On parallel block algorithms for exact
triangularizations

Jean-Guillaume Dumas? Jean-Louis Roch?

& Laboratoire de Modélisation et Calcul
B. P. 58 — 51, av. des Mathématiques,
38041 Grenoble, France.

> Laboratoire Informatique et Distribution
projet APACHE, CNRS-INRIA-INPG-UJF.
ZIRST - 51, av. Jean Kuntzmann
38330 Montbonnot Saint-Martin, France.

Abstract

We present a new parallel algorithm to compute an exact triangularization of large
square or rectangular and dense or sparse matrices in any field. Using fast matrix
multiplication, our algorithm has the best known sequential arithmetic complexity.
Furthermore, on distributed architectures, it drastically reduces the total volume
of communication compared to previously known algorithms. The resulting matrix
can be used to compute the rank or to solve a linear system. Over finite fields, for
instance, our method has proven useful in the computation of large Grobner bases
arising in robotic problems or wavelet image compression.

Key words: Parallel Block triangularization, Exact LU factorization of
rectangular matrices, Symbolic rank computation, Sparse matrices, Galois Finite
fields, BLAS, Fast symbolic matrix multiplication.

1 Introduction

In this article, we study the parallelization of the exact LU factorization of
matrices with arbitrary field elements. The matrix can be singular or even
rectangular with dimension m X n. Our main purpose is to compute the rank
of large matrices. Therefore, we relax the conditions on L in order to obtain a

Email addresses: Jean-Guillaume .Dumas@imag.fr (Jean-Guillaume Dumas),
Jean-Louis.Roch@imag.fr (Jean-Louis Roch).

Preprint submitted to Elsevier Science 19 June 2002

TU factorization, where U is m X n, upper triangular as usual and 7" is m X m,
block sparse (with some “T” patterns).

Exact triangularization arises in various applications and especially in com-
puter algebra. For instance, one of the main tools for solving algebraic sys-
tems is the computation of Grébner bases[1]. Actual methods to compute such
standard bases use modular triangularization of large sparse rectangular ma-
trices [2]. Among other applications of symbolic LU are combinatorics [3], fast
determinant computation, Diophantine analysis, group theory and algebraic
topology via the computation of the integer Smith normal form (an integer
diagonal canonical form [4]).

A first idea is to use a parallel direct method [5, chapter 11] on matrices stored
by rows (respectively columns). There, at stage k of the classical Gaussian
elimination algorithm, eliminations are executed in parallel on the n — k —
1 remaining rows. This method does not directly enable efficient modular
computations which are of low cost. Then, gathering the operations to obtain
a larger grain size is necessary.

The next idea is then to mimic numerical methods and use sub-matrices. This
way, as the computations are local, it is possible to take advantage of the cache
effects as in the BLAS numerical libraries [6]. Now, the problem is that usually,
for symbolic computation, these blocks are singular. To solve this problem one
has mainly two alternatives. One is to perform a dynamic cutting of the matrix
and to adjust it so that the blocks are reduced and become invertible. Such a
method is shown by Ibarra et al. in [7; 8], and studied in detail in [9, Chapter
2]. Their algorithm (LSP) groups rows into two regions [10, Problem 2.7¢c|. A
recursive process is then used to compute the rank of the first region. Then,
depending on this rank, the cutting is modified and the algorithm pursues
with a new region. This way, Ibarra et al. were able to build the first algorithm
computing the rank of an m x n matrix with arithmetic complexity O(m*~'n),
where the complexity of matrix multiplication is O(m®).

Unfortunately, their method is not so efficient in parallel: it induces synchro-
nizations and significant communications at each stage in order to compute
the block redistribution.

We therefore propose another method, called TURBOQO, using static blocks
(which might be singular) in order to avoid these synchronizations and redis-
tributions. Our algorithm also has an optimal sequential arithmetic complexity
and is able to avoid as much as a third of the communications.

A preliminary version of this paper appeared in [11]. Here we include a com-
plete asymptotic analysis, give sharper bounds on the number of needed arith-
metic operations and offer more experimental results.

The paper is organized as follows. In Section 2, we detail this new recur-
sive block algorithm. This presentation is followed, in Sections 3 and 4, by
asymptotic arithmetic and communication cost analyses. Finally, in Section
5, practical performance is shown on matrices involved in the computation of
Grdbner bases and Homology groups of simplicial complexes [12; 13].

2 A new block algorithm

2.1 TURBO algorithm

In TURBO, the elementary operation is a block operation and not a scalar
one. In addition, the cutting of the matrix in blocks is carried out before the
execution of the algorithm and is not modified, in order to limit the volume
of communications. We choose to describe the algorithm in a recursive way to
simplify its theoretical study. The threshold of recursive cutting is then settled
as the initial structure of the matrix is decided. Now take a 2m x 2n matrix
A over a field IF. Our method recursively divides the matrix into four regions:

NW NE
SW SE

Local TU factorizations are then performed on each block. The method is
applied recursively until the region size reaches a given threshold. We show
here the algorithm for only one iteration. The factorization is done in place,
i.e. the matrix A in input is not copied: the algorithm modifies its elements
progressively.

The following code computes the upper triangular form U. It can easily be
completed in order to also compute the matrix 7" such that A = TU. To
illustrate the algorithm we show figures representing the matrix after each
step. In these figures we supposed that the initial cutting of the matrix was
in 10 x 10 = 100 blocks.

Algorithm TURBOQO: TU Recursive factorization with Blocks.

Input :- a matrix A € F?™*?" of rank r.

Output: - A, modified in place as an upper triangular matrix with invertible
leading principal minor 7 X r.

Step 1. Recursive T'U triangularization in NW
Compute L; € IF™*™ lower triangular, U; € IF?*? upper triangular with

SW

Fig. 1. Matrix A after step 1

rank ¢ and G such that

U Gy
0 0

L1XNW:

The N E region can now be updated: B; = L; x NE. Simultaneously, zeroes
under U; in SW are computed.

Let SW(1. 4 stands for the first ¢ columns of SW; then, Ny = —SW; 4 X
Ut € F™ is computed.

Finish by the update of the SW region: Iy = SW(441.m) + N1 X G1 and
the first rows of NFE are multiplied by N; in order to update SE: F; =
SE + N; x Bl(l..q,)-

Step 2. Recursive T'U triangularization in SE
Compute Ly € IF™™ lower triangular, V5 € IFP*? upper triangular with
rank p and E5 such that

Va By
0 0

LQXElz

Then, as in step 1, SW is updated using

I
Fy

:LQXIl

and zeroes over V5 are computed:

1.e. No = —Bi(gi1.m,1.p) X VQ_I

Then, Hy = By(g+1..mp+1.n) + N2 X E3 and
O, = NW(q+1..m,q+1..n) = Ny x Is.

Fig. 2. Matrix A after step 2

Step 3. Parallel recursive TU in SW and NE
Compute L3, D3 € IF™*? with rank d, Fy and M;, Cy € IF*¢ with rank c,
Hj such that

D3 Fg C’3 H3
L3XF2: andM3><H2=
0 0 0 0
Then NW is updated
O3
= M3 X 02
Xo To

and zeroes over D3 are computed using Ny = —X, x Dy '

SW SE

Fig. 3. Matrix A after step 3

This step ends with T3 = Ty 4+ N3 F3.

Of course, it is possible to create zeroes to the left of C5 instead of over Dj
in NW. On the one hand, the choice can be made in view of the respec-
tive dimensions of the blocks. The smallest block, i.e. the one inducing the
maximum number of zeroes and consequently the minimum volume of com-
munication, is chosen. On the other hand, a parallel version could choose
the first ready block instead.

Step 4. Small recursive TU in NW again
Compute Ly, Z, € IF?** with rank z and T}, such that

Zy Ty
00

L4XT3:

Step 5. Virtual row permutations
I,-Vo—F,5 can be inserted between U;—G1—B;y and O3—C3—Hs.
Z4—Ty can be moved under F3.

Step 6. Virtual column permutations

SW SE

Fig. 4. Matrix A after step 4

By—V5o—FE3;—C3—Hj3 can be inserted between U; and G1—I,—0O3—Ds—F3-7,-1T}.

Step 7. Rank
r=q+p+c+d+yz

Numbers, in Figures 1, 2, 3, 4 and 5 match the last modification step. The
whole algorithm is a variant of this one preserving the intermediate matrices
L;. Moreover, as steps 5 and 6 are only virtual, a permutation vector is com-
puted in order to enable next recursive phases; Figure 5, shows the matrix if
those two steps are performed.

Now, Figure 6 shows the data dependency graph between the different compu-
tations. This graph can be recursive for the whole algorithm, as for the large
multiplication tasks. Besides, for those, fast parallel matrix multiplication is
applied.

The major interest of this algorithm, apart from enabling fast matrix arith-
metic, is the communication savings. Indeed, most of the operations are local

NW

SW SE

Fig. 5. Matrix A after virtual step 6

L1,U1, GL

daVinciv2.1

L4,24,T4

Fig. 6. Data dependency graph for the parallel block recursive algorithm

and only the updating matrices are sent to the other regions. Further, as the
computations are local and not redistributed, it is possible to efficiently take
advantage of the cache effects inside the blocks (in a BLAS way, see [14], where
an efficient implementation of finite field linear algebra subroutines on top of
numerical BLAS is proposed).

2.2 Effective weight of the steps

In practice, Table 1 shows the successive ranks for different matrices arising in
Grdbner bases computations (robot24_mb, rkat7_mb, f855_-m9 and cyclic8 m11
[15]) and, using integer matrix Smith normal form, arising when computing
Homology groups of simplicial complexes (mk4.bk are matching complexes and
chi-3.bk are chess-board complexes [16; 17]).

Matrix 2m X 2n q) c d z
ch5-5.b2 600x200 100 55 21 0 0
mk9.b2 1260x378 189 102 52 0 0
ch6-6.b2 2400x450 225 105 85 0 0
ch4-4.b2 96x72 24 23 7 3 0
ch5-5.b3 600x600 156 158 70 40 O
mk9.b3 945x1260 286 334 136 119 O

robot24_m5 404x302 54 141 10 57 0

rkat7_mb5 694x738 95 239 130 108 39
855_m9 2456x2511 123 1064 189 164 791
cyclicB.m11l 4562x5761 392 1927 521 354 709

Table 1
Successive ranks in the block recursive algorithm

We see that the last block is often all zero (z = 0), and that the other four

ranks are quite homogeneously balanced on the average.

The next sections study the arithmetic complexities and memory costs of our
technique.

3 Arithmetic complexity

In this section, we show that our algorithm has an arithmetic complexity
similar to the best known ones. We show also that its parallel arithmetic
complexity is analogous to those of the most efficient parallel algorithms.

3.1 Sequential cost

w is the exponent of the complexity of matrix multiplication (i.e. 3 for the clas-
sical multiplication or logy(7) ~ 2.807355 for Strassen’s [18], the actual record
being below 2.375477 [19] and the lower bound being 2). We will therefore
denote the cost of the multiplication of two matrices, of respective dimensions
2m x 2n and 2n x 21, by M(h) = O(h¥) for h = max{2m;2n; 2l}.

THEOREM 3.1. Let Ty (h) be the sequential arithmetic complexity of algorithm
TURBO for a rectangular matrix of higher dimension h. Then,

2
T(h) < Jr

mM(h) + 2k = O(h¥).

Proof. To prove this theorem, the 5 triangularizations have to be gathered
into two groups such that each one of these two groups has a total rank less
than % An induction process can then be applied to the respective costs in
order to achieve the given upper bound:

Following the dependency Graph 6 and the algorithm, we see that TURBO
requires 4 multiplications, 1 triangular inversion and 2 additions for step 1.
On step 2, 4 multiplications, 1 triangular inversion and only 1 addition are
required. We end by step 3 where 2 multiplications, 1 triangular inversion and
1 addition are needed. This sums up to 10 multiplications, 3 inversions and
4 additions of matrices of size smaller than % Moreover, if the multiplication
cost is M(h) < Kh*, triangular inversion is bounded by 3M(h) [20, theorem
6.2]. Then the cost of our algorithm is bounded as follows (g, p, ¢, d and z are
the respective ranks of Uy, V3, Cs, D3 and Zy):

Ti(h) < Ti(p) + T1(q) + Ti(c) + T1(d)

29 _h¥ 1

Now suppose, that Ti(z) < K'z% + 22?,Vx < h, for some K'. Then, by
induction we have:

w

h
Ti(h) gK'(q“+c‘*’+zw+pw+dw+22—w) @)

+2(¢* + & + 2% + p* + d?) + A2

Also, as w > 2 and all the intermediate ranks are non negative, we bound
¢“ + ¥+ 2 by (¢+ ¢+ 2)* and p* + d* by (p+ d)“. Besides, using the ranks

10

locality, we have:

h h
q+c+z§§ and p+d§§ (3)
h h
q+d+z§§ and p+c§§ (4)
Thus, with Relations 3, we get
AK' + 29K
Tl(h) < (T)h + 2h?
Therefore we can take K' = 2wf?_4K and, as T1(2) = 3, the induction and the
theorem are proven. O]

The theorem shows that when using classical multiplication, our algorithm
requires then the equivalent of only % ~ 2.416667 matrix multiplications. On
the other hand, the arithmetic complexity of our algorithm is the best known
complexity for this problem in terms of ”big-Oh” [8, Theorem 2.1]. But Ibarra’s
algorithm (LSP) has a different bound: 5-%—;. We compare these two bounds
for different kinds of matrix multiplications in Table 2.

w TURBO LSP

3 2.416667 1.5
2.807375 2.899943 1.999935
2.375477 4.546775 5.045945

Table 2
Number of arithmetic operations for TURBO and LSP

The table shows that for most of the practical algorithms, our method requires
a few more operations. But, unlike our method, Ibarra’s algorithm groups rows
into two regions. Then, depending on the rank of the first region, the matrix
structure is modified. Using our block cutting, we instead guarantee that all
the accesses are local, thus enabling faster computations.

3.2 Parallel cost
In the parallel case, the situation is different. We obtain only a linear complex-
ity. Considering that parallel triangular matrix multiplication and inversion

costs are logarithmic (lower than K, logs*(h)) we have the following result:

THEOREM 3.2. Let Ty (h) be the parallel arithmetic complexity of algorithm
TURBO for a rectangular matrix of higher dimension h > 22. Then,

Too(h) < 3K.oh = O(h).

11

As in the sequential case, the idea of this theorem is to gather triangulariza-
tions in order to have groups of total rank less than %

Proof. Here, To(c) and T, (d) are parallel. Without loss of generality, we
suppose that ¢ > d, and then the difference with the sequential inequality is
that Tw(d) is shadowed by T (c). Then, let hy = g, ho = p, h3 = cand hy = z.
As the parallel multiplication cost is bounded by K, logs®(h), we have:

Two(h) = Keo logZQ(h) + Too(q) + Too(p) + Too(€) + Too(2)

4
= Koo loga®(h) + Y T (h

Therefore, developing one more recursive phase, we get, assuming for now that
the four ranks are non zero:

T (h) = Koo<log2 (h) + logo?(q) + loga?(c)

; 6
+log () + loga’(2)) + X%Z

where T, (hy,3), for instance, is the cost connected the rank of block C of the
second recursive phase, inside block V' of the first recursive phase.

Now, as in the sequential theorem, costs are gathered in order to have groups
where the rank sum is less than £. Thus, we have ¢+ ¢ < L. First, we suppose
that ¢ > 1 and ¢ > 1. Then logy*(q) + logs*(c) is maximal when ¢ = ¢ = £,
as soon as h > 16. Else, if one of these two ranks is zero, then the cost of

the group is bounded by log,”(%). But log,*(%) < 2log,*(%) as soon as h >
2

923+V2 91.3212. Therefore, asymptotically, (logs?(q) + log,%(c)) < 2log,” (%)
In the same manner we have (log,”(p) + logy*(2)) < 2logy”*(%). Therefore,
Formula 5 becomes

Too(h) < Koo logs?(h) + 41ogy” (5) - 2 Tw (6)

We finish the proof by gathering and bounding again recursively in the same
manner:

loga(h) h 80
Too(h) < Ko > 4 10g22(z) < Koogoh < 3Kooh.
=0

O

Therefore, the theoretical complexity is linear, while rank computation is in
NC?: using O(n*9) processors, the computation can be performed with par-
allel time O(logy*(n)) [21]. However, the best known parallel algorithm with

12

optimal sequential time also achieves a parallel linear time [8; 10]. But, in prac-
tice, our technique is more interesting as it preserves locality. Further, we will
see that it reduces the volume of communications on distributed architectures.

4 Scheduling, blocking and communications

We first consider the execution of algorithm TURBO on a PRAM [22] with P
processors. For a given matrix, once the computational dependency Graph 6
is known, Brent’s principle [22; 10|, ensures that execution can be performed
in time Tp(h) < T (h) + Tngh). However, here, the graph is dynamically gen-
erated since the rank of the related sub-matrices is only known at execution
time. Thus, Brent’s bound cannot be applied for classical rank algorithms:
the overhead o [23] introduced for the scheduling (allocation of tasks to idle
processors [24]) is to be considered and leads to:

T (h) < Too(h) + 0 4 0(n) 7)
In order to achieve asymptotically fast execution on P processors, ¢ must be
reduced. A blocking technique is classically used to this end. When a block of
size smaller than a given value k is encountered, its rank is computed using
the optimal sequential algorithm. Then the number of tasks is clearly bounded
by Tl(%). Hence, the scheduling overhead is

h h\"
—|=0(|-+ .
(3)=((2))
Choosing k large enough with respect to ZL ensures asymptotically optimal

hw
execution in time

To(h) < b Tw() + 22 1 (%) ®

Now let us consider a distributed architecture. We show that in this case, due
to the blocking technique, algorithm TURBO requires less communications
than previously known optimal rank algorithms. Indeed, in order to achieve
an optimal number of operations (73 = O(h*)), those algorithms redesign
the block structure of the matrix after each elimination step (k is modified).
This redistribution involves 2m.2n communications at each step on a 2m X 2n
matrix; then, adding the pivot row communications, we obtain a total of 8mn
communications. In particular, we consider the block row algorithm of Ibarra
et al. [8]. Its communication volume for a 2m X 2n matrix is denoted by
I(2m, 2n). Recall that it groups rows into two regions; now, the whole number

13

of communications performed is then

I(2m,2n) = 21(m, 2n) + 8mn 9)

TURBO algorithm avoids such a redistribution. We denote our communication
volume by C'(2m, 2n). This volume is a function of the five intermediate ranks
(g, p, ¢, d, z, ranks of the matrices: Uy, Va, C3, D3, Zy4, and r = g+p—+c+d+2).
Furthermore, each matrix X; is computed with the owner compute rule: i.e.
on the processor where it is supposed to be at the end. Now, the analysis of
the dependency Graph 6 shows that each one of the following blocks must be
communicated once: Ll, Ul, Bl(l..q,); Nl, ‘/Q, LQ, EQ, NQ, IQ, Mg, Dg, and F3.
This leads to the following volume * :

C(2m,2n) =
2C(m,n)+C(m—q,n—p) +C(m —p,n—q)+
Cm—q—c,n—q—d)+

mn + 2gm + 2pn + ¢* + pm + dn — pg — dq

(10)

Thus, at the current step, the number of communications is mn -+ 2qgm -+ 2pn+
q*>+pm~+dn—pq—dg; since p, ¢ and d are smaller than min(m, n), this number
is always less than the previous 8mn. For our algorithm, the worst case occurs
when the matrix is invertible. Then if the first two pivot blocks are of full rank
(p = ¢ = min(m,n) and d = 0), our number of communications is less than
6mn instead of 8mn. In addition, and still in a full rank case, when the ranks
are more evenly distributed on the blocks, say p=q¢=d =c = %’ then
our number of communications is less than 3.75mn. We can therefore expect
very good performance on the average.

However, solving the previous recurrence equations in the general case is quite
complex. Therefore, in the following section, we compare those communica-
tions in practice, on specific dense and sparse matrices at a given step.

5 Practical communication performance

In this section, we compare the communication volumes between the row and
block strategies. We first consider invertible matrices and then the general
case.

* Remark that C3 can be chosen instead of D3 at step 3 of the algorithm. In that
case, d must be replaced by c in the formula.

14

5.1 Invertible principal minors case

Consider a dense matrix. We study the differences in communication volume
on a square 2n X 2n invertible matrix, on P processors. There are then two
possible cuttings. Suppose that the rows are cyclicly distributed on the P
processors. At each step, the pivot row must be communicated to every other
processor. This leads to the following volume of communications:

L(2n,2n,P) =
2Zn(P—l)(Qn—k):n(zn_l)(p_l) (11)

k=1

Another way is to consider a cutting of the 2n x 2n matrix into () square blocks
B;j of size Z& x 2% Blocks are assumed cyclicly distributed on the processors.
We also suppose here that there exists at least one invertible block at each
step (that is very restrictive in exact computations). At step k, the block pivot
row must be communicated, i.e. each one of the /Q — k + 1 blocks of this
row (By; for j from k to \/Q)) must be sent to the \/Q — k other remaining
blocks in its column. Then each remaining row performs the multiplication
by the inverse of bloc By, and communicates the product —Bik.Bk_,c1 to the
/@ — k other blocks of its row. Since 1 block over P is local, the volume of
communications is then:

B(2n,2n, P,Q) =

1\ Y on 2n

(1_5)12((\/5—“1)(\/5—/5)%%
9 2n 2n

e -1 5 7)

which gives

B(2n,2n, P,Q) = %(271)2\/5 (1 _ %) — o) (12)

Let p be the difference between the volume of monodimensional communica-
tions and the volume bidimensional communications divided by the volume of
monodimensional communications. Then p measures the gain in communica-
tions between the two strategies. It is normalized in order to compare different
kind of matrices.

Now, by taking P = (), communications are reduced when using a block
cutting. As a matter of fact, the gain between rows and blocks is as follows:

L(2n,2n, P) — B(2n,2n, P, P) 4

L(2n,2n, P) =1- 3VP (13)

p:

15

Such a gain is then our goal for the singular case. We show in the next section
that with our new algorithm, we can reach those performances in general.

5.2 General case

We now estimate the gain with our algorithm for a rectangular matrix 2m x 2n
of rank r < min{2m,2n}. We then compute the communication volume, in
the worst case, for only one phase (no recursion, only the steps previously
shown), on 4 processors (one for each region). The cost function obtained
with 4 processors is already quite complex:

C(2m,2n,r,4) =

14
mn + 2gm + 2pn + ¢> + pm + dn — pg — dg (14)

In order to give a more precise idea of the gain of our method, we compare
this result to the volume of communications obtained by row. For the non
invertible case, Formula 11 has to be modified as follows:

L(2n,r, P) =
i(P_l)(Qn—k)=r(2n—r+1)(P_1) (15)

k=1

where r = g+p+c+d—+~z is the rank of the matrix. Next, Table 3 shows the gain
obtained with the previously introduced matrices. The total effective commu-
nicated volumes of both (row and TURBO) methods are compared. These
matrices are quite sparse. Unfortunately, the first version of our algorithm is
implemented only for dense matrices. Still, we can see that our method is able
to avoid some communications as soon as the matrices are not too special. In
the table, the first three matrices have special rank conformations as seen in
Table 1 (d = z = 0 for instance) and are very unbalanced (very small number
of columns compared to the number of rows): in that case a row method can
be much more efficient since it can communicate only the smallest dimension.
However, in all the other cases we are able to achieve very good performances:
for the less rectangular matrices, we have a gain p very close to the aimed one
(Equation 13 gives 1 — ﬁ =3 ~ 33%).

Now the problem is that the recursive setting is rather delicate. Indeed, to
limit the structure overhead, the recursive cutting threshold must be rather
high. The induced parallelism is thus not so extensible and the algorithm is
interesting on a relatively small number of processors (4, 8, 16, ...). Never-
theless, there is the possibility of using this cutting only for the first stages
(greediest in communications) and then of switching to the row algorithm, for
instance.

Moreover, this algorithm can be easily adapted to take advantage of sparse

16

Matrix 2m X 2n r p= %
ch5-5.b2 600x200 176 -57.97%
mk9.b2 1260x378 343 -67.36%
ch6-6.b2 2400x450 415 -123.66%
ch4-4.b2 96x72 57 10.40%
ch5-5.b3 600x600 424 32.80%
mk9.b3 945x1260 875 11.80%
robot24_.m5 404x302 262 9.08%
rkat7_m5 694x738 611 34.02%
£855_m9 2456x2511 2331 34.68%
cyclic_.m1l 4562x5761 3903 21.02%

Table 3
Communication volume gain

matrices. With the only restriction that in this case, it is not possible to
completely apply reordering heuristics to the whole matrix without adding
communications (it is anyway feasible to apply them locally, in each block,
but only with limited effects [4]).

6 Conclusions

To conclude, we developed a new block 7'U elimination algorithm. Its theoret-
ical sequential and parallel arithmetic complexities are similar to those of the
most efficient current elimination algorithms for this problem. Besides, it is
particularly adapted to the singular matrices and makes it possible to compute
the rank in an exact way. Furthermore, it allows a more flexible management
of the scheduling (adaptive grain) and avoids a third of the communications
when used with only one level of recursion on 4 processors.

In addition, if the increase in locality reduces the number of communications,
it also makes it possible to increase the speed by a greater benefit of the
cache effects. There remains to implement efficiently the parallel finite field
subroutines to test the effectiveness in terms of speed-up. For instance, recent
sequential experiments ([14]) show that classical Gaussian elimination can
be performed at a speed of about 40 Million of field operations per second
(MFop/s) on a pentium III 735 MHz, whereas fast matrix multiplication can
achieve a speed close to 600 MFop/s on the same machine. When considering

that Gaussian elimination requires %n:” operations, it means that our algorithm

17

requires at most seven times that number of operations. The compared speeds
shows that even a sequential speed-up can be achieved.

Lastly, there remains also to study an effective method to reorder sparse ma-
trices effectively in parallel. Indeed, even though designed for dense matrices,
our algorithm can also be used on sparse matrices. But, in order to attain high
speeds, we need to gather the non-zero elements. Figure 8 shows the result
of an iteration of our algorithm on a sparse matrix (Figure 7) arising in the
computation Grobner bases.

Fig. 7. Matrix rkat7_mat5, 694 x 738 of rank 611

We see that a rather significant fill-in occurs during the last phases of this it-
eration: the final U shape of this matrix has 105516 non zero elements. By way
of comparison, the final LU shape of this matrix, computed with a row algo-
rithm, has 64622 non zero elements. Moreover, using a reordering technique,
one can obtain a triangular form containing much fewer non zero elements
(39477 for instance for this matrix [4, section 5.4.5]). Therefore, designing an
efficient block reordering technique seems to be an important open question.

18

Fig. 8. Matrix rkat7_mat5 after one phase of our algorithm

References

1]

2]

3]

[4]

[5]

B. Buchberger, Grobner bases: An algorithmic method in polynomial
ideal theory, in: N. K. Bose (Ed.), Recent Trends in Multidimensional
Systems Theory, Mathematics and its applications, D. Reidel Publishing
Company, Dordrecht, The Netherlands, 1985, Ch. 6, pp. 184-232.

J.-C. Faugere, Parallelization of Grébner basis, in: H. Hong (Ed.), First
International Symposium on Parallel Symbolic Computation, PASCO ’94,
Hagenberg/Linz, Austria, Vol. 5 of Lecture notes series in computing,
1994, pp. 124-132.

W. D. Wallis, A. P. Street, J. S. Wallis, Combinatorics: Room Squares,
Sum-Free Sets, Hadamard Matrices, Vol. 292 of Lecture Notes in Math-
ematics, Springer-Verlag, Berlin, 1972.

J.-G. Dumas, Algorithmes paralleles efficaces pour le calcul formel :
algebre linéaire creuse et extensions algébriques, Ph.D. thesis, Institut
National Polytechnique de Grenoble, France, ftp://ftp.imag.fr/pub/-
Mediatheque.IMAG/theses/2000/Dumas . Jean-Guillaume (Dec. 2000).
V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to parallel
computing. Design and analysis of algorithms, The Benjamin/Cummings
Publishing Company, Inc., 1994.

19

[6] J. J. Dongarra, J. D. Croz, S. Hammarling, I. Duff, A
set of level 3 Basic Linear Algebra Subprograms, Trans-
actions on Mathematical Software 16 (1) (1990) 1-17,
www.acm.org/pubs/toc/Abstracts/0098-3500/79170.html.

[7] O.H.Ibarra, S. Moran, L. E. Rosier, A note on the parallel complexity of
computing the rank of order n matrices, Information Processing Letters
11 (4-5) (1980) 162-162.

[8] O. H. Ibarra, S. Moran, R. Hui, A generalization of the fast LUP matrix
decomposition algorithm and applications, Journal of Algorithms 3 (1)
(1982) 45-56.

[9] A. Storjohann, Algorithms for matrix canonical forms, Ph.D. thesis, De-
partment of Computer Science, Swiss Federal Institute of Technology—
ETH Zurich (Dec. 2000).

[10] D. Bini, V. Pan, Polynomial and Matrix Computations, Volume 1: Fun-
damental Algorithms., Birkhauser, Boston, 1994.

[11] J.-G. Dumas, J.-L. Roch, A fast parallel block algorithm for exact tri-
angularization of rectangular matrices, in: SPAA’01. Proceedings of the
Thirteenth ACM Symposium on Parallel Algorithms and Architectures,
Kreta, Greece., 2001, pp. 324-325.

[12] A. Bjorner, V. Welker, Complexes of directed graphs, STAM Journal on
Discrete Mathematics 12 (4) (1999) 413-424.

URL http://epubs.siam.org/sam-bin/dbq/article/33872

[13] V. Reiner, J. Roberts, Minimal resolutions and the homology of matching
and chessboard complexes, Journal of Algebraic Combinatorics 11 (2)
(2000) 135-154.

[14] J.-G. Dumas, T. Gautier, C. Pernet, Finite fields linear algebra subrou-
tines, in: T. Mora (Ed.), Proceedings of the 2002 International Sympo-
sium on Symbolic and Algebraic Computation, Lille, France, ACM Press,
New York, 2002.

[15] J.-C. Faugere, A new efficient algorithm for computing Grébner bases
(Fy), Tech. rep., Laboratoire d’Informatique de Paris 6, http://www-
calfor.lip6.fr/~jcf (Jan. 1999).

[16] A. Bjorner, L. Lovész, S. T. Vreéica, R. T. Zivaljevi¢, Chessboard com-
plexes and matching complexes., Journal of the London Mathematical
Society 49 (1) (1994) 25-39.

[17] J.-G. Dumas, B. D. Saunders, G. Villard, Integer Smith form via
the Valence: experience with large sparse matrices from Homology, in:
C. Traverso (Ed.), Proceedings of the 2000 International Symposium on
Symbolic and Algebraic Computation, Saint Andrews, Scotland, ACM
Press, New York, 2000, pp. 95-105.

[18] V. Strassen, Gaussian elimination is not optimal, Numerische Mathe-
matik 13 (1969) 354-356.

[19] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic pro-
gressions, Journal of Symbolic Computation 9 (3) (1990) 251-280.

[20] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of

20

Computer Algorithms, Addison-Wesley, 1974.

[21] K. Mulmuley, A fast parallel algorithm to compute the rank of a matrix,
Combinatorica 7 (1) (1987) 101-104.

[22] J. J4aJ4, Introduction to Parallel Algorithms, Addison-Wesley, New York,
1992.

[23] G. G. H. Cavalheiro, M. Doreille, F. Galilée, J.-L. Roch, Athapascan-
1: On-line building data flow graph in a parallel language, in: PACT’98:
Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, Paris, France, 1998.

[24] R. L. Graham, Bounds on certain multiprocessing timing anomalies,
STAM Journal of Applied Mathematics 17 (2) (1969) 416-429.

21

