
Efficient and Easy Parallel Implementation of
Large Numerical Simulations

Rémi Revire, Florence Zara, and Thierry Gautier
Projet APACHE? ID-IMAG, Antenne ENSIMAG, ZIRST

51, av. J. Kuntzmann, F38330 Montbonnot Saint Martin, France.
{remi.revire, florence.zara, thierry.gautier}@imag.fr

Abstract. This paper presents an efficient implementation of two large
numerical simulations using a parallel programming environment called
Athapascan. This library eases parallel implementations by managing
communications and synchronisations. It provides facilities to adapt the
schedule to efficiently map the application on the target architecture.

Keywords. Parallel Molecular Dynamics - Parallel Cloth Simulation - Parallel
Programming Environment - Scheduling.

1 Introduction

In the past decade, computer science applications in simulation have become a
key point for parallel programming environments. Many of these applications
have been developed using MPI (Message Passing Interface) or PVM (Parallel
Virtual Machine). Even if these low level libraries are efficient for fine grained
applications, writing and debugging them remain difficult. Other works such as
NAMD [3], a molecular dynamic simulation, implemented with an higher level
programming library (Charm) have shown good speed-up. The Charm library in-
tegrates load balancing strategies within the runtime system. Despite the higher
level of the programming interface, it does not provide an uniform portability
across different parallel architectures.

In this paper, we present the implementation of a cloth simulation and a
molecular dynamic simulation using Athapascan. This library is well suited for
this kind of application for two main reasons. It eases applications implementa-
tion. For instance, an MPI version of our molecular dynamic application is about
100,000 lines of code while the Athapascan [7, 4] version is about 10,000 lines of
code. Next, performances portability is made possible by adapting the scheduling
algorithm to the specificities of the application and the target architecture.

The next section presents the two numerical simulations. Section 3 describes
an overview of Athapascan and section 4 gives some implantation details and
experimental results.
? Project funded by CNRS, INPG, INRIA, UJF. Sappe was partly financed by

the Rhône-Alpes region. This work is made in collaboration with François Faure
(GRAVIR-IMAG), Jean-Louis Roch and Jean-Marc Vincent (ID-IMAG APACHE
project).

2 Rémi Revire, Florence Zara, Thierry Gautier

2 Parallel Algorithms of two Numerical Simulations
The first numerical simulation, Tuktut [2] is a molecular dynamics simulation.
It aims at emulating the dynamic behaviour of multiple-particle systems to study
mechanical and structural properties of proteins and other biological molecules.
The second one, called Sappe [9] is a cloth simulation [1]. It provides a 3D
and realistic modelling of dressed humans in real time. Sappe is based on a
physical model: a cloth is represented as a triangular mesh of particles linked up
by springs emulate the material properties. The mesh topology describes how
particles interact and exert forces on each other.

The loop iteration of each simulation is composed of two main parts: (1)
Computation of forces that act on each particle or atom; (2) Computation of
each particle or atom states (acceleration, velocity, position) by integrating the
dynamic equations of the system. The two simulations differ only by the nature
of the forces.

To design parallel algorithms for these two simulations, computations are
partitioned in a set of tasks. Two techniques are used to obtain these parti-
tions: a particle decomposition for Sappe [9] and a domain decomposition for
Tuktut [2]. A particle decomposition consists in splitting the set of particles in
several subsets, while a domain decomposition consists in splitting the simulation
space. With both applications, the numerous interactions between particles leads
to many data dependencies between computation tasks. Consequently, the dis-
tribution of tasks among distant processors induces non-trivial communication
patterns. Tasks scheduling is thus a key point for performance.

3 Advantages of Athapascan for a Parallel Programming

This section is dedicated to the description of the Athapascan library. The pro-
gramming interface is first briefly described before to present functionalities to
handle the scheduling algorithm.
3.1 Overview of the Programming Interface
Parallelism is expressed using remote asynchronous procedure calls that create
objects named tasks. Tasks communicate with each others using a virtual shared
memory and synchronisations are deduced from the type of access made by the
tasks on shared objects (read access, write access). The simplicity of Athapas-
can is mainly due to its sequential semantics: each read operation on a shared
object returns the last value written as defined by the sequential order of the
execution [4].

Athapascan programs are described independently of the target architecture
and the chosen scheduling algorithm. Thus, the programmer can focus on algo-
rithms letting the Athapascan runtime managing synchronisations and commu-
nications between tasks. Moreover the programming interface, described in [7],
relies on two keywords only.

3.2 Scheduling Facilities for Efficient Executions
In order to get efficient executions, the scheduling should be adapted to the tar-
get application and architecture. The programmer can use general algorithms

Efficient and Easy Parallel Implementation of Large Numerical Simulations 3

already implemented or design its own specific scheduling strategy. These algo-
rithms can take advantage of some specific scheduling attributes associated to
tasks and shared data.

In the context of our numerical simulations, several scheduling algorithms
have been implemented. In these algorithms, shared data are first distributed
among execution nodes. Tasks are scheduled according to the mapping of their
parameters using the Owner Compute Rule as for HPF Compiler [5]. We dis-
tinguish three strategies to distribute data. In the first one, data are Cyclically
distributed (Cyclic). In the second one, the set of shared objects is recursively
partitioned according to 3D position and estimated costs (attributes of shared
objects). This strategy is called Orthogonal Recursive Bisection (ORB). In the
third one, a data dependency graph is built and the Scotch partition library [6]
is used to compute the mapping. These strategies only give the shared and data
mapping. The execution according to this mapping is fully handled by Athapas-
can runtime.

4 Implementation of Applications and Results

The implementation of both applications in Athapascan is intuitive. We first
declare a set of Athapascan shared objects representing either a geometric re-
gion of space and the associated atoms (Tuktut), or a set of particles (Sappe).
Then, Athapascan tasks are iteratively created to compute forces between atoms
or particles of each shared object. Finally the program creates tasks to integrate
positions and velocities. This kind of shared decomposition makes the granular-
ity of tasks easily adaptable by increasing or decreasing the number of atoms
or particles encapsulated in shared objects. At runtime, Athapascan manages
synchronisations and communications between tasks according to the schedule
strategy.

Sappe has been implemented and tested on a cluster of PCs composed of
120 mono-processor Pentium III running at 733MHz, with 256MBytes of main
memory and interconnected through a switched 100Mbit/s network. The left
part of figure 1 presents execution time for one iteration of the cloth simulation.
Performances are obtained with a cyclic data mapping. We simulate system of
one million of particles with a good speedup. Notice that Romero and Zapata
have presented results of a parallel cloth simulation with collision detection for
3,520 particles on 8 processors [8] in 2000. This is three orders-of-magnitude less
than our simulation size. Although they perform collision detection, we guess
that with a similar detection we still be able to compute large simulation.

Tuktut has been tested on a cluster of 10 SMPs dual Pentium III proces-
sors running at 866MHz with 512MBytes of main memory and interconnected
through a switched Ethernet 100Mbit/s network. We report experiments us-
ing two molecular structures on figure 1. The first one has 11,615 atoms (called
GPIK). The second one (an hydrated β-galactosidase, called BGLA) has 413,039
atoms. In these experiences, we compare two scheduling strategies, ORB and
Scotch, on an average of ten iterations. We obtain a significant speed-up for
each strategy. Also notice that the chosen scheduling has an important impact
on the results that shows the importance of scheduling facilities of Athapascan.

4 Rémi Revire, Florence Zara, Thierry Gautier

particles #nodes speedup

490,000 2 1.81
490,000 4 3.17
490,000 6 4.19
490,000 8 5.35

1,000,000 2 1.75
1,000,000 4 2.65
1,000,000 6 3.29

BGLA (413,039 atoms) GPIK (11,615 atoms)

#nodes ORB Scotch

2 3.09 2.91
4 6.35 6.12
8 8.1 8.92

#nodes ORB Scotch

2 3.83 2.7
4 3.83 3.53
8 4.18 5.11

Fig. 1. Sappe speed-up (left) on a cluster of PCs and Tuktut speed-up (right) on a
cluster of SMPs.

5 Conclusion

We have presented an efficient fine grain implementation of two numerical sim-
ulations (Sappe and Tuktut) with Athapascan. Experimental results confirm
that the choice of a scheduling strategy is a key point for high performance.
Athapascan is a parallel programming environment suited to this kind of ap-
plications. It offer facilities to adapt the scheduling strategy to the specificities
of the applications and the target architecture. Furthermore the high level pro-
gramming interface helps to implement applications in an easier way than with
MPI or PVM.

References

1. D. Baraff and A. Witkin. Large steps in cloth simulation. In Computer Graphics
Proceedings, Annual Conference Series, pages 43–54. SIGGRAPH, 1998.

2. P.-E. Bernard, T. Gautier, and D. Trystram. Large scale simulation of parallel
molecular dynamics. In Proceedings of Second Merged Symposium IPPS/SPDP,
San Juan, Puerto Rico, April 1999.

3. R.K. Brunner, J.C. Phillips, and Kale L.V. Scalable Molecular Dynamics for Large
Biomolecular Systems. In Proceedings of Supercomputing (SC) 2000, Dallas, TX,
November 2000.

4. F. Galilée, J.-L. Roch, G. Cavalheiro, and M. Doreille. Athapascan-1: On-line build-
ing data flow graph in a parallel language. In IEEE, editor, Pact’98, pages 88–95,
Paris, France, October 1998.

5. High Performance Fortran Forum. High Performance Fortran language specification,
version 1.0. Technical Report CRPC-TR92225, Houston, Tex., 1993.

6. F. Pellegrini and J. Roman. Experimental analysis of the dual recursive bipartition-
ing algorithm for static mapping. Technical Report 1038-96, 1996.

7. J.-L. Roch and et al. Athapascan: Api for asynchronous parallel programming.
Technical Report RR-0276, INRIA Rhône-Alpes, projet APACHE, February 2003.

8. S. Romero, L.F. Romero, and E.L. Zapata. Fast cloth simulation with parallel
computers. In Euro-Par 2000, pages 491–499, Munich, August 2000.

9. F. Zara, F. Faure, and J-M. Vincent. Physical cloth simulation on a pc cluster.
In X. Pueyo D. Bartz and E. Reinhard, editors, Fourth Eurographics Workshop on
Parallel Graphics and Visualization 2002, Blaubeuren, Germany, September 2002.

