

SOFA :
Design for Parallel Computations

Jérémie Allard

SOFA
• Goal: interactive deformable objects simulation

platform
• Integrate as many simulation algorithms as

possible
– Rigid bodies, mass-springs, finite-element models,

fluids, articulated bodies, …
– Implicit/explicit/static solvers, penality/constraint

collision response, stiff interactions, …

SOFA: Basic Principles
• Each object has several aspects

– Behavior Model
– Collision Model
– Visual Model

• Mappings are used to link them
– BM  VM/CM : propagate positions and velocities
– CM  BM : send back forces

Behavior
Model

Visual
Model

Collision
Model

X,VX,V

F

Behavior Model
• 2 possible designs

– “black-box” single element
• No knowledge of the internal algorithm of each object
• Exchange interaction forces at each time-step
• Similar to FlowVR Interact

– “white-box” aggregation
• MechanicalModel : Degree-of-freedoms (DOF)
• Attached elements : Mass, ForceField, Constraint, Solver, …
• Internal MechanicalMappings to map new representations to the

original DOFs
– Attach a set of points on a rigid body as if it was a mass-spring object
– Embed a surface inside a deformable FFD grid
– Implement interactions between 2 types of objects by mapping them to

a common representation whenever possible

Scene structure
• Scene-graph design
• All data are in leaf elements (Objects)

– Internal elements (Nodes) contains only pointers to attached
objects and child nodes

• Computations are implemented
as traversals of the tree
– Separate computations

from scheduling
(order of traversal)

Collisions and Interactions
• Generic collision pipeline

– Compute set of contacts between collision models
– Change the scene structure dynamically

• Add new forcefields or constraints between objects
• Change integration groups (implicit stiff interaction forces,

global constraints solvers)

• Interactions create loops in the graph
– InteractionForceFields point to the 2

MechanicalModels involved
– Attached to the first common ancestor node

• Except if one of the model is immobile (such as static
obstacles), in which case it is attached to the other model

Mechanical
Model

Mechanical
Model

Interaction
ForceField

Example
• 4 objects falling on the floor

– 1 Rigid
– 1 Mass-spring
– 1 FFD spring grid
– 1 FEM

• Each have an mapped
collision surface

Legend

Example (2)
• Contacts with the floor

– New nodes containing
contact points

– New InteractionForceFields

Example (3)
• Contacts between objects

– Hierarchy changed to group
connected objects under one
solver

Computations
• Each computation is implemented as an Action executed

from a given graph node
– called recursively for each node

• processNodeTopDown called before recursion to child nodes
• processNodeBottomUp after

– At each node, it can:
• Ask to be called recursively on each child
• Stop the recursion
• Execute other actions from that node

Computations (2)
• Data dependencies rules:

– processNodeTopDown: read access to all parent nodes,
read/write access to current and all child nodes

– processNodeBottomUp: read access to all parent nodes,
read/write access to current and all child nodes and parent
node

Computing Animation
• Animate Action Algorithm:

– Call updatePosition() for each BehaviorModel
– If there is a Solver :

• Call solver->solve(dt) (which will execute mechanical actions)
• Stop the recursion

– Else
• Continue the recursion

• Mechanical Actions:
– PropagatePositionAndVelocity: set new position and velocity and apply

mappings to propagate them downward
– ComputeForce: call all ForceFields to compute the current force and

apply mappings to accumulate it upward
– AccFromF: use Mass to compute accelerations from force
– V = A + B . f : linear vector operation (i.e. x += v.dt)

Computing Animation: Step 1

Animate

UpdatePosition

Computing Animation: Step 2

Animate

solve

Animate Animate

solve solve

Animate

Animate Animate Animate

Computing Animation: Step 3

Compute
Force

compute
Force

Compute
Force

Compute
Force

compute
Forcecompute

Force

compute
Force

compute
Force

Computing Animation: Step 4

Compute
Force

Compute
ForceCompute

Force

compute
Force

compute
Force

compute
Force

compute
Force

compute
Force

Compute
Force

Computing Animation: Step 5

Compute
Force

Compute
Force

Compute
Force

compute
Force

compute
Force

Computing Animation: Step 6

Compute
Force

Compute
Force

Compute
Force

Compute
ForceCompute

Force
Compute

Force

Computing Animation: Step 7

accumulate
Force

accumulate
Force

accumulate
Force

accumulate
Force

accumulate
Force

accumulate
Force

Computing Animation: Step 8

accumulate
Force

accumulate
Force

accumulate
Force

Computing Animation: Step 9

accumulate
Force

accumulate
Force

Computing Animation: Step 10

AccFromF

acc
FromF

AccFromF AccFromF

acc
FromF

AccFromF
AccFromF

Acc
FromF

acc
FromF

Computing Animation: Step 11

VOp

VOp VOp

V += A.dt
X += V.dt

VOp
VOp

V += A.dt
X += V.dt V += A.dt

X += V.dt

V += A.dt
X += V.dt

Computing Animation: Step 12

Propagate
Pos&Vel

setX
setV

setX
setV

Propagate
Pos&Vel

Propagate
Pos&Vel

Computing Animation: Step 13

propagateX
propagateV

setX
setV

Propagate
Pos&Vel

Propagate
Pos&Vel

setX
setV

Propagate
Pos&Vel

propagateX
propagateV

Propagate
Pos&Vel

Computing Animation: Step 14

propagateX
propagateV

Propagate
Pos&Vel

propagateX
propagateV

propagateX
propagateV

Propagate
Pos&Vel

Propagate
Pos&Vel

Computing Animation: Step 15

Propagate
Pos&Vel

propagateX
propagateV

propagateX
propagateV

propagateX
propagateV

propagateX
propagateV

propagateX
propagateV

propagateX
propagateV

Propagate
Pos&Vel

Propagate
Pos&Vel

Propagate
Pos&VelPropagate

Pos&Vel
Propagate
Pos&Vel

Task dependency graph
• Determined by the scene tree
• More advanced solvers requires more actions

varying number for iterative solvers (CG)

Parallel Scheduler
• Coarse grained:

– Schedule Animate actions (green tasks)
thread ≤ # integration groups ≤ # objects

• Fine grained:
– Schedule all tasks

Cost of parallelization increase with the size of the tree

• Adaptive:
– Work stealing

Costly only when necessary (when one idle thread steals a
task)

Work Stealing Scheduler
• Requirements

– Handle > 1000 tasks per iteration (with > 30 it/sec)
– Support Linux and Windows

Linux-only is fine for initial tests

• Several possibilities
– KAAPI ?
– Cilk ?
– Custom code ? (Luciano’s octree work)

