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Homa is composed by an IDL compiler and a runtime support. From IDL definitions of CORBA objects,
Homa compiler automatically extracts all the informations which allow efficient and scalable composition of
method invocations. The compiler and runtime support rely on two functionalities: the automatic extraction of
parallelism between method invocations and the lazy protocol used to communicate effective parameters. The
runtime re-schedules the invocations and the associated communications using the parallelism deduced from
their IDL definitions. The scheduling strategy is based on ATHAPASCAN. Used together these functionalities
enable parallel communication between code coupled applications. This property is conserved by composition
of invocations. The technology is based on the generation of extended client stub and server skeleton on top of
standard client stub and server skeleton generated by existing IDL/CORBA compiler. Parallelism is handled by
the parallel programming environment Athapascan. Thus, Homa is highly portable. The target applications
are high performance numerical simulations.
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Homa : ré-ordonnancement automatique de plusieurs invocations de
méthode en CORBA

Résumé : Ce rapport présente Homa, un environnement de couplage de codes qui permet la construction
d’applications distribuées qui passent à l’échelle. Homa est composé d’un compilateur IDL CORBA et d’un sup-
port exécutif en CORBA et ATHAPASCAN. Le compilateur de Homa extrait automatiquement des définitions
IDL toute les informations qui permettent d’exploiter efficacement la composition d’invocations de méthode. Le
compilateur et le support exécutif exploitent deux fonctions : l’extraction du parallélisme entre plusieurs invo-
cations de méthode et l’utilisation d’un protocole paresseux pour la communication des paramètres effectifs lors
des invocations. Le moteur exécutif ré-ordonnance ces invocations et les communications associées en exploitant
le parallélisme potentiel induit par les modes de passage des arguments des méthodes définis dans les IDL. Ce
ré-ordonnancement se base entièrement sur ATHAPASCAN. Il est donc possible, à l’exécution, d’obtenir des
communications parallèles entre des applications parallèles couplées par Homa. De plus cette propriété est
conservée par composition d’invocations. La technologie utilisée se base sur la génération de souches clientes
et serveurs au dessus des souches générées par un compilateur standard CORBA et sur l’environnement de
programmation Athapascan pour la gestion du parallélisme. Aucune modification d’un ORB existant n’est
nécessaires ce qui rend Homa très portable d’une implantation CORBA à une autre. Les applications cibles
sont des applications de couplage de code en simulation numérique à hautes performances.

Mots-clés : Couplage de codes, CORBA, Parallélisme d’invocations de méthode, Ordonnancement On-line
Communication parallèle, Cache distribué, Athapascan
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1 Introduction

Multi-scale and multi-physics simulations are emerging as solutions to achieve high fidelity in complex physical
system simulations. The knowledge of physics for each piece of the simulation, computational algorithms and
programming models impose that modern simulation code be developed as largely independent collection of
software components. For instance, [24] reports simulation of the next generation of aircraft will require several
hundreds of software components. Such simulation requires lot of CPU time and, therefore, has to exploit the
aggregate power of resources scattered from available clusters of computational grid [13].

This report focus on applications based on the standard CORBA from OMG, which have been used with
success in several projects for numerical simulation [3, 24]. CORBA specifies an open, vendor independent
and language independent architecture for distributed applications. A CORBA component has an interface
described in the Interface Description Language (IDL) which allows high level and modular programming.
Moreover some high performance implementations of CORBA are available [33]. Thus, CORBA is well suited
for high performance numerical simulation on a computational grid. Some recent projects have proposed to give
access to core grid services [29] to CORBA based application, to rely on CORBA to develop Application Service
Provider (ASP) [7] or to implant specification of interface for computer aided process engineering (European
project CAPEOPEN) [3].

These projects propose quite complex interfaces to access the data of each component of the simulation
and to exploit parallel computation. This complexity comes from the fact that CORBA does not address the
problem of efficient composition of several invocations between severs in distributed environment.

• The first limitation is due the semantics of CORBA on the communication of effective parameters during
the invocation of a method: all effective parameters of an input formal parameter of a method are
communicated from the client to the server; all output parameters are communicated back to the client.
The direction of a parameter defined in the IDL allows to optimize communication for one invocation
between one client and one server. This local optimization does not implies a global optimization when a
client invokes several methods on a set of servers to run a complex simulation: all parameters are moved
between servers by passing through the client, which becomes the bottleneck for the scalability of using
many components. The problem is exacerbated in case of iterative simulation. Thus, the communication
should be optimized by considering the whole invocations. In this report, we presents our idea to keep
standard CORBA semantics of invocation while generating only communications on the demand, i.e. if
and only if a data is required on a component for an operation.

• The second difficulty comes from the semantic of the invocation of method in CORBA [26] between a client
and a server. An invocation is mostly a blocking instruction: the caller waits until the server returns values.
CORBA limits non-blocking invocation to method which do not have output values. Thus, to generate
parallel flows of control, a programmer should mix blocking invocations with multithread computation,
or he should mix non-blocking invocation with an other way to handle reply from server (event driven
model of execution, concept of future [22], ...). Whatever is a concrete choice, the natural way a client
should invokes methods has to be forbidden. In this report, we promote to keep the natural semantics of
CORBA invocation while using a specific compiler and runtime, called Homa, which allows to efficiently
exploit a parallel computer at runtime.

Moreover, our propositions do not imply any user’ source code transformation into the server or the client
but only a recompilation, at least of the client, with a new generated client stub and server skeleton. This work
is part of the Homa project which aims at developing efficient solutions for code coupling of distributed CORBA
based applications. Nevertheless, our results could easily be applied to other general distributed environment
which required to compose functions.

In the next section we review the above discution on a motivating exemple. Section 3 presents the Homa
project. Then, we introduce the abstract interpretation of CORBA client invocations which allows to build
at runtime the data flow graph between all invocations. This graph represents the future of the execution:
the execution of task is associated to the execution of method on server object. T hen, we present how to
execute such tasks to avoid an unbound use of resource by splitting blocking invocation into two non blocking
invocations. Section 3.4 presents theoretical results about expected execution time of any CORBA client using
Homa versus standard implementation: the gain could be linear with respect of the number of processors if the
application exhibits enough parallelism. Section 5 reports some experiments which fit our theoretical analysis.
Then we conclude this paper.

RR n◦ 5191



4 T. Gautier, H.R. Hamidi

2 A motivating example

This example comes from the project SIMBIO [5] in computational chemistry1. The goal of SIMBIO is to
build a distributed application to compute complex simulation of molecular structure (a protein) surrounded
by solvent.

2.1 SIMBIO

The application couples several parallel codes specialized in their domain. Considering two different scales: at the
atomic scale the simulation is governed by quantum mechanics, while at macroscopic scale, the Newton’s motion
equations are solved to simulate the behavior of the molecular structure using a parallel molecular dynamic
application [4]. The solvent is modeled as a charged continuum material. The electrostatic field is governed
by Poisson’s equations, with charged particles. The algorithm is based on integral formulation with a parallel
implementation. Both models interact through a surface that separates the domain of Newton’s equations
(MD) and the domain of Poisson’s equations (CM). The complete description of the numerical algorithm for
the coupling is outside the scope of this report. To complete the description of SIMBIO, let us note that other
applications are included in the simulation process: one of them needs to save all the positions and velocities
of atoms in order make analysis of the trajectories of atoms; others permit to visualize the molecular structure
and the surface of separation. Nevertheless, the interaction between the both models is through this surface.

2.2 Data flow of the whole SIMBIO application

Figure 1 shows the coupling algorithm of SIMBIO simulation application as a multi step integration scheme.
The molecular dynamics (md object) and the continuum method (cm object) are connected by a special task
(couplage object) that implements the computation of the coupling terms of the physical models. Both objects
are parallel: the ’atoms’ P and ’surface’ S data are in fact distributed objects (vector) among the processors.
These objects are aggregate CORBA objects distributed among the processors, such as data parallel objets
extension [22, 31, 28].

1. // - main loop

2. for(int i=0; i <MaxTimeStep; i++) {

3. md->computeFF( P, F MD ); // in P, out F MD

4. if (cmstep( i )) { //true iff CM step

5. md->computeRhs( P, b ); // in P, out b

6. cm->computeA( S, P ); // in S, in P

7. cm->computePolarization( b, F CM ); // in b, out F CM

8. }

9. /* Coupling of terms */

10. couplage->mix( F CM, F G, F MD ); // in F CM, out F G, inout F MD

11. md->integrate( V, F MD, P ); // inout V, in F MD, inout P

12. if (cmstep( i )) {

13. cm->integrate( S, F G ); // inout S, in F G

14. }

15. } // - end main loop

Figure 1: Code of the simulation pilot that generates the data flow graph of SIMBIO
application. md, cm and couplage are aggregate CORBA objects. Arguments of
methods are CORBA sequence data type, eventually distributed.

The description of the data flow for one iteration depends on the current step and was given by a CORBA
based client program sketched in figure 1. Figure 2 represents the data flow graph between the invocations of
the methods of the figure 1. A box node represents a data, and an ellipse node represents a task. An edge from
a task to a data means that the data is written by the task. An edge from a data to a task means that the
data is read by the task. Each task in the data flow graph corresponds to the invocation of method on CORBA
object (at lines 3, 5, 6, 7, 10, 11, 13 in figure 1).

1SIMBIO was an project funding by INRIA.

INRIA
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(a)Data flow graph if cmstep condition is true.
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Fmd

Fcm
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MD −> integrate
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couplage −> mix

P V

(b)Data flow graph if cmstep condition is false.

Figure 2: The data flow graph of SIMBIO of one iteration of the program sketched in figure 1. Depending on the value
of cmstep either the graph a) or b) is build at runtime, then it is scheduled and executed on a distributed architecture.

2.3 Communication complexity

Section 3.4 presents a complete complexity analysis of the target applications but this paragraph focuses on the
bottleneck in the program of figure 1 using a basic cost model with strong but realistic assumptions about the
communications.

Let us assume that each communication between the MD and CM applications has about the same size L
bytes. Typically, L ranges from KBytes to MBytes. Thus one iteration of the program of figure 1, with the
full evaluation of CM tasks, needs to communicate 5L bytes. Using P processes for both the MD and CM
applications, each process except the coupling process, send or receives about 5L/P bytes of data.

On the top of standard CORBA implementation, the pilot that describes the data flow of iteration, is
involved into each communications: the associated process receives and forwards about 5L bytes of data. Thus
from the point of view of the communication, the pilot is the bottleneck of the code coupling application. This is
inherent from the semantic of method invocations in CORBA which requires explicit communication of effective
parameters.

As shown in next sections, using Homa the pilot does not participate at all into the data communication2

between applications: each process of the md and cm applications sends or receives in parallel about 5L bytes of
data. Nevertheless, the bottleneck is due to the implementation of the coupling task (distributed or not), which
is in the charge of the programmer and not due to the usage of the underlaying middleware to interconnect
applications.

2.4 Execution on distributed architecture

Assuming the data flow graph known, the mapping of tasks onto the processors of distributed architecture allows
to exploit parallelism between invocations. Homa relies on Athapascan to manage the parallel execution of
tasks with respect to data flow constraints. By using abstract interpretation and compilation technics, each
invocation to method is captured to generate an Athapascan task: section 4 deals with the implantation of
the compilation process to automatically build at runtime the data flow graph, the section 4.2 gives a detailed
presentation of the generation of the client stub and server skeleton.

To generate a efficient Athapascan program, Homa compiler uses two technics:

invocation by continuation to replace blocking invocation by two non-blocking invocations,
2Except for doing remote invocations, which is not considered in this basic analysis.

RR n◦ 5191



6 T. Gautier, H.R. Hamidi

communication by necessity to avoid no required communication of data. transforms

The section 3.4 analyses the impact of this two technics on the complexity to execute any Homa program
on distributed architecture. Especially, we show that if the Homa program (for instance the program in the
figure 1) is a coarse grain highly parallel program, then the speed up of using Homa versus standard CORBA
is nearly linear with respect to the number of processor.

The SIMBIO application is used in section 5 to measure the pratical gain of using HOMA versus standard
CORBA implantation: we exhibit good speed up as predicted by our analysis.

INRIA
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3 The Homa project

Homa is a research action to provide an environment which allows to reuse the components and assemble them
in order to build high performance and scalable distributed application for numerical simulation using CORBA
component technology [27]. The assumption implicitly made in Homa is that many components are available
and the target application is built or extend by assembling these components.

3.1 Abstract interpretation

In order to achieve theoretical and practical efficient execution on a parallel architecture, the knowledge of the
data dependencies related to the application appears as the key point for computing a good schedule. Homa
handles at runtime the abstract interpretation to gain information about the parameters required for each
invocation. From an IDL definition, Homa generates at compile time a new client stub which allows to capture
the direction mode for each parameters involved in a sequence of invocations. At runtime, the control of the
program is interpreted in the standard way while all invocations are intercepted to build the data flow graph
of the execution. This graph is bipartite: the nodes form two sets, the ”tasks” and the ”data”. A node of
type ”task” in this graph represent the invocation to a method on a server. Input arcs are input parameters
(in in IDL), output arcs are output (out) parameters. A node of type ”data” represents the value version of a
parameter.

The figure 2 represents the data flow graph of our motivating exemple. Each nodes (data and task) have
the attributes: the execution site of the task (the site where is instantiated the server object) and the size of
the data. Moreover each nodes have a state (ready, not ready). A data is ready if it is written by a task. A
task is ready if all its input data are ready.

3.2 Efficient non-preemptive execution

After scheduling the data flow graph (section 3.4), the runtime evaluates each tasks by respecting the order
induced by the data flow constraints. The blocking invocation to a server is split in two non blocking invocations.
This transformation is done into client stub and server skeleton generated from the IDL by our compiler. We call
this transformation the ”invocation by continuation” [17] as the adapted version of the ”wait by necessity” [6]
principle. In invocation by continuation, such as figure 3, a task invoking a blocking method is transformed
in two tasks which invoke non-blocking methods. The execution of the former task invokes the first non-

����
����
����

����
����
����

����
����
����
����

����
����
����
�������

���
���

���
���
���

���
���
���

���
���
���

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������������������������

Recived

Blocked

Blocked call

Reply

Recived

ReponderReponderCaller

Reply

a) Normal synchrony

Result
Ready

Not−Ready
Continuation task

Caller

Task creation

Ready

b) Invocation−by−continuation

Try to access

Not−Blocked call

Figure 3: Invocation-by-continuation in comparison to normal synchrony.

RR n◦ 5191



8 T. Gautier, H.R. Hamidi

blocking method, initiates the invocation on the server and addes a task into the macro data flow graph for
the continuation. The continuation task will became automatically ready by the second non-blocking method
invoked by the server skeleton.

The most import fact is that this transformation allows a non preemptive execution [16] of the tasks with
efficient execution: because all tasks are never waiting for the results, all processors remains active while there
exist ready tasks in the graph. For instance, it is possible to schedule the data flow graph using one and only
one thread of control to invoke in parallel methods on several servers.

3.3 Automatic data movement

Due to the data flow representation of the execution of a sequence of invocations, it is possible to generate
only the communication required to realize the invocation into a server. The communication by continuation
strategy makes the need transformation automatically into our Homa IDL compiler: it translates all parameters
involved in invocations into global references. A reference is composed by a name and a version number. If a
server which produces a parameter (out and inout) knows in advance all the servers that will consume it, the
skeleton send the data to the consumers just after its production. A receiver will store it into a cache until its
consumption. This mode of communication is called the put method. If a skeleton requires a data which was not
yet received, it makes a request to the process that have produced it: this is the get method of communication,
such as figure 4. In both methods, the client that generates the sequence of invocations is never involved into
the communications, with the exception if it requires to read a data. The put method should be used if the data
is small and could be broadcasted to several other servers for future invocation. But, because it requires the
storage of data copies on some servers, such method should be carefully used with big data to avoid memory
consumption. Moreover, the invocation by continuation technic allows parallel communication between servers.

Code−2Code−1

Pilot Pilot

Code−2Code−1

b) Communication−by−necessity

5− Data

4− Key
4− Ack

3− Data

2− Data

1− Request
3− Ref

6− Ack 2− Ref

1− Request

a) Normal communication

Figure 4: Communication-by-necessity (get method) versus the normal communication.

3.4 Theoritical scheduling results

Homa relies on the macro data-flow execution kernel of Athapascan [16, 18], a parallel runtime environment
to manage parallel execution. Let us recall the notations used in [16] defined on data flow graph: Sequential
time T1 denotes the sequential time that is defined from a serial execution of the program. Parallel time
T∞ is the arithmetic depth of graph taking into account the weights (computation costs) of task nodes. T∞ is
then a lower bound of the minimal time required by any non-preemptive schedule on an unbounded number
of processors ignoring communications times (PRAM model [12]). Communication volume C1 and delay
C∞ are evaluated from graph similarly to T1 and T∞ but taking into account only the weights (sizes) of data
version nodes. C1 is the sum of the weights over all data nodes; Assuming that the shared memory is emulated
in an auxiliary file, C1 is then an upper bound on the total number of accesses performed in this file during a
serial execution. C∞ is the length of the critical communication path.

Let us assume that the cost to communicate a message of size L is hL. Thanks to the work stealing
algorithm detailed in [16], any data flow graph could be executed on a p processors machine in time Tp =
O(T1/p + T∞ + h(C1/p + C∞)) + O(σ). Where σ is the size of the data flow graph. This time includes the

INRIA
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overhead to compute the schedule of the program. The result is valid on a homogeneous parallel machine (a
cluster), if and only if the tasks are non blocking, and if the communications are direct between processors.

Proposition 1 The time to execute a CORBA client which makes invocations on a p processors machine using
Homa is: Thoma

p = O(T1/p + T∞ + h(C1/p + C∞)) + O(σ).

The cost model of execution of Homa is inherited from Athapascan [16], because Homa translates remote
blocking invocation into non-blocking invocations. Section 3.2 presents how a blocking invocation is converted
into two non blocking invocations, and section 3.3 shows our technique to make possible direct communication
between servers. Such techniques are at the expense of the creation of an extra task for the continuation and an
extra communication in case of the get mode. But it does not increases asymptotically neither the work of the
program nor the volume of communication. Thus, the previous scheduling bound on Tp = Thoma

p remains valid
for any distributed application in CORBA where the client is compiled and executed with Homa environment.

Note that if a standard CORBA environment is used and because of limitations explained in the introduction,
the execution is sequential and data transit through the client. Therefore, the complexity of any execution is:
T corba

p = O(T1 + T∞ + h(C1 + C∞)) + O(σ).
The following proposition is a direct consequence of the previous results.

Proposition 2 . If the program is highly parallel (T∞ << T1) and involves large data (C∞ << C1), then the
gain of using Homa versus CORBA is nearly linear with respect to the number of processors(T corba

p /Thoma
p = p).

RR n◦ 5191



10 T. Gautier, H.R. Hamidi

4 Implantation

4.1 Athapascan

Athapascan is a macro data-flow language [15, 19, 18] for asynchronous parallel programming. The C++ API
permits to define the concurrency between computational tasks that synchronize on the access through a global
distributed memory. Parallelism is explicit and functional but detection of synchronizations is implicit.

Tasks are created by the Fork instruction and shared
1. struct Fibonacci {

2. void operator()(int n, Shared w<int> r)

3. { if (n <2) r.write(n)

4. else {

5. Shared<int> r1; Shared<int> r2;

6. Fork<Fibonacci>()(n-1, r1);

7. Fork<Fibonacci>()(n-2, r2);

8. Fork<Sum>()(r, r1, r2);

9. }

10. } };

Figure 5: Fibonacci example. The task ’Sum’ is not
presented, it requires three parameters: the first de-
clares to be write and the others to be read.

objects in the global memory by the declaration of Shared
variables. The execution relies on an interpretation algo-
rithm that computes a macro data-flow graph [15]. The
graph is direct and acyclic (DAG) and it encodes the com-
putation and the data dependencies (read and write). It
is used by the runtime support to schedule the tasks and
map the data onto the target architecture. Implementa-
tion is based on the use of lightweight process (threads)
and one-sided communications (actives messages).

Figure 5 illustrates Athapascan on the classical Fi-
bonacci program using a naive algorithm. A task is a func-
tion class as in the STL and it declares the mode of ac-
cesses on object in the global memory. The interpretation
algorithm computes the data flow dependencies on r1, r2
produced by tasks created at line 6, 7 and the task ’Sum’
at line 8 that requires to read the value.

Athapascan defines the following mode of access: a read access (Shared_r), a write access (Shared_w),
an exclusive access (Shared_r_w) and a cumulative access [15, 18]. A shared variable could be of any user’s
defined type if it satisfy some requirements to be ”communicable” [15, 18] (definition of operators for the
serialization). The runtime support garbages automatically the unused shared data. A multi-threaded runtime
support executes ready tasks without blocking [15], because the declarations of shared variables and tasks are
non blocking instructions.

4.2 Compilation process

To achieve parallel evaluation of the method invocations and lazy communication of parameters, we propose a
chain of compilation (figure 6) from an IDL definition to client stub and server skeleton. Using it, only the code
of pilot (client) and the coupled applications (severs) must be recompiled.

IDL*

 Stub

Object Request Broker (ORB)

POA

Implementation of

Implementation of
Extended Skeleton

   Skeleton

Extended SkeletonAthapascan stub
Implementation of

Extended Stub

   Server

 Client side Server side
IDL

Client code
HOMA

 Compiler

CORBA
Compiler

Figure 6: Whole compilation from IDL to extended stub and skeleton.
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In the first step, the Homa compiler produces the extended version of interface (IDL∗) with an asynchronous
version (oneway) of each synchronous method by converting returned value, out and inout parameters to a single
in parameter which represents the continuation of the invocation, as presented in figure 8.

1. struct type {
2. long a;

3. sequence<double> b;

4. };

5. interface I {
6. long foo(in long a,

7. out long b, inout type c);

8. }

Figure 7: Example of an IDL definition.

1. #include <homa rt.idl> // Homa definition of Key and Continuation

2. interface I {
3. long foo(in long a, out long b, inout type c);

4. oneway void a foo(in Key a, in Key c, in Continuation cc);

5. }
Figure 8: IDL* definition generated from figure 7.

Moreover, the type of formal parameters are translated to anonymous references (Key in figure 8) to allow lazy
communication. Then IDL∗ is compiled using the standard IDL-to-C++ compiler provided by most CORBA
implementation. It produces client stub and server skeleton of the extended interface. The Homa compiler also
generates server implementation of the added asynchronous methods in IDL∗ (a_foo in figure 8). Moreover, the
Homa compiler generates a Athapascan parallel client stub that relies on asynchronous methods of the client
stub of the extended IDL∗. The implementation of the server remains unchanged: the original method foo in
the IDL file should always be implemented; and the client has the illusion of making invocations to standard
CORBA method.

4.2.1 Parallel client stub generation

The purpose of the client stub is to build the request corresponding to a method invocation via the ORB.
In order to use Athapascan, the client that invokes a method should creates a new task. The execution of
task corresponds to the execution of remote method on the CORBA object. Because CORBA invocation is by
default a blocking call, Homa compiler generates for each blocking method a non-blocking method defined in
IDL∗ with oneway attribute. Moreover, all inout and out parameters are converted to in parameters with value
coding the information where to store the output value. From IDL in figure 7, the Homa compiler generates
the parallel client stub of figure 9. We assume that all standard IDL-to-C++ definitions of data structures and
interfaces are in the namespace Orig:: (in practice, some of the definitions are in the CORBA namespace [26]
or in the namespaces due to modules in the IDL files). A client that invokes the method foo through a variable
of type homa::I var implicitly creates an Athapascan’s task. Conversion operators exist between the Atha-
pascan’s Shared<Key> anonymous definitions (such as homa::Long) and the standard C++ typed definitions
(Orig::Long). The required operators to serialize data type of shared variable are omitted. Line 10 declares
a continuation variable which is an Athapascan shared variable that envelops the homa::Continuation used
in method a foo. This shared variable is declared as non ready. By this mechanism, the Athapascan’s task
CONT foo becomes ready when the signalization arrived (see next paragraph).

Using this stub, a client executes an Athapascan program. Next section presents how to generate the tasks
from the IDL definition of the method.

4.2.2 Athapascan’s tasks generation

In order to use Athapascan as runtime support to automatically detect such dependencies, IDL definitions
are translated to Athapascan definitions. Each invocation to method on a client program creates a task.
Each argument of method and each interface object are translated to a shared object. The formal parameter
in the IDL definition is translated to an Athapascan’s shared in the task definition: in to a Shared_r, inout
to a Shared_r and output parameters (out, inout and the return value) are passed indirectly through the
continuation object declared at line 10. The reference to the CORBA object ( self) is explicitly passed to
the function (line 10 in figure 9, line 4 in figure 10). In Athapascan, a task is a function, thus method
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1. namespace homa{
2. typedef Shared<Key> Long;

3. typedef Shared<Key> type;

4. ...// same typedef’s for the data types

5. class I { // Definition interface I

6. Shared<Orig::I ptr> self; //Athapascan’s reference to CORBA object

7. public:

8. //Definition of foo using typedef’s in namespace homa::

9. Long foo(Long& a, Long& b, type& c){
10. Long retval;

11. Continuation cc( b, c, retval );

12. Fork<INVOKE foo>()( self, a, c, cc );

13. Fork<CONT foo>()( cc, b, c, retval );

14. return retval;

15. } /*foo*/ }; /*class I*/ } /*namespace homa*/

Figure 9: Client stub for the IDL of figure 7. I ptr and I var definitions are omitted, but are like a pointer to an object
of class homa::I. INVOKE foo is defined in figure 10.

invocation is translated to function call with an added parameter that represents the object. Two methods
cannot be executed concurrently on the same object without any assumption on the method definition (such
as leaving invariant the state of the object). Thus, their executions are serialized and the INVOKE_foo task
requires the reference to the CORBA object using the exclusive mode of access (Shared_r_w): two tasks on the
same CORBA object are executed in the same order of their creations, i.e. in the same order of the invocations
if the client uses the standard CORBA stub.

1. namespace homa{
2. class I {
3. struct INVOKE foo {
4. void operator()(Shared r w<Orig::I ptr> obj, // CORBA object

5. Shared r<Orig::Long> a, Shared r<Orig::type> c, Continuation cc )

6. {
7. obj.access()->a foo( a.read(), c.read(), cc.reference() );

8. }/*operator()*/ };/*struct*/ };/*class*/ }/*end of namespace homa::*/

Figure 10: Basic implementation of task INVOKE foo associated to foo.

Line 7 in figure 10, the method a foo is the non blocking oneway method is invoked with the continuation
object reference. On the server side, the method a foo executes the method foo. Then, it invokes on the
client side a method to return the values (anonymous Key) which signals the continuation task that a foo has
completed its execution.

The externalize method is an Athapascan’s method that permits to communicate shared variable that
should be produced in an other context. On the server side, the received references to the two externalized
Shared variables are converted back to Shared w variables. After the execution of the method, the server writes
the results on each shared using the Athapascan’s write method. This is the principle of converting blocking
method to non blocking (oneway) method: output parameters are passed as extra parameters indicating where
to store output value.

Moreover, using such implementation, the thread of control that executes the invocation to the method foo
is blocked until the completion of the call. Thus the computing resource is not available to execute other useful
work. In order to avoid this problem, we generate a quite longer code that split the invocation in to phase using
asynchronous call to method. On the client side, the task does invocation to a oneway foo_async method that
takes has extra parameter a reference to data need for the task to continue. Then the task forks a new task to
execute the continuation. The server replies with an invocation to an other oneway/asynchronous method in
order to activate the task for the continuation.
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4.2.3 Reference generation

A reference into the cache consists of a reference to the considered cache (IOR of the object) and an access
key into cache. All the data smaller than a certain threshhold (set up by implementation) are communicated
directly and are not stocked in the caches. The stocked data in cache or immediate data are through the type
Any of CORBA. The union of a reference or of an immediate data is defined in the IDL file of Homa.

The references are generated by the servers in every method invocation and for every argument in writing
(of direction out, inout, or return value). The client (pilot) also could generate the references and of this manner
not to await as the server return them. The advantage is on the future method invocations without awaiting the
return of a reference generated by a preceding invocation. But in this case, the synchronisation writer-reader
on an argument between the server that produces a value and the one that will consume it will have to be
managed besides.

4.2.4 Cache implementation and architecture

Data into cache is stored using the CORBA Any type. A cache is a CORBA object. Homa compiler generates
the necessary initialization code to create one cache object per (Unix) process. A reference to a data is the
reference to the cache CORBA object plus the reference to its entry into the cache. Moreover, a threshold
permits to communicate small data into a reference, we have called Key the union of a reference and a value (see
figure 8.

Each cache keeps a list of copies to other caches located on different (Unix) processes. A LRU style policy
manages the cache for the input data. The output values are stored until they will be deleted. Update of data
into the cache is managed by the client Athapascan program: an access to shared variable in Athapascan
represents a version to the associated shared data. Any version destroyed by Athapascan [15, 18] is reported
to operation on the type of shared data, which is implemented to report the destruction on the cache.
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5 Experimental results

All of the experiments were made by using the OmniORB3 [14] implementation of CORBA. The programs were
carried out on the iCluster of INRIA at Grenoble (PC 733Mhz, 256Mo, network 100Mbit/s).

5.1 Elementary costs

For measuring the different overhead costs of Homa, the first experience was done. Figure 11 reports the
decomposition of the costs of one method invocation using Homa according to the size of the arguments (a
sequence of double). The extended method invocation is composed of two parts. First, the Pilot does one
non-blocked invocation on consumer code using Homa’s reference type which is independant from message size
then this consumer searches the corresponded data by one blocked invocation on producter code.

In addition to the cache management (remote get, blue zone) and the cost of method invocation (white
zone), the costs of conversion of one sequence of double towards the type Any (which includes a memory copy)
is not negligible (brown zone). The other costs: conversion Any towards the sequence of double, and the access
of insertion/ extraction functions are negligible.
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Figure 11: The cost decomposition of one method invocation using Homa.

5.2 Aggregate bandwidth

In the second experience, figure 12, the scalability of Homa versus the standard CORBA is compared. The
measured time is the consumation time (line 6,7). The lack of a defered approach for argument passing in
CORBA causes the linear dependancy between the invocation time and the number of couples but using Homa
inter-couple data communication is possible.

Figure 13.a shows the results, the measured times of Homa (horizontal curves) are nearly constant whatever
is the number of servers. It shows that communication occurs in parallel, and our parallel client stub generation
is effective. Also it shows that the communications are serialisees on the pilot in the case of standard CORBA.

1. // Call the producters

2. for(int i=0; i < N; i++)

3. SS[i] -> produce ( P[i] ); // P[i] is output

5. // Call the consumers

6. for(int i=0; i < N; i++)

7. CC[i] -> consume ( P[i] ); // P[i] is input

Figure 12: The pilot code for measuring the aggregate bandwidth.
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All the aims of Homa is to automate the exploitation of these communications paralleles has to leave same
description of the program. The brough gain is more than 26 for 32 couples.
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Figure 13: Performances with different numbers of servers.

Figure 13.b reports the aggregated bandwidth of a client program that iterates through N couples of servers.
Each couple is composed by a server that produces a value and a server that consumes it. Each server is mapped
on a different machine. Using Homa the aggregate bandwidth linearly growths as the number of couples, the
maximum aggregate bandwidth is about 304MBytes/s for 32 couples. The average point-to-point bandwidth
between two servers is about 9.6MBytes/s 3.

The difference of the point-to-point bandwith with respect to MPI or TCP comes from: 1/ the generic cache
architecture using the CORBA Any data type, involving some extra memory copy; 2/ the ”get” strategy which
involves one extra communication to get the data with respect to a ”put” strategy. All these factors limit the
maximal available bandwidth.

5.3 SIMBIO

This experiment measures the ability of Homa to make parallel execution of method invocations. We simulate
the iterative scheme of our motivating example described in section 2. With sequential execution as in standard
CORBA implementation, all method invocations are executed sequentially. For the experiment, we parallelize
each object of the figure 1 page 4.

In the experiments each objects are distributed to N sub-objects with the same interface: each invocation
is dispatched to several invocations on each sub-objects. Note that the control flow depends on the evaluation
of cmstep which is only known at runtime. The figure 14.a reports the time of 10 iterations, in case if cmstep
returns false (less dependencies thus more parallelism) with respect of the size of the sequence and N sub-
objects for MD and the half for CM (p=3/2N). Unlike standard CORBA, there is a linear relation between the
execution time using Homa and object parallelization: the time decreases linearly as the number of processors
increases. In this case, the gain of Homa for great number of atoms is very close to the theoretical expectation
(Tp = T1 / p).

When the condition (cmstep(k)) is true, there are more communication and less parallelism but also the
gain of Homa remains nearly linear versus granularity number, figure 14.b.

3Maximum point-to-point bandwith with respect to MPI or TCP is about 11MBytes/s on iCluster.
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Figure 14: Execution time for SIMBIO with several number of objects per application.

6 Related works

6.1 Parallel-codes coupling

Several projects attempt to achieve codes coupling through the use of specific code coupling tools (PAWS [2],
MpCCI [20] , ...). They are originally targeted to parallel machines with some on-going works to target Grid
infrastructure. Ad-hoc communication layers (MPI, sockets, shared memory segments, ...) are used based
on static coupling (at compile time); not ”plug and play”. All of them lack of explicit coupling interfaces,
standardization and interoperability. However they provide powerfull functions such as interpolation, time
management and mapping.

6.2 Lazy approach and cache strategy

In order to achieve the necessary throughput and latency in CORBA, we observed two groups of research. First,
the attempts to provide an object replication framework specially to used over Internet like CASCADE [10],
ScaFDOCS system [23]. The object replication approach is not efficient for the methods with large size argu-
ments which is our target applications, the numerical simulations. Second, the researches for caching results of
method invocations so that the subsequent method invocations will return locally cached values without invok-
ing the remote operation. A very limited solution is provided by the so called smart stub mechanism in some
existing CORBA implementations (e.g. Orbix [21] and VisiBroker). But the burden of maintaining coherency
lies entirely on the application programmer. MinORB [25] is a research ORB that allows caching partial results
of read method invocations at the client side. However, to our knowledge, there is no any attempt to overcome
the lack of supporting lazy approach for data transfering.

6.3 Aggregate object for parallel applications

The projects PARDIS [22] and PACO [31] have studied the integration of data parallel application in the CORBA
object model. OMG has recently published a specification to handle data parallel application [28]. All these
projects are based on the concept of multi-function [1]: n callers coordinate the execution of m invocations
of method on part of distributed object. During this coordination step, the input effective parameters are
scattered to the each part of the object and, at the end, output parameters are gathered. Currently Homa deals
with efficient and scalable implementation of the composition of method invocations and does not manage any
redistribution of parameters. Nevertheless, Homa makes few assumptions about the distributed nature of the
objects or parameters and such parallel object extension should be easily reused.

Using PARDIS or PACO, the program in figure 1 involves useless communication of data between the client
and all the servers. Thus without code modification, neither PARDIS nor PACO provides an efficient support
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robust to the composition, especially for iterative scheme. Nevertheless, PARDIS provides the concept of future
of a result. It should be used explicitly in the client program while our approach makes it use implicit.

6.4 Web services orchestration

The industry has used a number of terms to describe how components can be connected together to build
complex business processes. Workflow and document management systems have existed as a means to handle
the routing of work between various resources in an IT organization. With the introduction of web services,
terms such as ”web services composition” and ”web services flow” were used to describe the composition of web
services in a process flow. More recently, the terms orchestration and choreography have been used to describe
this. Orchestration describes how web services can interact with each other at the message level, including
the business logic and execution order of the interactions. These interactions may span applications and/or
organizations, and result in a long-lived, transactional, multi-step process model. Choreography tracks the
sequence of messages that may involve multiple parties and multiple sources, including customers, suppliers,
and partners. Choreography is typically associated with the public message exchanges that occur between
multiple web services, rather than a specific business process that is executed by a single party [30].

The ability to invoke services in an asynchronous manner is vital to achieving the reliability, scalability, and
adaptability required by today’s IT environments. With asynchronous support, a business process can invoke
web services concurrently rather than sequentially in order to enhance performance [30].

To our knowledge of workflow technologies, although like our aims the main objective is the efficient and
scalable composition of several services however data communication is not an important challenge such as
numerical simulation code coupling(involving large data transfer in iterative scheme).

6.5 Service-based Metacomputing

NetSolve [9], Ninf [32] and DIET [8] are the RPC-based client/agent/server systems that enable users to solve
complex scientific problems remotely. Netsolve and Ninf developed their own runtime support for communication
but DIET is based on CORBA technology. These systems apply some modification for using existing-services.
Single request scheduling was their starting objective. In Netsolve and Ninf, Request Sequencing [11] enables
programmers to demand optimization of communication on a sequence of requests. But it is explicit and not
transparent. There is nothing support to efficiently exploit data parallel objects.
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7 Conclusions

This report presents our approach for an efficient and scalable composition of distributed applications viewed
as composition of CORBA method invocations. Too fulfills this goal we presents how to combine two basic
functionalities: parallel invocations of method based on Athapascan, and a lazy communication to deferred
data transfer until the request of (server) object that requires it. It is based on a distributed cache. Together
these features permit to several servers to communicate in parallel. Moreover, this functionalities could be
automatically used in existing server and client programs thanks to an IDL compiler technics. As a result we
propose how to extract from the standard CORBA IDL enough information that permits us to automatically
write a program that coordinate execution of method invocations. Also, we propose a new cache strategy for
code coupling to deferred the result communication as late as possible. Its efficiency is depended to the data
size of the result parameter, so for the small size parameters, the data transfer is direct without caching.

Preliminary experiments show the effectiveness of our solution based on a standard CORBA ORB imple-
mentation. Some overhead comes from data conversion used by our cache implementation (mainly the use of
Any) that limits the performance of our runtime. Nevertheless, an aggregate bandwidth of about 300MBytes/s
was measured (380MBytes/s with specialization) that enables to saturate any switch of a backbone connection
between geographically distant clusters, that is the case of distributed coupling parallel applications.

Ongoing works concern the ability for a server to put produced data before a server remotely get it, thanks
to the knowledge of the data flow graph of the execution; and the ability to reuse parallel CORBA objects [28,
22, 31]. Moreover, technical work currently deals with trying to reduce the overhead of our implementation by
an efficient cache (without copy) and by testing other fastest CORBA implementations.

We also study the integration of scheduling heuristics to deploy or redeploy server objects taking into account
the knowledge of the data flow graph of the execution. The purpose is to allow the integration of the execution
of an application with a dynamic management of the resources in order to optimize a criteria (e.g. minimize
the completion time). The target application is numerical simulation in computer aided process engineering [3].

To the knowledge of the authors, Homa’s work is the first attempt to consider the efficiency and the
scalability of the composition of CORBA method invocations for high performance applications in numerical
simulation.
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Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
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