A parallel block algorithm for exact triangularization of
rectangular matrices

Jean-Guillaume Dumas

Jean-Louis Roch

Laboratoire Informatique et Distribution, ENSIMAG - antenne de Montbonnot. ZIRST - 51, av. Jean
Kuntzmann, 38330 Montbonnot Saint-Martin, France.

{Jean-Guillaume.Dumas,Jean-Louis.Roch}@imag.fr; www-id.imag.fr/{~jgdumas,~jlroch}

ABSTRACT

A new block algorithm for triangularization of regular or
singular matrices with dimension m X n is proposed. Taking
benefit of fast block multiplication algorithms, it achieves
the best known sequential complexity O(m“’_ln) for any
sizes and any rank. Moreover, the block strategy enables
to improve locality with respect to previous algorithms as
exhibited by practical performances.

1. INTRODUCTION

In this article, we study the parallelization of the exact LU
factorization of matrices with arbitrary field elements. The
matrix can be singular or even rectangular. Our main pur-
pose is to compute the rank of large matrices. Therefore, we
relax the conditions on L in order to obtain an in place TU
factorization, where U is upper triangular as usual and 7T is
block sparse (with some “T” patterns). Exact triangulariza-
tion arises especially in computer algebra. For instance, one
of the main tools for solving algebraic systems is the compu-
tation of Grobner bases and to compute such standard bases
one uses modular triangularization of large sparse rectangu-
lar matrices. Among other applications are combinatorics,
fast determinant computation, Diophantine analysis, group
theory and algebraic topology via the computation of the
integer Smith normal form.

A first idea is to use a parallel direct method on matrices
stored by rows (respectively columns). There, at stage k of
the classical Gaussian elimination algorithm, eliminations
are executed in parallel on the n — k — 1 remaining rows;
thus giving only a relatively small grain. The next idea is
therefore to mimic numerical methods and use sub-matrices.
Now, the problem is that usually, for symbolic computation,
these blocks are singular. This fact prevents us from using
classical numerical recursive blocked data formats [2], for
instance. To solve this problem one has mainly two alter-
natives. One is to perform a dynamic cutting of the matrix
and to adjust it so that the blocks are reduced and become
invertible. Such a method is shown by Ibarra et al. in [3]. A

recursive process is then used to perform the rank of the first
region. Then, depending on this rank, the cutting is modi-
fied and the algorithm pursues with a new region. This way,
Ibarra et al. were able to build the first algorithm comput-
ing the rank of an m x n matrix with arithmetic complexity
O(m“’_ln)7 where the complexity of matrix multiplication
is O(m®). Unfortunately, their method is not so efficient
in parallel: it induces synchronizations and significant com-
munications at each stage in order to compute the block
redistribution.

We therefore propose another method, called TURBO, using
singular static blocksin order to avoid these synchronizations
and redistributions. Our algorithm has also an optimal se-
quential arithmetic complexity and is able to avoid 30% of
the communications.

2. ANEW BLOCK ALGORITHM: TURBO

Figure 1: Step 1. Recursive TU triangularization in
NW — Step 2. Recursive TU triangularization in SF

Figure 2: Step 3. Parallel recursive TU in SW and
NE — Step 4. Small recursive TU in NW again

In TURBO, the elementary operation is a block operation
and not a scalar one. In addition, the cutting of the matrix
in blocks is carried out before the execution of the algorithm

and 1s not modified, in order to limit the volume of commu-
nications. Our method recursively divides the matrix into
four regions: A = [Igvvg I;g] Local TU factorizations are
then performed on each block. The method is applied re-
cursively until the region size reaches a given threshold. We
show here the algorithm for only one iteration. The factor-
ization is done in place, i.e. the matrix A in input is not
copied. The algorithm modifies its elements progressively
as shown in figures 1 and 2. Next, virtually performing row
and column permutations, one can easily see that rank(A)

= rank(U;) + rank(V2) + rank(Cs) + rank(Ds) + rank(Z).

3. ARITHMETIC COMPLEXITY

Let w be the exponent of the arithmetic cost of matrix mul-
tiplication (w € [2,3] depending on the algebraic structure
[1]). For the sake of simplicity, we will bound the cost of
sequential multiplication of two m x n and n x ! matrices by
M(h) = O(h*) where h = maz{m;n;l}. We also consider
that parallel triangular matrix multiplication and inversion
costs are logarithmic (lower than K logs(hk)).

THEOREM 1. Let T1(h) and T (h) be the respsective se-
quential and parallel arithmetic complexity of our algorithm
for a rectangular matrixz of higher dimension h. Then,

Ti(h) < 7.25M(h) + 2h° = O(h*)
Two(h) < 3Koh = O(h).

Therefore, the arithmetic complexity of our algorithm is
identical to the best known complexity for this problem [3,
Theorem 2.1]. Unlike our method, Ibarra’s algorithm groups
rows into two regions. Then, depending on the rank of the
first region, the matrix structure is modified. Using our block
cutting, we instead guarantee that all the accesses are local.
Also, the theoretical parallel complexity is linear, while rank
computation is in NC?: using O(n4'5) processors, the com-
putation can be performed with parallel time O(log2(n)) [4].
However, the best known parallel algorithm with optimal se-
quential time also achieve a parallel linear time [3, 1]. But,
in practice, our technique is more interesting as it preserves
locality. Further, we will see that it reduces the volume of
communications on distributed architectures.

4. PRACTICAL COMMUNICATION PER-
FORMANCES

In this section, we compare the communication volumes be-
tween the row and block strategies. We now estimate the
gain with our algorithm for a rectangular matrix 2m X 2n
of rank r < min{2m,2n}. We denote by q, p, ¢, d and
z the respective ranks of Uy, Vo, Cs, D3 and Z4 (then
r=q+p+c+d+ z) In the worst case, for only one
phase (no recursion, only the steps previously shown), on 4
processors (one for each region), the total volume obtained
is already quite complex: C(2m,2n,r,4) = mn + 2gm +
2pn + ¢ + pm + dn — pg — dq. In order to give a more
precise idea of the gain of our method, we compare this
result to the volume of communications obtained by row:
L(2m,2n,r,P) =%, _,(P-1)(2n—k) =r(2n— %)(P—l).
Next, table 1 shows the gain obtained with the previously
introduced matrices. The total effective communicated vol-
umes of both (row and TURBO) methods are compared.

These matrices are quite sparse. Unfortunately, the first

Matrix 2m X 2n r p= %
ch5-5.b2 600x200 176 -57.97%
mk9.b2 1260x378 343 -67.36%
ch6-6.b2 2400x450 415 -123.66%
ch4-4.b2 96x72 57 10.40%
ch5-5.b3 600x600 424 32.80%
mk9.b3 945x%1260 875 11.80%
robot24_m5 404x302 262 9.08%
rkat7_m5 694x738 611 34.02%
f855_m9 2456x2511 2331 34.68%
cyclicR_.m11 4562x5761 3903 21.02%

Table 1: Communication volume gain

version of our algorithm is implemented only for dense ma-
trices. Still, we can see that our method is able to avoid some
communications as soon as the matrices are not too special.
In the table, the first three matrices are very unbalanced
(very small number of columns compared to the number of
rows): in that case a row method can be much more efficient
since it can communicate only the smallest dimension. How-
ever, in all the other cases we are able to achieve very good
performances: for the less rectangular matrices, we have a
gain p very close to 33% in general.

5. CONCLUSIONS

To conclude, we developed a new block TU elimination al-
gorithm. Its theoretical sequential and parallel arithmetic
complexities are similar to those of the most efficient cur-
rent elimination algorithms for this problem. Besides, it
is particularly adapted to the singular matrices and makes
it possible to compute the rank in an exact way. Further-
more, it allows a more flexible management of the scheduling
(adaptive grain) and avoids a third of the communications
when used with only one level of recursion on 4 processors.
In addition, if the increase in locality reduces the number
of communications, it also makes it possible to increase the
speed by a greater benefit of the cache effects.

Lastly, there remains to study an effective parallel method to
compute the TU factorization for sparse matrices. Indeed,
designing an efficient block reordering technique seems to be
an important open question.

6. REFERENCES

[1] D. Bini and V. Pan. Polynomial and Matriz
Computations, Volume 1: Fundamental Algorithms.
Birkhauser, Boston, 1994.

[2] F. Gustavson, A. Henriksson, I. Jonsson, and
B. Kaagstroem. Recursive blocked data formats and
BLAS’s for dense linear algebra algorithms. Lecture
Notes in Computer Science, 1541:195-206, 1998.

[3] O. H. Ibarra, S. Moran, and R. Hui. A generalization of
the fast LUP matrix decomposition algorithm and
applications. Journal of Algorithms, 3(1):45-56, Mar.
1982.

[4] K. Mulmuley. A fast parallel algorithm to compute the
rank of a matrix. Combinatorica, 7(1):101-104, 1987.

