file has already been enlarged (by some other client) to
100 kB. Notice that, even if the metadata is old, the file con-
tents (i.e. the “real” data) are stored on the I/O daemons,
which are shared among all the clients, and consequently
have been updated by the operation that originally enlarged
the file. In other words, even if the metadata is outdated, the
client will not read stale data.

Naturally, some operations like file deletion need to be
explicitly notified to all the metaservers in order to pre-
vent access to data which is no longer valid. We under-
stand, however, that this kind of operation occurs less fre-
quently and mainly on application startup/shutdown, and
thus should not cause significant impact on performance.

One important issue is to decide which metaserver to
contact when metadata is missing/outdated. Several ap-
proaches can be thought of, like establishing a neighbour-
hood relationship between the metaservers and perform the
search from the nearest to the farthest. Another possibility
is to organize the metaservers hierarchically in a tree. This
is one of our current study subjects.

4. Performance Evaluation

In order to validate the distribution model, we have im-
plemented a prototype of the replicated metaserver based on
the user-level implementation of NFSP. The main intention
was to allow an evaluation of the “cache-miss” overhead im-
posed by the eventual need of fetching metadata (actually a
metafile), from another metaserver, which is the basis of our
model. Additionally, we wanted to observe the level of per-
formance gain obtained by distributing the metaserver load
among several replicated instances.

The original user-level NFSP implementation has
been extended in order both to assign an address to each
metaserver and to introduce a first level of communica-
tion between them. To keep the changes simple, we rely
upon rcp to transfer metafiles between metaservers. This
ensures not only that the contents of the metafile be trans-
ferred, but also the implicit metadata (owner, group, per-
missions, etc.) associated with it. On the other hand, we are
aware that this mechanism is likely to impose a higher over-
head than that of a dedicated protocol. Finally, only the
case of missing metadata is being evaluated.

4.1. Cache-miss Overhead

The first evaluation on the implemented prototype refers
to measuring the overhead of a cache-miss on a given
metaserver and consequent metafile searching and fetching.

The metafile fetching mechanism must be based upon a
decision algorithm which should indicate where to search.
In our evaluation, in order to obtain the worst-case results,
we forced each metaserver to perform a sequential search,
i.e. starting from metaserver #0, then metaserver #1, and so
on, up to metaserver #(n−1) if necessary.

The benchmark we have run consists on creat-
ing 100 files on one of the client nodes, and then forcing
the other nodes on reading all the files. As we want to mea-
sure the worst-case situation, the created files have
0-byte length (i.e., we want to measure metadata over-
head only).

The execution has been carried out on the i-cluster3

available at the ID Laboratory. We have configured
the system with 1 iod (which is enough for this test),
16 metaservers and 16 clients (one for each metaserver).

The files for the benchmark have been created on the
client mounting metaserver #15. Then, starting at client #14
and going down to client #0, we measured the time each
node takes to read the 100 files (here read means cat
file > /dev/null). Only one node executes at a time.

3 A 225-node cluster deployed within the context of a joint
ID/INRIA/HP project; the nodes are Pentium III 733 MHz with 15 GB
IDE disks connected by Fast Ethernet; all the nodes run Mandrake
GNU/Linux with kernels 2.2 and 2.4
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Figure 3: Cache-miss overhead according to the number of
metaservers searched

Since the search always begins by metaserver #0, the first
metaserver (#14) will try 15 times before finding the files
on metaserver #15. The second metaserver to run will try
one time less, since now the metafiles are available at #14.
And so on, up to client/metaserver #0.

The obtained results are shown in Figure 3. Each result
has been divided by 100 in order to represent the per-file
overhead. We can observe that the curve grows in a prac-
tically linear slope, which corresponds to about 66 ms for
each additional cache miss. This results in a worst-case de-
lay of roughly 1 second in the case of 16 metaservers, which
we consider a reasonable overhead to bear with. For exam-
ple, considering the case where an application spans three
metaservers, the maximum overhead to pay in this case
would be of about 200 ms. In addition, the simplicity of us-
ing a simple rcp to fetch the remote metafile incurs in ex-
tra overhead, which we can expect to be reduced if a dedi-
cated protocol is used.

4.2. Read Performance

We have also run performance evaluation experiments
with the implemented prototype, to observe the level of
gain that can be obtained in relation to the previous NFSP
implementations. In the first case, we are evaluating dis-
tributed read performance. The experiment consists on read-
ing a large file concurrently on all the clients. For that
purpose we have created a 1 Gigabyte file on one of the
nodes, and then concurrently launched the command dd
if=file of=/dev/null bs=1M count=1024 on
the nodes (we did not force a metafile update on all the
nodes prior to running the experiment, since the time is
takes to read the data is much higher than that of the mea-
sured overhead).
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Figure 4: Aggregate read bandwidth obtained with the pro-
totype, in comparison to the original model

The system, in this case, has been configured with
12 iods, 7 metaservers and 21 clients (which makes
3 clients per metaserver), in a total of 40 nodes.

The results shown in Figure 4 compare the aggregate
read bandwidth obtained with the replicated metaserver
model with that of the original model. As expected, having
multiple metaserver instances distributes the load imposed
by the concurrent accesses, and thus allows for a higher
level of performance. In a previous work [11], we had ob-
served that the performance was limited by the CPU on the
metaserver saturating. In the replicated model we can ob-
serve that the performance reaches its maximum when the
number of clients equals the number of iods, which was also
expected.

As an alternative form of evaluation, we can consider
a per-client efficiency measure in relation to the maximum
network bandwidth achievable by each client. Considering
11 MB/s for each one (given the Fast Ethernet connec-
tion), we obtain practically 100% efficiency up to 10 clients,
when then the curve flattens and tends to stabilize at around
110 MB/s, equivalent to 50% efficiency with 21 clients. As a
simple comparison, a regular, centralized NFS server would
reach only 4% with the same 21 clients, since the bandwidth
would be always limited by the 11 MB/s network connec-
tion.

4.3. Write Performance

A similar experiment was also executed, but now with
the clients writing a 1 Gigabyte file (each client writes a dis-
tinct file).

A comparison with the original NFSP implementation is
not meaningful in this case, since writing is, as we stated
before, centralized as that of the traditional NFS model.
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Figure 5: Aggregate write bandwidth obtained with the pro-
totype

Measured results are presented in Figure 5. The execu-
tion has been carried out so that the maximum number of
metaservers is always used (i.e. in the case of 7 clients, for
example, each client connects to one distinct metaserver).
The curve presents three distinct linear segments, sepa-
rated by a “step” in performance every time the number
of clients reaches a multiple of the number of metaservers.
This is due to a single metaserver having to suddenly serve a
higher number of clients than the others. For example, per-
formance increases constantly up to 7 clients, when each
metaserver is connected to at most one client. When we add
the eighth client, metaserver #0 starts serving two clients,
who share that server’s bandwidth and consequently perfor-
mances drops.

Again, we can observe the advantage of having multi-
ple entry points for the clients, and specially in the case
of writing. With one single metaserver, write bandwidth
is primarily limited by the single network connection, and
would remain constant at the lowest value shown (around
10 to 11 MB/s) for any number of clients. If we consider the
per-client efficiency, the replicated model presents a mean
value of about 33% with the configuration used, in contrast
to 9% achievable with a centralized server.

5. Related Work

Several research projects exist which aim at a better
performance for cluster file systems, using different ap-
proaches. Petal/Frangipani [9, 10] is a parallel file system
built upon the concept of a distributed virtual disk, where
a set of daemons running on a number of machines co-
operate to form the view of a single storage device. The
Shared Logical Disk [13] follows the same idea. Another
approach is that of Storage Area Networks, in which there

is a dedicated hardware support for parallel access to per-
manent storage. These are mostly commercial systems; ex-
amples are the IBM General Parallel File System [7], SGI
XFS [15], and the OpenGFS (Global File System) [1].

It is undeniable that these systems are of recognized
importance, however we do not consider that a compari-
son would be appropriate, since they follow different ap-
proaches and present distinct requirements. In the sequence,
we present systems more directly related to the model we
propose.

NFSP has its basis on the Network File System [5], or
NFS, which is the de facto standard for distributed file shar-
ing in the Unix world, and consequently has been naturally
absorbed by the Beowulf cluster model since its first steps
[14]. It is actually a protocol for transparent remote access
from a client to a server’s file system, and thus has not been
devised for parallel computing. NFS raises a potential scal-
ability constraint when clusters start to grow larger, due to
its centralized server design. For this reason, many develop-
ments are currently being carried out in both the directions
of enhancing NFS and providing new solutions [4, 12].

The Berkeley xFS [3] was a prototype “serverless” file
system developed at the University of California at Berkeley
from 1993 to 1995. It builds upon several research efforts
developed at the time, like RAID, LFS (Log-structured File
System), Zebra and Multiprocessor Cache Consistency, and
thus presents a totally distributed design, where data and
metadata are spread among the available machines (which
may be all or part of the available computing resources) and
can dynamically migrate. Though an interesting design and
promising results, the project was interrupted with the end
of project NOW, and hence, to our knowledge, no further
development or porting to Linux has been carried out to the
present days.

A possible successor of xFS in the Beowulf world is
PVFS, Parallel Virtual File System [6], a joint project con-
ducted by the Parallel Architecture Research Laboratory,
at Clemson University, and the Argonne National Labora-
tory, both in the USA. The goal of PVFS is to provide a
high-performance file system for the Beowulf class of par-
allel machines, being able to profit from commodity hard-
ware. PVFS is able to deliver very good performance and
provides different interfaces for applications: VFS, MPI-IO
and a native one.

NFSP compares with such projects in the sense that it
aims at performance and scalability for cluster computing.
A different approach taken by NFSP, however, is that of
keeping the changes to a traditional Beowulf system as min-
imal as possible. For example, the client side on a NFSP in-
stallation remains untouched, which eases the task of man-
aging the cluster. Even though we are aware that a NFS-
compatible file system may not be the best solution for cer-
tain applications, we also believe that the NFS approach



might still be enough for many situations, and in such cases
a simple solution close to the traditional Beowulf environ-
ment might be desirable.

6. Final Considerations and Future Work

Our intention with the replicated metaserver model for
NFSP is to provide an additional level of performance while
still keeping the simple design that guides the project. With
the implementation of a prototype based on the user-level
version of NFSP, we could observe an effective gain in per-
formance in relation to a single, centralized NFS server, and
with other “flavors” of NFSP. With minimum effort, we are
able to improve by about 5 times the write performance and
to double the read performance (in this case reaching almost
100% network efficiency), in comparison with the previous
implementation.

Our evaluation of the adopted replication model is posi-
tive. The consistency mechanism based on LRC is efficient
for applications running on a typical cluster environment,
and the overhead imposed by eventual cache misses was
considered low (around 0.066 seconds), even if a simple and
heavier rcp mechanism was used.

Current and future activities in NFSP follow different ap-
proaches. As mentioned before, we are investigating dif-
ferent methods such as closest-neighbour and hierarchy for
finding the correct metaserver in the case of metafile cache
misses. Another activity concerns the integration of NFSP
into the kernel-level NFS server, which, according to re-
sults already obtained, offers a significant gain in perfor-
mance in relation to the user-level version. Concerning the
metaserver replication, our next steps will be the design and
implementation of a dedicated protocol for communication
between the multiple servers, and further performance eval-
uations with real applications.
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