
nfsp: A Distributed NFS Server for Clusters of
Workstations

�

Pierre LOMBARD
�

Yves DENNEULIN

Laboratoire Informatique et Distribution - IMAG
ENSIMAG - Antenne de Montbonnot - ZIRST

51 avenue Jean Kuntzmann, 38330 MONTBONNOT SAINT MARTIN, FRANCE
{Pierre.Lombard,Yves.Denneulin}@imag.fr

Keywords: clusters, distributed file system, NFS, UDP, spoofing

Abstract

As clusters of workstation get more and more popular (and as a consequence bigger and
bigger), disks of these nodes are only used for the system and temporary files. Systems that
offer an abstraction of the storage devices in a distributed manner for a cluster are few and far
between. In this paper we introduce an extension to the implementation of NFS more suited
to the context of clusters because it makes use of the disk space available on the nodes of the
cluster instead of the one available on the server only. Our solution relies on the same principles
as PVFS: a metaserver and I/O daemons. We present its architecture, the first implementation
we did and early performance results.

1 Introduction

The most recent trend in parallelism is the rise of the “poor man” supercomputer, i.e. clusters
of PCs connected through a dedicated, sometimes high performance, network. This kind of clus-
ters are now called Beowulf as described by Thomas Sterling in [SSB � 95]. 6 years later many
works have been done to take full advantage of this architecture in many fields: scheduling, load-
balancing, remote login, programming environments and runtime.

Many works have also been done on filesystems, a summary can be found in section 2. How-
ever these solutions do not completely take into account the characteristics of a cluster dedicated
to heavy computation: high availability, local network, secure environment, large disk space on
every node and use of standard, as opposed to highly specialized, software. It is not yet possible
to use a subset of nodes to be a distributed file server without using a new protocol, which often
requires a kernel modification, or a complete reinstallation, at worst, of all the clients.

�
This work utilized resources provided by the ID/HP i-cluster. More information is available at

http://icluster.imag.fr�
This work is funded by the French research institute CNRS.

1

The industrial solutions for storage offers are mainly dedicated NFS servers shipping with
several high-performance disks “merged” by means of a hardware RAID technology. This solution
works but is quite expensive to buy and doesn’t make use of the disk space available on the nodes
of the cluster. The system we present in this paper aims at providing a solution that

� enables the use of the disk space of all, or a subset of, the nodes of a cluster,

� gives a unique and unified view of this disk space,

� offers performance good enough to saturate the bandwidth of the network,

� no modifications on the client side.

The last point led us to use the NFS protocol on the client side, the server being basically cut
into two entities: one that stores the file system structure (a.k.a metadata) and the other the real
data. Using this approach we hope to combine the flexibility and wide availability of NFS together
with good performances.

The rest of this paper is organized as follows: in section 2 existing works done on distributed
file systems are presented and commented with respect to a cluster environment. Then section
3 presents the hardware and software context in which this work was done and in section 4 we
explain our proposal. The following section, 5, presents some technical issues we had to deal with
to implement our distributed file system and section 6 give the first results we obtained with our
implementation. We conclude and give directions for future works in section 7.

2 Related works

There has been work on distributed/network file servers since the early eigties. They aim at ad-
dressing various issues like: security, performances, distributed caching. In this section we review
some of them and focus on the issue they want to address. Since we focus on Beowulf clusters, we
will only review here solutions available freely with an open source license.

The AFS family (AFS, OpenAFS, CODA) aims at providing a secure way of sharing files
among the nodes, within a campus for instance. There are main servers (“cells”) that are often
dedicated file servers. The installation cannot be described as trivial, yet once installed it offers an
effective way to share files securely on a large scale. Besides the on-disk local cache system it uses
is found to be really handy and offers performances boosts. Yet, for a safe environment such as a
protected cluster, this solution does not suit since it adds many things not necessary for a cluster
and requires some not-so-obvious tweaking.

xFS1 ([WA93] and [WAD97]), is a part of the Project NoW at Berkeley that finished a few
years ago. Thus, it is no longer maintained and has not been ported to Linux.

One of the most advanced project concerning cluster filesystems is hosted by the Parallel Ar-
chitecture Research Laboratory, at Clemson University: PARL began developing PVFS [CIBT]
in the late nineties. From a software view, a central metaserver and I/O daemons are used. This
system ships with it own filesystem type (pvfs) registered into the system by means of a kernel

1This is not SGI’s XFS - the journalled filesystem - recently open-sourced and ported to Linux.

2

module to allow a transparent use by the end-user. The configuration and installation was a bit
tricky when it was tested on a few nodes, a few months ago. Currently, PVFS uses its own protocol
of communication over TCP streams, which obliges the admin to modify the clients’ configuration.

Last but not least, the NFS server is quite simple to install and the client part has been used
and tested for several years. It may not be a POSIX-compliant filesystem or sometimes have an
awkward semantic but it works for most cases. Yet, it does not scale well as soon as there are
several concurrent clients and the storage is centralized.

To summarize, none of the systems presented has the two most important characteristics for our
cluster: easiness of use and administration (minimal modifications of the system). They provide
too many unneeded things in the context of a cluster, like an elaborate security protocol (AFS)
or need careful installation and maintenance (PVFS). This is what motivated us to develop an
extension to NFS to provide these characteristics.

3 Context of the Work

As part of a project to provide a complete infrastructure for computing on top of corporate intranets,
Hewlett-Packard gave to the ID lab a cluster of 225 PCs connected with a low cost network. The
i-cluster is built using 225 off-the-shelf HP’s iVectra: Intel Pentium III 733MHz, 256MB RAM,
100Mb ethernet cards and 15GB IDE hard drive. It has been ranked 385th in the latest Top5002

list of the most powerful systems (see [RAM � 01]).
After several months of use, it occured to us that the disk space available on the nodes was

seldom used, the base system and the swap taking at most 4GB, the other 11GB left are lost. So
we started looking for a distributed file system that could avoid this loss. Since we are in the
context of a cluster used every day by many users we had two important requirements:

compatibility do not force a major rebuild of the installation,

stability do not break the whole system by using standard (heavily tested) software and avoing
messing with the kernel.

As explained in section 2, none of the solutions we tried satisfied these constraints, that is why
we decided to develop our own solution: designing a simple drop-in replacement for the network
filesystem NFS that would dispatch the load of I/O’s among a pool of machines.

4 The nfsp proposal

The design of this extension to NFS is to split the standard NFS server in a subset of dedicated
smaller servers: a metadata server that holds the attributes (timestamps, permissions, etc . . .)
whereas the content of the files are physically stored on other machines, on which runs an I/O
daemon.

The traditional architecture of a network file server is shown on figure 1. There are commu-
nications between the server and the clients, the architecture of the server, and, in particular, the

2http://www.top500.org

3

client client client client

server

Traditional NFS Server

Disk

DiskHighPerf

HighPerf

HighPerf

Disk

Figure 1: Typical architecture of a network
file system

metadata server

iodclient client iod+client

1 24
5

3

nfsp server
6

Figure 2: Architecture of our parallel net-
work file system

number of disks it has, is hidden to the clients. The bandwidth used between them does not depend
on the number of disks the server contains or on the number of clients it has to serve but on the
network between them. Such an architecture is though not very scalable, the server will always
remain a bottleneck. Thus it seems interesting to try to distribute the server on a set of nodes to
avoid this, such works are presented in section 2. The problem is then to succeed in maintaining a
coherent state in the filesystem without centralizing it. This implies an overhead that is not always
acceptable and makes more complex, and therefore difficult to design such a system “bug-free”. It
also means designing a new protocol and forces the clients to implement or install it as well.

The approach we propose is to keep a central server that fully implements the NFS protocol, so
no change is needed on the client side, while distributing the storage of the data on several nodes of
the clusters. Hence the transmission of the “real” data will occur between nodes and not between
the server and the clients3.

The architecture of our proposal is shown on figure 2. When a client has a read or write
operation to do it will send it to the server, to comply to the NFS protocol. If it is a read operation
then the server will simply forward it to the node that has the data requested. This node will reply
directly to the client using the server address to do that4. If case of a write operation the server will
forward it to the node that will store the data.

This is shown on figure 2 by the sequence of messages necessary to handle a first request(1
to 3), in this case a read one: the request is sent to the server that forwards it to the node that
has the data requested which then replies directly, not through the server, to the asking node. The
messages 4 to 6 illustrate the processing of another request.

3Only for the read operations, we will see why later.
4This operation is called spoofing the server address in the literature.

4

5 Technical Issues and implementation

This section presents the technical aspect of our server and shows where we had to modify a
standard implementations of NFS.

5.1 Standard NFSv2 protocols: NFS, RPC, UDP

The NFS protocol (version 2) is normalized in the RFC1094[IET89]. It is built over the SunRPC[IET88]
mechanisms using XDR[IET87] for data formats. SunRPC’s may be used over TCP or UDP sock-
ets, but concerning NFS, most server only offer UDP support5 Besides, as the RPC system brings
a fiability layer to the NFS protocol (acknowledgements/resends of requests, . . .), TCP may not
offer great improvements, except to avoid congestion, which is relatively uncommon on modern
switched local networks.

The NFS server set is split into two processes, as shown in figure 3:

� the mountd process that implements the mount protocol (some kind of initialization proto-
col),

� the nfsd process that does the I/O and processes the requests.

Once the client has mounted the NFS volume, the communications happen between the client
and the nfsd by means of UDP packets. The server waits on port 2049 and client on a system
port (below 1024). Thus, the client sends a request contained in a UDP packet: IP ���������
	 :port ���������	 to
IP ����������� :2049, then it expects to receive a reply in a UDP packet which source is IP ����������� :2049 and
destination, IP ���������
	 :port ���������
	 .

5.2 Why a user-mode server?

Most NFS servers are multithreaded and runs at the kernel level to increase the throughput. As we
don’t want to be intrusive regarding configuration, we decided to use a user-space implementation
of the NFS server instead of modifying the kernel one.

The Linux User-Space NFS server was implemented a few years ago by Mark Shand, and
further enhanced by Donald Becker, Rick Sladkey, Orest Zborowski, Fred van Kempen, and Olaf
Kirch. It did not evolve much since 1998, when the version 2.2 was released.

It is a bit slower than the kernel mode server, mainly because of the overhead added by data
copies: disks to kernel buffers to user space to kernel space (network buffers) for a read request,
the write being in the reverse order.

Yet, it is simpler to modify and a crash will not hang the whole machine (compared to a kernel
level server). Besides, installation is also quite simple and requires minimal administration and
configuration provided there is already NFS support available, which is the case of most systems.

5.3 A few definitions

In the following parts, the following terms will be used as defined below:

5maybe because most clients only have only support for the UDP mode. . .

5

3 4

21

mountd nfsd

client

mount −t nfs server:/export /mnt/export

storage

request reply

reply

protocol
nfs/export

request

mount
protocol

Figure 3: Traditional NFS server

/export

mount −t nfs server:/export /mnt/export

iod

ipi:porti
READ[IOD]

metafiles storage datafiles storage

client ipc:portc

(ipi,20000)
nfsd ips:2049

(ips,2049)

READ [NFS] READRES [NFS]

(ipc,portc)
to

(ips,2049)
to

to
(ips,*)

(ipc,portc)

NB: 2049 is the standard NFS port number (though it may be changed)
20000 is the default port on which iod’s wait for requests

UDP packets are shown in rounded corner boxes

ipi: IP of I/O daemon
ipc: IP of client
ips: IP of server

Figure 4: NFSP server

real file: the file as seen by the user

metafile: the file on the nfsp server

metadata: data concerning a file - in nfsp, metadata are handled at two levels:

� the underlying file system for timestamps, owner, etc. . .
� another part stored in the metafile (size of the real file, seed)

datafile: a file containing data of the real file. We will see later that these data are stored on the
iods.

To illustrate this: a real file is made of a metafile holding metadata on the metaserver and of
datafiles striped on I/O daemons (iods) running on I/O nodes.

5.4 Architecture overview

The file system is handled by two kinds of server: one that deals with metadata (filenames, per-
missions, . . .) and several I/O daemons that handle the data. To simplify the notations, the former
will be called metaserver (or nfspd) and the latter, iods.

The metaserver currently keeps metafiles in a standard Unix directory (on disk). This directory
will be exported by means of the standard NFS mechanisms (mount).

There exists a mapping:

� one meta file � one real file on the metaserver

� one “special file” (directory, pipes, blocks or character devices) � one “special file” seen by
the client

Thus if you do a find /export on the metaserver or on a client you will see the same files.
Yet, if their size is looked at, it will appear that on the metaserver every file has the same size (a

6

few bytes) and on the client their sizes are different (you will find an example in the following
section).

File attributes on the metaserver are stored in two places:

� in the metadata of the underlying filesystem (ext2fs for example), for “standard” attributes,
that is the one not altered by striping: creation time, owner, group, permissions, etc. . .

� in the metafile itself: size of the real file, “seed” of the file. . .

5.5 What are the differences with a standard NFS server?

This part presents how we implemented the most common operations in the prototype we devel-
opped.

5.5.1 Creation

When a regular file6 is created by the client, the metaserver creates a metafile whose name is the
same as the one specified by the client. This metafile is then opened and the following things are
written into it:

a magic number: used to be a bit more sure it is a correct metafile,

a seed: this figure is generated using the libc rand() function and is currently used to give a
“version” (or “cookie”) to the inode a metafile lives in; it will also be used to choose the first
node of striping,

the size of the real file: this value is modified when data is appended to an existing file or when
this file is cut.

A seed is used since iods only know the data they store by the inode and seed of the metafile.
The problem that could happen if such mechanism were not used would be that stale data could be
read if the metaserver is short on inode numbers and reallocates an inode before the data is flushed
on the iods.

With this seed, even though the inode is reallocated and the iods did not flush all of the data
they had about the previous “version” of the file, stale data will not be read (some kind of lazy
deletion). This mechanism is similar to the one found in the inodes of the ext2 filesystem (the
file version may be found by means of lstattr -v).

Another consequence of the mapping used is that when the user hardlinks two real file, in fact,
two metafiles that hardlinked.

When a special file is created by the client, the metaserver creates the corresponding special
file for storage.

As a result, if you compare the directory listing on both a client and the metaserver, they will
be the same. However, if you consider the sizes of the files, you will notice that regular files stored
on the metaserver all have the same size (a few bytes) whereas the clients see them with different
sizes.

6that is: not a directory or special file(pipes, block or character devices)

7

Example:
On the metaserver: $ls -l /META
-rw----- 1 user group 12 Sep 10 14:27 test.0

On a client: $ ls -l /MNT/

-rw----- 1 user group 295456 Sep 10 14:27 test.0

5.5.2 Deletion

On a classical NFS server, a deletion request is sent by the client to the server which call unlink()
on the file and then acknowledges the RPC.

This process, though simple is a bit trickier in nfsp. When a client wants to erase a file, it sends
a request to the metaserver. The metafile is stat()’ed and its hardlink count is checked: if it is
above 1, then the metafile is removed and the underlying filesystem will decrease by 1 the count
of the other hardlinks. Yet, if it is 1, then the metaserver sends a message containing the inode
and seed of the file to an ancillary process (unlinkd) that was spawned at the launch time of
unfspd. The communication pipe is a standard Unix pipe. Then, it sends an acknowledgment to
the client.

Meanwhile, the unlinkd process gathers remove requests till a maximal number of messages
is reached or some specified inactivity delay has been observed. Once one of these events happen,
it multicasts to every iod through TCP streams the files that need to be erased.

For your information, in our first implementation, we used to send remove notifications via
UDP and did not care if they did not succeeded sometimes, thus accepting some disk leaks that
would be fixed by another maintenance tool. Yet, when a burst of remove notifications had to be
sent, they flooded the UDP socket and were silently lost, which caused massive disk leaks on the
iod, so we used another approach.

5.5.3 Read

On a NFS server, a READ request is sent by the client to the server which sends the data requested
together with NFS attributes.

In nfsp, the client sends the READ request to the metaserver. The latter reads metadata, finds
the iods that will hold data and then forward it the request. The iod, processes the request it
received and spoofs the reply the metaserver should have sent to the client.

The spoofing with ports and hosts is illustrated in 4.

5.5.4 Write

In a standard NFS server, a write request has to acknowledged by a short packet containing the
RPC acknowledgment and the attributes of the file (metadata).

In nfsp, requests holding data to write are sent to the metaserver. It reads metadata and forwards
it, together with the data to write, to the iod chosen by the hash function.

Then, the iod processes the request and spoofs the acknowledgement the metaserver should
have sent to the client.

The spoofing works the same way as for a READ request as illustrated in 4.

8

5.5.5 Other requests

Every other NFS request are handled directly by the metaserver, without interacting with the iods.
Some care has to be taken though: sometimes, metafiles have to be read so as to send a correct

reply to the client.
For instance, when the NFS request STAT - used to get metadata of a file - is required7, the

NFS server simply calls the stat() function.
In NFSP, those calls are wrapped in functions handling the metadata stored in the metafile,

which allow the nfspd to generate a valid answer in the view the client has.

5.6 I/O daemons (or iods)

I/O daemons were first designed as small server loops that waited and processed UDP packets sent
by the nfspd. Yet, this approach has been found soon to be not easily extensible to correctly handle
the deletion of files and we needed to add a TCP stream (see the explanations in 5.5.2).

That is why we moved to a multithreaded approach since synchronous I/O’s with multithread-
ing tend to offer a good compromise for performances and simplicity of code (compared to asyn-
chronous I/O’s). Iods have been rewritten to use POSIX threads and now we have a more simple
and maintainable architecture.

There is an array of buffers used to spool request received and wait for I/O.

� one thread gets requests via UDP packets from the metaserver (READ/WRITE/PING) in
one of the buffers then wakes up an I/O thread,

� one thread gets requests via the TCP stream the metaserver opens when it is launched (indeed
only PURGE requests) in one of the buffers then wakes up an I/O thread,

� I/O thread(s) are sleeping until they are notified some work has to be done, whatever it may
be.

The socket dedicated to output is a RAW socket. It is necessary to use such a low-level socket to
control the way packets are sent. A simplistic UDP stack is then used to send messages (fragments
them according to the MTU of the used network interface).

The simple protocol used between the metaserver and the iods is (imaginatively :) called iod
protocol and consists of a few messages:

READ sent by the metaserver to the iod, contains inode number, offset, seed, the 4-uple (IP ���������	 ,
port ���������
	 , IP � ��	�� ����������� , port � ��	�� �����������), the RPC xid8 and the file attributes. The iod spoofs the
reply to the client.

WRITE this request contains the same data as the read but it also includes the data to write. The
iod is to spoof the acknowledgement to the client (NFS/RPC reply).

PURGE this request is used to flush every data file still existing on the iods. Currently, it is sent
to every iod in a row but is scheduled to be replaced by a multicast or broadcast UDP packet.

7if the user requests on the client a ls -l
8identifier number of the Sun RPC request

9

Two other messages types exist, mainly for administrative (or troubleshooting !) purpose and
more specifically to test whether the iods are running fine.

They may be sent from any host to the iods and are:

� PING: the PONG reply will be sent by means of a UDP socket from “our” UDP stack, thus
it may spoof another IP address to test whether spoofing works,

� PONG: the acknowledgement message is sent back to the requester.

5.7 Considerations of security

The protocol in itself is not really secured and rather aimed at a safe environment, such as the one
found in a cluster.

An additional level of security might be added by forcing iods to listen on ports below 1024
which would mean that they were launched by a privileged user. The nfspd might also be told to
use such ports to offer a relatively small improvement in security.

Iods must be launched with superuser privileges to open the RAW socket but these privileges
are dropped as soon as the RAW socket has been opened.

5.8 Installation

The installation on the master node, the one that hosts the metaserver, is meant to be quite simple:

� edit an exports file (same format as for standard NFS server)

� edit an iods.conf file (list of the pool of iods)

� launch the iods on the hosts/ports you declared in iods.conf on all the I/O nodes

� launch the mountd daemon

� launch the nfsp deamon

And voilà, the server is now up and ready to serve.
The client has just to mount the NFS volume it described in the exports file:

mount -t nfs metaserver:/export /mnt/foo -o rsize=4096,wsize=4096

An iod_ping utility is available to check the state of the iods, and may help to check if
spoofed UDP packets are allowed to be sent to the network.

6 Preliminary results

This section presents the results of the tests we ran. They should be considered preliminary since
the code has places where our nfspd daemon really needs optimizing.

Please note that in this document, B stands for byte and b for bit.

10

6.1 Description of the testbed

All the nodes metaserver, iods or clients have the same hardware (described in section 3) and run
an off-the-shelf Linux Mandrake release 7.1, powered by a custom compiled standard Linux kernel
2.4.4.

To lower the influence of the cache system offered by the kernel, the memory available for
the system should be set to a lower value: for instance at boot time, one may use the mem=16M
option may be used to tell the Linux kernel to consider only 16MB out of the total system RAM in
the system. However, this approach is not yet usable since it would require restarting the system,
which our reservation system does not handle quite well.

The other approach we chose since it was less intrusive was to defeat the cache by disabling
the swap devices and using a file being twice the RAM size.

The NFS server of our cluster (running a P3-1GHz 512MB RAM and 1GB swap powered by a
2.4.5-xfs-1.01 Linux kernel).

To start the clients almost simultaneously, and thus heavily stress the server processes (nf-
spd+iods), we used the parallel launcher ka-run 9 developped by Cyrille Martin (see [MR01]).

6.2 bonnie++ tests

In this test, nfsp has been tested by Bonnie++ 1.0.2 by Russell Coker 10.
We have had some slight troubles with running the massive file creation and deletion, which

most likely comes from the recent rewriting of most of this code.
In the two following tables, the size of the test file is 512MB (twice the RAM size).

Write Read Random
/char /block Rewrite /char /block seeks

KB/s %CPU KB/s %CPU KB/s %CPU KB/s %CPU KB/s %CPU /s %CPU

NFS: 1c 9065 96 10701 8 4986 4 8211 81 9683 4 210.7 1
NFSP(4): 1c 7514 72 7248 6 4376 4 7889 80 8550 4 623 5
NFSP(8): 1c 7255 69 8032 6 4541 4 8955 93 8973 5 679 5
NFSP(16): 1c 8474 82 7907 7 5301 5 9044 94 10067 6 627 5
NFSP(32): 1c 8486 80 8284 7 5090 5 9034 94 9627 5 662 4

With a single client, the performances are not wonderful, and even a bit worse than the one we
evaluated on the NFS server. This may be explained by the overhead implied by the approach, in
latency for instance since messages have to be transfered via the nfspd.

In the table below, two clients are launched almost simultaneously with ka-run.

Write Read Random
/char /block Rewrite /char /block seeks

KB/s %CPU KB/s %CPU KB/s %CPU KB/s %CPU KB/s %CPU /s %CPU

NFS: 1st c 5401 49 5730 4 2531 2 4698 42 5174 2 273.4 1
NFS: 2nd c 6274 57 5753 4 3361 3 4666 43 4575 1 204.4 1
NFSP(32): 1st c 5315 48 5555 4 4677 4 8135 82 8130 4 683.5 4
NFSP(32): 2nd c 5737 53 5810 4 4080 3 8300 83 10462 6 698.4 6

9Further information at http://ka-tools.sf.net/.
10Check http://www.coker.com.au/bonnie++/ for further information.

11

As one may see it, the write operations are limited by the 100Mbps link (around 11MB/s),
which is observed if client 1 and client 2 write speeds are added.

Yet, for the read, unlike the NFS server, more bandwidth is available since several network
cards may be used, which appears when the read speed of both clients are added.

6.3 Concurrent sequential tests

We tested a massive sequential read with an increasing number of clients.
To illustrate this, we created a 1GB (4 times the RAM size), and used 16 iods. This file using the

following command: dd if=/dev/zero of=file bs=1M count=1024, which took around
150s.

To have this 1GB file read concurrently by several clients we issued the following command
on every client: dd if=file of=/dev/null bs=4096.

The performances we obtained are illustrated below.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

M
iB

/s

concurrent clients

Total bandwidth used (MB/s) [16 iods]

Figure 5: Total bandwidth used (MB/s)

Starting at 6 clients, the cumulated bandith served by the nfspd does not increase and finishes
by becoming almost constant, which is a bit disappointing, and reveals the presence of a bottleneck.

We first thought that we saturated some buffer in the switches we used (HP Procurve 4000) but
a quick look at their specifications showed a maximal backplane speed of 3.8 Gbps, which let us
some margin!

50MB/s corresponds roughly to 12,000 4KB requests thus 12,000 messages are transfered from
the nfspd to the iods, which is around 2,000KB/s, which does not saturate the nfspd bandwith,
either.

However, we suspect that the metafile handling has to be optimized (at least by some kind of
caching), which is not currently the case, indeed the metafile is read again each time a request has

12

to be replied to, which costs syscalls and cache file access.
This phenomenon is currently under further investigations and we are confident that this bot-

tleneck will be exactly identified and fixed for the final paper.

6.4 Summary

The write will be limited at the speed of the metaserver ethernet card since using the NFS protocol
implies the client talks to its server: data must be received then, forwarded to the iod that will store
them.

The read looks more interesting and promising since the requests between the nfsp and the
iods are small and do not saturate the metaserver network interface. Then, the iods process read
operations and send back the data directly to the client, not wasting the metaserver bandwidth (on
a switched network of course).

7 Conclusion and future works

In this paper we introduced a extension to the NFS protocol to adapt it to the context of clusters.
Our proposal is to split the NFS server in two parts, one in charge of the metadata and the other of
the data themselves. We presented the architecture of our system and an implementation that gave
interesting preliminary results.

We currently think of several extensions to enhance the system:

� enhance the metaserver by using caching of metadata and not using the facilities offered by
underlying filesystem for storage of metadata. . . ,

� use threads on the metaserver to increase the throughput: the original architecture of the
NFS user-mode server has been kept to avoid a major rewrite: it is a monothreaded (possibly
forked) applications but is not cleanly and easily extensible; yet, before doing this, the code
needs auditing since several parts of the code are not reentrant,

� run as a kernel extension to avoid excessive memory copies inherent to user space applica-
tions when our implementation will have proven its robustness,

� implement a distributed NFSv3 server: asynchronous write tend to offer an interesting gain
in efficiency. Besides this protocol support large files (over 2GB) unlike NFSv2. Some
research has still to be carried out to see how the NFSv3 commit request may be handled in
a coherent way and how not to overload the metaserver.

NFSP aims at being simple to install and to run and at using several machines to load balance
the I/O bottleneck onto several hard disks. Besides, a side effect of this appears since there are more
machines, thus there is more memory and consequently more cache and hence more performances,
which is not a negligible point.

Adding redundancy without sacrifying performance has also to be investigated, as well as the
use of multicast UDP datagrams (recent switches handle them natively).

13

Just as you need more power in a cluster, we would like to extend the file system as easily:
plugging a new disk or a new machine into a cluster and the available disk space would increase
smoothly.

The prototype has been running on our cluster for about one month, and has been used by
several users. We have not met any critical problems so far. A detailed description of the in-
stallation process, together with a CVS snapshot is currently available at the following URL:
http://www-id.imag.fr/Laboratoire/Membres/Lombard_Pierre/nfsp/.

References

[CIBT] Philip H. Carns, Walter B. Ligon III, Robert B. Bross, and Rajeev Thakur. PVFS: A
parallel file system for linux clusters.

[IET87] IETF. XDR : External data representation standard. RFC1014, June 1987.

[IET88] IETF. RPC: Remote procedure call protocol specification version 2. RFC1057, June
1988.

[IET89] IETF. NFS: Network file system specification. RFC1094, March 1989.

[MR01] C. Martin and O. Richard. Parallel launcher for cluster of PCs. In ParCo 2001,
September 2001.

[RAM � 01] B. Richard, P. Augerat, N. Maillard, S. Derr, S. Martin, and C. Robert. I-cluster:
Reaching top500 performance using mainstream hardware. Technical Report HPL-
2001-206, August 2001.

[SSB � 95] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V.
Packer. BEOWULF: A parallel workstation for scientific computation. In Proceed-
ings of the 24th International Conference on Parallel Processing, pages I:11–14,
Oconomowoc, WI, 1995.

[WA93] Randolph Y. Wang and Thomas E. Anderson. xFS: A wide area mass storage file
system. In Proceedings of the 4th Workshop on Workstation Operating System, 1993.

[WAD97] Randolph Y. Wang, Thomas E. Anderson, and Michael D. Dahlin. Experience with a
distributed file system implementation. Technical Report CSD-98-986, January 1997.

14

