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SOFA

* Goal: interactive deformable objects simulation
platform

* Integrate as many simulation algorithms as
possible
— Rigid bodies, mass-springs, finite-element models,
fluids, articulated bodies, ...

— Implicit/explicit/static solvers, penality/constraint
collision response, stiff interactions, ...



SOFA: Basic Principles

* Each object has several aspects
— Behavior Model

— Collision Model
— Visual Model

Visual
Model

* Mappings are used to link them

— BM - VM/CM : propagate positions and velocities
— CM - BM : send back forces




Behavior Model

* 2 possible designs

— “black-box” single element
* No knowledge of the internal algorithm of each object
* Exchange interaction forces at each time-step
* Similar to FlIowVR Interact

— “white-box” aggregation
* MechanicalModel : Degree-of-freedoms (DOF)
* Attached elements : Mass, ForceField, Constraint, Solver, ...

* Internal MechanicalMappings to map new representations to the
original DOFs

— Attach a set of points on a rigid body as if it was a mass-spring object
— Embed a surface inside a deformable FFD grid

— Implement interactions between 2 types of objects by mapping them to
a common representation whenever possible



Scene structure

* Scene-graph design

* All data are in leaf elements (Objects)
— Internal elements (Nodes) contains only pointers to attached
objects and child nodes
* Computations are implemented
as traversals of the tree

— Separate computations
from scheduling — o
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Collisions and Interactions

* Generic collision pipeline
— Compute set of contacts between collision models

— Change the scene structure dynamically
* Add new forcefields or constraints between objects

* Change integration groups (implicit stiff interaction forces,
global constraints solvers)

* Interactions create loops in the graph

— InteractionforceFields point to the 2
MechanicalModels involved

— Attached to the first common ancestor node

* Except if one of the model is immobile (such as static
obstacles), in which case it is attached to the other model




Example

* 4 objects falling on the floor
— 1 Rigid
— 1 Mass-spring
— 1 FFD spring grid
- 1 FEM Legend

* Each have an mapped _ (v ] [  Iteacton Force Fel |
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Example (2)

* Contacts with the floor

— New nodes containing
contact points

— New InteractionForceFieId




Example (3)

* Contacts between objects

— Hierarchy changed to group
connected objects under one
solver




Computations

* Each computation is implemented as an Action executed
from a given graph node

— called recursively for each node
* processNodeTopDown called before recursion to child nodes
* processNodeBottomUp after

— At each node, it can:
* Ask to be called recursively on each child
« Stop the recursion
* Execute other actions from that node



Computations (2)

* Data dependencies rules:

— processNodeTopDown: read access to all parent nodes,
read/write access to current and all child nodes

— processNodeBottomUp: read access to all parent nodes,
read/write access to current and all child nodes and parent
node



Computing Animation

* Animate Action Algorithm:
— Call updatePosition() for each BehaviorModel

If there is a Solver
* Call solver->solve(dt) (which will execute mechanical actions)

* Stop the recursion

Else
* Continue the recursion

* Mechanical Actions:

PropagatePositionAndVelocity: set new position and velocity and apply
mappings to propagate them downward

ComputeForce: call all ForceFields to compute the current force and
apply mappings to accumulate it upward

AccFromF: use Mass to compute accelerations from force
V =A+B. f:linear vector operation (i.e. x += v.df)



Computing Animation: Step 1
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Computing Animation: Step 2
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Computing Animation: Step 3
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Computing Animation: Step 4
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Computing Animation: Step 5
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Computing Animation: Step 6
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Computing Animation: Step 7




Computing Animation: Step 8




Computing Animation: Step 9




Computing Animation: Step 10
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Computing Animation: Step 11
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Computing Animation: Step 12
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Computing Animation: Step 13
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Computing Animation: Step 14
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Computing Animation: Step 15
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Task dependency graph

* Determined by the scene tree

* More advanced solvers requires more actions
varying number for iterative solvers (CG)
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Parallel Scheduler <233 3,02322 2
00

* Coarse grained:
— Schedule Animate actions (green tasks)
# thread < # integration groups < # objects
* Fine grained:
— Schedule all tasks
Cost of parallelization increase with the size of the tree
* Adaptive:
— Work stealing

Costly only when necessary (when one idle thread steals a
task)



Work Stealing Scheduler

* Requirements
— Handle > 1000 tasks per iteration (with > 30 it/sec)
— Support Linux and Windows
Linux-only is fine for initial tests
* Several possibilities
— KAAPI ?
— Cilk ?
— Custom code ? (Luciano’s octree work)



