SOFA
Design for Parallel Computations

Jéeréemie Allard

SOFA

* Goal: interactive deformable objects simulation
platform

* Integrate as many simulation algorithms as
possible
— Rigid bodies, mass-springs, finite-element models,
fluids, articulated bodies, ...

— Implicit/explicit/static solvers, penality/constraint
collision response, stiff interactions, ...

SOFA: Basic Principles

* Each object has several aspects
— Behavior Model

— Collision Model
— Visual Model

Visual
Model

* Mappings are used to link them

— BM - VM/CM : propagate positions and velocities
— CM - BM : send back forces

Behavior Model

* 2 possible designs

— “black-box” single element
* No knowledge of the internal algorithm of each object
* Exchange interaction forces at each time-step
* Similar to FlIowVR Interact

— “white-box” aggregation
* MechanicalModel : Degree-of-freedoms (DOF)
* Attached elements : Mass, ForceField, Constraint, Solver, ...

* Internal MechanicalMappings to map new representations to the
original DOFs

— Attach a set of points on a rigid body as if it was a mass-spring object
— Embed a surface inside a deformable FFD grid

— Implement interactions between 2 types of objects by mapping them to
a common representation whenever possible

Scene structure

* Scene-graph design

* All data are in leaf elements (Objects)
— Internal elements (Nodes) contains only pointers to attached
objects and child nodes
* Computations are implemented
as traversals of the tree

— Separate computations
from scheduling — o

FEM HoorV

(order of traversal) [\ /N

Swf

Visual

Collisions and Interactions

* Generic collision pipeline
— Compute set of contacts between collision models

— Change the scene structure dynamically
* Add new forcefields or constraints between objects

* Change integration groups (implicit stiff interaction forces,
global constraints solvers)

* Interactions create loops in the graph

— InteractionforceFields point to the 2
MechanicalModels involved

— Attached to the first common ancestor node

* Except if one of the model is immobile (such as static
obstacles), in which case it is attached to the other model

Example

* 4 objects falling on the floor
— 1 Rigid
— 1 Mass-spring
— 1 FFD spring grid
- 1 FEM Legend

* Each have an mapped _ (v] [Iteacton Force Fel |
COIIiSion Su rface Behavior Model | [Collision Pipeline | [Force Field | [Mechanical Model |
(e igeea| (o] [|

i

Iy

P

Example (2)

* Contacts with the floor

— New nodes containing
contact points

— New InteractionForceFieId

Example (3)

* Contacts between objects

— Hierarchy changed to group
connected objects under one
solver

Computations

* Each computation is implemented as an Action executed
from a given graph node

— called recursively for each node
* processNodeTopDown called before recursion to child nodes
* processNodeBottomUp after

— At each node, it can:
* Ask to be called recursively on each child
« Stop the recursion
* Execute other actions from that node

Computations (2)

* Data dependencies rules:

— processNodeTopDown: read access to all parent nodes,
read/write access to current and all child nodes

— processNodeBottomUp: read access to all parent nodes,
read/write access to current and all child nodes and parent
node

Computing Animation

* Animate Action Algorithm:
— Call updatePosition() for each BehaviorModel

If there is a Solver
* Call solver->solve(dt) (which will execute mechanical actions)

* Stop the recursion

Else
* Continue the recursion

* Mechanical Actions:

PropagatePositionAndVelocity: set new position and velocity and apply
mappings to propagate them downward

ComputeForce: call all ForceFields to compute the current force and
apply mappings to accumulate it upward

AccFromF: use Mass to compute accelerations from force
V =A+B. f:linear vector operation (i.e. x += v.df)

Computing Animation: Step 1

e e

A

o '/Km

;
i
R\

Computing Animation: Step 2

o '/Km

;
i
R\

Computing Animation: Step 3

@ \ Compute ——
Force E
S
Compute Vo) T

Force
]
@\\m
HsmH 1

/computeY - compute
=
\ Force ‘ Force

e @
X j‘""ﬂ . ooz

T
] J
B (e

Computing Animation: Step 4

\

C t

@ Compute Compute - k f:?ril;e
" Force Force ‘
I o WY

Compute N

Force l\ “/ i
W] H NN
Force Force Force Force /7

L] \ ,
/7'&’

j ﬁ - wllw

<}
@

7N

mpute
Force

Computing Animation: Step 5

|
‘ ompute u
g;\
Compute C '

j ﬁ

Computing Animation: Step 6

@
o o
-)
m [im / ‘
i it E R*/%ﬁ
- H I 1w A
e sa= impum t LN\

Compute
Force

W

rﬂ

Sl N\ Force ’ Force
Sh J

1
s
Vs
:
\ %
\
A

-./
Compute ~ C‘I’::‘rt‘:e
Force ‘,.
2. LB /

Computing Animation: Step 7

Computing Animation: Step 8

Computing Animation: Step 9

Computing Animation: Step 10

root
motse \

D ../.
= f"\ mF.

TN I
B - w e H \® ot
| = @ é

\’ “). i)

o ﬂéf & 1 wll e =

Computing Animation: Step 11

root
motse \

“-_» / ,ﬂ\\

-‘ -
V Adt
jﬁ/ T [B]=
/V +=Adt

V Adt
X += V.dt

i ﬁ / wllw @

Computing Animation: Step 12

@ Propagate oo
pagate
Zoc Pos&Vel
N @\
. TFEM @

Propagate
Pos&Vel

)
=) =
B i R*/%ﬁ

@ \\\
[~ .

Computing Animation: Step 13

/ \k ‘4/ \\ Propagate
Propagate ' Propagate ‘ i\ 3 Poz&s\’lel
Pos&Vel Pos&Vel ‘
Sl ' ,4‘3\
X
LG

_/}
Propagate '.
Pos&Vel]

W
i

1

. propagateX
propagateV

Hoor

Computing Animation: Step 14

]
r

' Pos&Vel \ | , propagateV !“\‘ :
, - I . . propagateX

propagateV

X - ”/’// I R))7/-_// _ \\\\\
propagateX e e - S S \ -
propagateV L @ . .) @ @ @

\\ r ‘ N - ‘ }/\\“‘ _“‘ K p r
N E ",:’f’ = R --- til__‘ e

Computing Animation: Step 15

=

A

W//i \ '/KW

\’

\j/

= (AN

Propagate
PosVeI

/D N
7] \\ Propagate

O

~{ Propagate Pos&Vel —1[_ Propagate
Propagate

Pos&Vel / Y P FEL Pos&Vel
=gt _Pos&Vel < ~yPosé&Vel, s
e ahd L N =4 w’

a A\
‘ i s
-7 v
N
B -~
o

propagateX propagateX
propagateV propagateV

> N -
propagateX propagateX
propagateV propagateV

propagateX
propagateV

propagateX
propagateV

Task dependency graph

* Determined by the scene tree

* More advanced solvers requires more actions
varying number for iterative solvers (CG)

o
N/

T :

60 P e®e o ®%g

Parallel Scheduler <233 3,02322 2
00

* Coarse grained:
— Schedule Animate actions (green tasks)
thread < # integration groups < # objects
* Fine grained:
— Schedule all tasks
Cost of parallelization increase with the size of the tree
* Adaptive:
— Work stealing

Costly only when necessary (when one idle thread steals a
task)

Work Stealing Scheduler

* Requirements
— Handle > 1000 tasks per iteration (with > 30 it/sec)
— Support Linux and Windows
Linux-only is fine for initial tests
* Several possibilities
— KAAPI ?
— Cilk ?
— Custom code ? (Luciano’s octree work)

