
Tradeoff to minimize extra-computations and stopping
criterion tests for parallel iterative schemes

O. Beaumont1, E.M. Daoudi2∗, N. Maillard3, P. Manneback4, J.-L. Roch5∗

1 Olivier.Beaumont@labri.fr, 2 mdaoudi@sciences.univ-oujda.ac.ma, 3 nmaillard@inf.ufrgs.br,
4 Pierre.Manneback@fpms.ac.be, 5 Jean-Louis.Roch@imag.fr.

Abstract

Parallel synchronous iterative algorithms are often penalized by global synchro-
nization, due to the cost of stopping tests that are achieved. It is well known that
such global synchronizations are expensive for parallel implementations on distrib-
uted systems, especially on clusters of processors or computational grids, where the
heterogeneity and the number of processors imply a large overhead for this global
operation. The aim of this work is to propose a new control technique for the
stopping tests, original to the best of our knowledge, which enables to reduce the
number of global synchronization near to the optimum, while keeping the number of
iterations close to the number performed by standard synchronous algorithm. The
main advantage of the proposed technique is that the semantic of the sequential al-
gorithm is not modified, so that convergence is preserved and identical outputs are
guaranteed. Our method is based on an amortized technique inspired by Floyd’s
and Brent’s algorithms to detect periodicity in a sequence.

1 Introduction

In general, iterative schemes consist in iterating some computation until global
convergence is reached, i.e. until some stopping test criterion is fulfilled. Standard
algorithm performs the stopping test after each iteration, so that each step of the
algorithm can be decomposed into two phases: computation of the body of the
iteration and control of the stopping test. Let niter denote the exact number of
iterations obtained with the standard algorithm. The execution time Tstandard of
the standard algorithm is given by Tstandard = niter(tcomp + tsync), where tcomp

denotes the execution time of one iteration and tsync denotes the cost of evaluating
a stopping test.

On a parallel architecture, the evaluation of the stopping criterion test is often
achieved using global synchronization. Unfortunately, for a parallel implementa-
tion on a distributed memory architecture (typically a cluster of processors or a
computational grid), it is well known that such global synchronization is extremely
expensive, since it requires a global waiting time. Indeed, each processor must wait
for the contribution of the slowest processor in order to continue its work.

∗This work is supported by the ”Comité Mixte Franco-Marocain - Action Intégrée” MA/01/19.



The problem of reducing global synchronization cost without modifying the se-
mantic of the standard sequential algorithm and consequently the behavior of the
convergence constitutes the main goal of this paper. An important motivation
is the problem of checkpointing of parallel applications: a global synchronization
must be performed between all processes before each checkpoint in order to ensure
a consistent global state [7]. Checkpointing is used to design fault-tolerant par-
allel algorithms or to track bugs [9], because an error may occur on a processor
and causes the crash of the application at some timestep. If so, the application is
restarted from the last global checkpoint, till it possibly crashes again. A major
concern is to find a strategy that minimizes the number of checkpoints, each one
implying a global synchronization. In the framework of checkpoint/restart, sim-
ple amortized techniques are often used, consisting in doubling the time interval
between two consecutive checkpoints [9].

In order to reduce the number of global synchronizations, different approaches
have been proposed and studied in the literature.

A first approach consists in gathering all global synchronizations of one iteration
in order to perform them together. This technique is used e.g. in [1] for Conjugate
Gradient method. However, it does not reduce the number of stopping criterion
tests and still requires one global synchronization by iteration.

A second approach consists in desynchronizing communications and iterations,
resulting in an asynchronous algorithm (see e.g. [3, 4, 6, 8]). Unfortunately, the
desynchronization does not preserve the semantic of the standard algorithm and,
consequently, it does not ensure convergence or an equivalent number of iterations.

A third approach, called k-steps in the sequel, is often used in practice. It con-
sists in performing the stopping tests after each group of k iterations (i.e. stopping
tests are evaluated at iterations k, 2k, . . . , q.k, . . . ), while the stopping test is not ful-
filled. This method performs at most #I = niter + k iterations and #T = dniter/ke
tests. However, since niter is a priori unknown, the crucial problem is to choose k
in order to achieve a good trade-off between #I and #T .

In what follows, we concentrate on a general iterative methods, but we restrict
to the case where the only global synchronization is the one required by the control
of the stopping test. Moreover, we assume that iterations converge to a fixed point.
It means that if the stopping test condition is fulfilled at the end of iteration n, it
will also be fulfilled at the end of any following iteration.

In this work, we propose a new control technique, original to the best of our
knowledge, which delivers the result of iteration niter after a small number #T =
log1+o(1) niter of stopping criterion tests, while requiring only the computation of
order #I = niter + o(niter) iterations. The advantage of our technique lies in the
fact that the semantic of the initial algorithm is not modified, and consequently
the convergence is ensured and the outputs are identical. Our method is based
on an amortized technique inspired from Floyd’s and Brent’s algorithm to detect
periodicity in a sequence [5, 10]. It consists in computing two numbers n′1 and n1

such that n′1 ≤ niter ≤ n1, and then determining the exact value of niter. Like in the
k-steps method, the proposed method performs a limited number of stopping tests,
but no longer performed regularly, but rather at steps ρf(0), ρf(1), · · · , ρf(i) = n1,
where 1 < ρ < 2 and f satisfies ∀i, f(i) ≤ i. The choice of f is based on a
tradeoff between #I and #T . In this paper, we provide asymptotic results for
different choices of f : namely f(i) = iα, 0 < α ≤ 1; f(i) = i

log i and f(i) = i
log? i

(log? i is the iterated logarithm, i.e. log? i = min{j ≥ 0, log(j) i ≤ 1}). We prove

2



that niter can be determined with little more than #T = log niter tests – which is a
lower bound for #T – while performing an asymptotic optimal number of iterations
#I = niter + o(niter).

In Section 2, we present in detail the k-step method. Sections 3 and 4 are
devoted to the presentation of ρ-amortized and generalized ρ-amortized methods,
which constitute our principal contribution. In section 5, we present some pre-
liminary experiments on a generic iteration method. Finally, some conclusions are
drawn.

2 k-step method with restart

In k-step method, stopping tests are no longer performed after each iteration (like
in the standard algorithm), but rather after each group of k successive iterations,
for instance at iterations k, 2k, · · · , qk, · · · where q ∈ N∗. Let q denote the first
index such that the stopping test is fulfilled. Then, this strategy requires qk ≥ niter

iterations and q = dniter
k e synchronizations. It is clear that the choice of k depends

on various criteria: not only on the method itself, but also on the input data. In [2],
P.E. Bernard et al. use such a strategy to control the convergence and the load
balance of a dynamic molecular simulation. In this case, the execution stops as
soon as the stopping test is fulfilled, i.e. after qk ≥ niter iterations. Consequently,
the output values of the simulation are different from the results of the standard
algorithm, which provides the output values at the end of iteration niter.

Nevertheless, this method can be modified in order to provide the same outputs
as the standard algorithm. In this case, the modified method will be called k-
step method with restart. More precisely, the k-step method with restart can be
decomposed into two phases.

• During the first phase, the stopping tests are performed after each group of k
successive iterations (just as described above).

• During the second phase, the exact iteration niter is determined by applying
the principle of the standard algorithm (stopping tests are then performed
after each iteration), but starting from the iteration (q − 1)k + 1, for which
the context of the iteration has been saved. Since niter ∈ [(q − 1)k + 1, qk],
this phase requires (niter − (q − 1)k) extra iterations and (niter − (q − 1)k)
synchronizations.

The two phases lead to a total of

qk + (niter − (q − 1)k) = niter + k iterations

and
q + (niter − (q − 1)k) = q + r synchronizations

where 1 ≤ r < k, so that at most q + k − 1 synchronizations are required.

Therefore, the total cost of the k-step algorithm with restart is given by

Tk−step ≤ (niter + k).tcomp +
(⌈niter

k

⌉
+ niter mod k

)
.tsync.

It is clear that the best choice of k depends on the value of niter which is
unknown. If k is large, a few number of synchronizations is needed in the first phase

3



but during the second phase, this number becomes large (of order of k). In a dual
way, a small value of k leads to a large number of synchronizations during the first
phase (of order niter

k ) but during the second phase the number of synchronizations
will be reduced. Compared to the standard algorithm, the improvement of the
k-step method with restart is given by:

Tstandard − Tk−step ≥ −k.tcomp +
[⌊niter

k

⌋
.(k − 1) + 1

]
.tsync

Therefore, if k is chosen so that k2

k−1 ≤ niter
tsync

tcomp
, the k-step method with restart

is more efficient (in terms of number of synchronization steps) than the standard
one.

3 ρ-amortized control

This technique is based on an amortized technique inspired from Floyd’s and Brent’s
algorithm to detect periodicity in a sequence [10]. It consists in two phases. The
first phase consists in computing two numbers n′1 and n1 such that n′1 ≤ niter ≤ n1

and the second phase consists in determining the exact value of niter.
Like the k-step technique with restart, this method performs a limited number

of stopping tests during the first phase. However tests are no longer performed at
regular steps, but rather at steps ρ0, ρ1, · · · , ρi, · · · . Let ρk1 = n1 denote the first
index k1 such that the stopping test is fulfilled. Then, n1

ρ = ρk1−1 < niter ≤ ρk1 =
n1. Therefore, this phase requires ρk1 iterations and k1 tests. During the second
phase, we apply a recursive technique or a dichotomic search for determining the
exact value niter.

3.1 Recursive ρ-amortized control

The iteration niter, is obtained by applying recursively the same process as for
the first phase, but starting from the iteration n1

ρ + 1 = ρk1−1 + 1, for which
context has been saved. Stopping tests are performed at iterations n1

ρ + 1, n1
ρ +

ρ1, · · · , n1
ρ + ρk2 , where k2 is the smallest index such that the stopping test is

fulfilled, k2 ≤ dlog(n1/ρ)e. Then,

n1

ρ
<

n1

ρ
+ ρk2−1 < niter ≤ n1

ρ
+ ρk2 ≤ n1.

Let n2 = ρk2 . We re-apply the same process, starting from the iteration n1
ρ + n2

ρ +1.
We recursively determine a sequence of indices kl, with l ≤ logρ niter, such that

l−1∑

i=1

ρki−1 + ρkl−1 < niter ≤
l−1∑

i=1

ρki−1 + ρkl .

Therefore, by construction of sequence of indices k1, . . . , kl,

niter =
logρ niter∑

i=1

ρki−1.

4



• The total number S of synchronizations is given by S = k1 + k2 + · · · + kl.
Since ki ≤ logρ niter,

S =
1∑

i=l

ki ≤
⌈
logρ(niter)

⌉2
.

• The total number of iterations N (in the worst case) is given by

N =
l∑

i=1

ρki = ρ.
l∑

i=1

ρki−1 ≤ ρ.niter.

Finally, the total executing time Tρ−amortized of the ρ-amortized control technique
is given by

Tρ−amortized ≤ ρ.niter.tcomp +
⌈
logρ(niter)

⌉2
.tsync.

Therefore, the recursive ρ-amortized method allows to decrease exponentially the
number of global synchronizations, while increasing execution time of order ρniter.
In what follows, we provide choices for ρ such that the proposed algorithm will be
more efficient than the standard one. From previous equations,

Tρ−amortized

Tstandard
≤ ρ

tcal

tcal + tsync
+

log2
ρ(niter)
niter

tsync

tcal + tsync
.

Thus, if log2
ρ(niter) < niter and tsync > tcomp, then, by choosing ρ < 1 + tsync

tcal
, the

ρ-amortized method is more efficient than the standard method. Moreover, the
performance of the ρ-amortized method is also better than the performance of the
k-step algorithm with restart.

3.2 Dichotomic ρ-amortized control

In this method, the value niter, that lies in the search interval [ρk1−1, ρk1 ], is obtained
using dichotomic technique which consists in log(ρk1 − ρk1−1) steps and proceeds
in the following manner.

First step:

– compute all iterations ρk1−1 + 1, ρk1−1 + 2, · · · ,mid, where mid is the
middle of the search interval [ρk1−1 + 1, ρk1 ],

– perform the stopping test only for iteration mid. The iteration niter lies
in one of the two following reduced search intervals: [ρk1−1 + 1,mid] or
[mid + 1, ρk1 ]).

For the remaining steps, we apply recursively the same processes, using
the new computed search interval until the length of the search interval is
reduced to 1.

Since, at each step the search interval is divided by 2,

• the number of stopping tests is log(ρk1 − ρk1−1) < log ρk1 = k1 log ρ,

• the number of iterations is bounded by 2(ρk1 − ρk1−1).

From phases 1 and 2, we deduce that

5



• the overall number #I of iterations satisfies

#I ≤ ρk1 + 2(ρk1 − ρk1−1) = (3ρ− 2).ρk1−1 < (3ρ− 2)niter,

• the overall number #T of synchronizations is bounded by

#T < k1 + (k1) log ρ = (log ρ + 1)(k1)

Since ρk1−1 < niter ≤ ρk1 by construction, the number S of synchronizations
is bounded by:

S < (log ρ + 1)(log niter + 1).

4 Generalized ρ-amortized control

4.1 General considerations

The scheme we propose in this section is based on the ρ-amortized method. The
main difference is that tests are no longer performed at steps ρ0, ρ1, · · · , ρi, · · · but
rather at steps ρf(0), ρf(1), · · · , ρf(i), · · · where 1 < ρ < 2 and f satisfies ∀i, f(i) ≤ i.
Our aim is to determine f so that we can find the exact value of niter with the best
tradeoff between the:

• synchronization cost, i.e. a number of stopping tests as close as possible to
θ(log niter);

• iteration cost, i.e. a number of iterations as close as possible to niter.

The proposed scheme is decomposed into two phases:

• during the first phase, the stopping tests are performed after iterations ρf(0),
ρf(1), · · · , ρf(i), · · · . We stop the iterations at the first index k such that the
stopping test is first fulfilled. Then,

ρf(k) < niter ≤ ρf(k+1).

At the end of this step, Sc = (k + 1) tests have been performed and at
most ρf(k+1) iterations have been computed, so at most ρf(k+1) − ρf(k) extra
iterations have been computed.

• The second phase is devoted to determine niter, starting from iteration ρf(k) +
1. In order to determine the exact value of niter, we perform a dichotomic
search of niter between ρf(k) and ρf(k+1). At each step of the dichotomic
search, we need to recompute all the iterates between the lower bound and
the middle of the search interval, but we compute the stopping criterion for
the middle value only. Thus, the overall dichotomic search induces at most

Rd = 2(ρf(k+1) − ρf(k))

extra computations and

Sd = log2

(
ρf(k+1) − ρf(k)

)
< dlog2 nitere

tests, since ρ < 2 and ∀i, f(i) ≤ i.

6



Finally,

• the overall number R of extra iteration computations is bounded by 3(ρf(k+1)−
ρf(k)) and therefore R = θ(ρf(k+1) − ρf(k)). In all the sequel, upper bounds
are provided on R that are close to niter.

• The overall number of stopping tests S is S = Sc + Sd ≤ k + 1 + dlog2 nitere
tests; in the sequel, in order to bound S, we study the number Sc of tests
performed during the first phase, before the dichotomic search.

In what follows, we provide asymptotic results for R and Sc associated to dif-
ferent choices of f , namely f(k) = kα, 0 < α < 1, f(k) = k

log k and f(k) = k
log∗ k .

We prove that it is possible to determine niter with little more than log niter tests,
while performing of order o(niter) extra iteration computations.

4.2 f(i) = iα, where 0 < α < 1

Lemma 1 The number Sc of tests during the first phase is lower than Sc ≤ 1 +
(logρ niter)

1
α tests.

Proof: By construction,

ρkα
< niter ≤ ρ(k+1)α ⇒ kα < logρ niter ≤ (k + 1)α

⇒ k < (logρ niter)
1
α ≤ k + 1,

what achieves the proof of Lemma 1.

Lemma 2 The number R of extra computations is of order o(niter).

Proof:

ρf(k+1) − ρf(k) = ρ(k+1)α − ρkα

= ρkα
(
ρ(k+1)α−kα − 1

)

= ρkα (
log(ρ)αkα−1 + o(kα−1)

)
.

By construction, ρkα
< niter and log(ρ)αkα−1 = o(1) (since α < 1). Therefore,

ρf(k+1) − ρf(k) = o(niter), what achieves the proof of Lemma 2.

Therefore, if f(k) = kα, the number of stopping criterion tests is poly-logarithmic
in niter, whereas the overall number of computed iterations is of order (niter +
o(niter)).

4.3 f(i) = i
log i

Lemma 3 The number Sc of tests during the first phase is lower than Sc ≤
log niter. log(log niter))

(
1 +O

(
1

log log log niter

))
.

Proof: By construction,
ρ

k
log k < niter ≤ ρ

k+1
log(k+1) .

7



Therefore,

k

log k
< logρ niter ≤ k + 1

log(k + 1)
⇒ k < logρ niter log k

⇒ k < logρ niter. log(logρ niter. log k)
⇒ k < logρ niter. log logρ niter + logρ niter. log log k

Since k = O(log niter), we deduce that

k < logρ niter log logρ niter.

(
1 +O

(
1

log log log niter

))
∼niter→∞ logρ niter log logρ niter

which achieves the proof of Lemma 3.

Lemma 4 The number R of extra computations is of order o(niter).

Proof:

ρf(k+1) − ρf(k) = ρ
k+1

log(k+1) − ρ
k

log k

= ρ
k

log k

(
ρ

k+1
log(k+1)

− k
log k − 1

)
,

and since
k + 1

log(k + 1)
− k

log k
<

1
log k

ρf(k+1) − ρf(k) < ρ
k

log k

(
ρ

1
log k − 1

)

Now, since 1 < ρ < 2 and log k > 1, when niter →∞ we have:

ρ
1

log k − 1 <
log ρ

log k
+

(
log ρ

log k

)2

<
ρ− 1
log k

<
1

log k
.

Moreover, ρf(k) = ρ
k

log k < niter by construction; thus, ρ
k+1

log(k+1) − ρ
k

log k < niter
log k =

o(niter), which achieves the proof of Lemma 4.

Therefore, if f(k) = k
log k , the number of stopping tests is asymptotically close

to log niter log log niter, whereas the overall number of computed iterations is (niter+
o(niter)) ∼ niter.

4.4 f(i) = i
log∗ i

Lemma 5 The number Sc of tests during the first phase is lower than Sc ≤ 1 +
log niter(1 + log∗ logρ niter).

Proof: By construction,

k

log∗ k
< logρ niter ≤ k + 1

log∗(k + 1)
<

k

log∗ k
(1 +

1
k
).

8



Moreover,

k < exp
(

k

log∗(k)

)
⇒ log∗ k < log∗

(
k

log∗(k)

)
+ 1

and

k >

(
k

log∗(k)

)(
1 +

1
k

)
⇒ log∗ k > log∗

(
k

log∗ k

)(
1 +

1
k

)
.

Therefore, log∗ k − 1 < log∗(logρ niter) < log∗ k and, since

k < log∗ k logρ niter < k + 1,

k <
(
logρ niter

) (
1 + log∗(logρ niter)

)
< k + 1.

This achieves the proof Lemma 5.

Lemma 6 The number R of extra computations is of order o(niter).

ρf(k+1) − ρf(k) = ρ
k+1

log∗(k+1) − ρ
k

log∗(k)

= ρ
k

log∗(k)

(
ρ

k+1
log∗(k+1)

− k
log∗(k) − 1

)

< ρ
k

log∗(k)

(
ρ

1
log∗ k − 1

)
.

Now, since 1 < ρ < 2 and log∗ k > 1, we have:

ρ
1

log∗ k − 1 <
log ρ

log∗ k
+

(
log ρ

log∗ k

)2

<
ρ− 1
log∗ k

<
1

log∗ k
.

Moreover, ρf(k) = ρ
k

log∗ k < niter; thus, ρ
k+1

log∗(k+1) − ρ
k

log∗ k < niter
log∗ k = o(niter), which

achieves the proof of Lemma 6.
Therefore, if f(k) = k

log∗ k , the number of stopping tests is asymptotically
bounded by (log niter log∗ log niter), whereas the overall number of computed it-
erations is niter + o(niter). It is therefore possible to achieve a number of tests close
to the lower bound log niter while performing an asymptotically optimal number
niter of iteration computations.

4.5 Summary of theoretical results

Table 1 summarizes the theoretical complexity results we have obtained in terms
of the number of iterations and number of synchronizations, for different choices of
the function f , where 1 < ρ < 2; niter denotes the number of iterations required
by the standard algorithm which is a priori unknown. The overall number of
synchronizations S verifies S ≤ Sc + log2 niter ∼ log2 niter.

This table shows that niter can be determined with little more than log niter syn-
chronizations, which is a lower bound of the total number of tests, while performing
an asymptotic optimal number of iterations niter + o(niter).

9



Functions Iterations Synchronizations Synchronizations
Sc (first phase) S (both phases)

f(i) = iα, 1 < α < 1 niter + o(niter) ∼ (logρ niter)
1
α ∼ log2 niter

f(i) = i
log i

niter + o(niter) ∼ log niter log log niter ∼ log2 niter

f(i) = i
log∗ i

niter + o(niter) ∼ log niter log∗ log niter ∼ log2 niter

Table 1: Asymptotic cost of the three algorithms.

5 Experiments on a generic parallel iteration

scheme

In order to test our theoretical results, we have sketched a generic parallel iteration
scheme. To analyze the impact of a decrease in the number of global synchroniza-
tions, we consider for the sake of simplicity that communications occur only for the
evaluation of the stopping criterion. For 1 ≤ i ≤ p, let Xi be the random variable
denoting the duration of the computations performed by processor Pi at each iter-
ation step. Let Xt

i denote the duration of iteration t on processor Pi. We assume
that all Xt

i are independent and follow the same distribution law with expectation
E(X). If the stopping criterion is evaluated after each step, then the expectation
of the duration of each step, from a given step τ , is

E

(
p

max
i=1

Xτ
i

)
.

But, if the synchronization is performed only after K steps only, then the expecta-
tion of the amortized duration of one step is given by

1
K

E

(
p

max
i=1

τ+K∑

t=τ+1

Xt
i

)
= E

(
p

max
i=1

1
K

τ+K∑

t=τ+1

Xt
i

)
;

which is always smaller than E(maxp
i=1 Xt

i ), from Jensen’s inequality. Thus, in-
creasing the number K of iterations between two synchronizations will always be
better than synchronizing the processes at each step.

Moreover, in previous ρ-amortized algorithms, K increases and becomes very
large when niter increases. Also, using the strong law of large numbers,

lim
K→∞

1
K

τ+K∑

t=τ+1

Xt
i = E(X).

Thus, for large values of K, the duration of each step tends to be equal to the mean
value, and the effects of variations due to external effects such as hardware tend
to diminish. This property is a major advantage for ρ-amortized methods in cases
where the duration of a local iteration on a single processor may vary.

To illustrate this, the following experiment has been performed. A MPI program
is performing niter iterations. At each iteration, each process makes a Lapack
dgesv call to solve a N × N system of linear equations. After the resolution, the
process i = 1, . . . , p exchanges the result vector with its neighbors i− 1, i + 1 (with
exception of the processes 0 and p− 1, of course, which only send their vectors to

10



the processes 1 and p − 2, respectively). After the communication phase, a global
synchronization is done through a MPI Allgather, a MPI collective communication
that broadcasts to all processes the fusion of pieces of data collected on all other
ones. Such an iteration is meant to be representative of a real numerical code,
for instance for domain decomposition computations, where a local computation
such as a LU factorization is performed, followed by an exchange of the domain
intersections between the processes, and eventually by a test of the convergence of
the norm of the global solution.

Two implementations of the global synchronization have been made. The first
one, called “Global Allgather”, broadcasts to all the processes the total solution
vector (thus, the volume of the total communication is Θ(pN)). The other imple-
mentation first computes locally the norm of each part of the solution vector, and
then makes the broadcast of the partial norms (thus with a cost of Θ(p)). We call
it “Reduced Allgather”. This second solution is more realistic, yet is only valid
when the norm of the global vector may be obtained as a linear combination of the
partial results.

Based on this MPI template code, it is simple to test and time different schemes
for the iterative control of the convergence. We present here the measures made
on the standard control algorithm, on the k-step one, and on the generalized ρ-
amortized method, obtained with f(i) = i/ log i (with the value ρ set to 1.95, and
k = 10). This includes, when it is necessary, the dichotomic steps. All the necessary
operations have been programmed, as in a realistic implementation (copies of the
solution for the restarts, norm computation, etc. . . ). The dichotomic search has
been programmed such as to perform the worst case number of iterations.

The testing platform is the INRIA’s I-Cluster2. It is constituted of 20 nodes
Itanium-2, all chosen between the 100 available in order to be connected by a
unique switch Fast Ethernet. Notice that this choice, obviously, minimizes the
time required for a global synchronization.

We have design a limit experimentation where the kstep method with a small k
can be better than the ρ-amortized ones: the number of processor (20) is small and
the number niter = 1000 of iterations is small too. On this platform, the size of the
matrix for the Lapack call has been fixed to N = 300, and the convergence value
niter = 1000 is imposed. Typically, such a program runs in about 3 minutes on 20
I-Cluster2 nodes. Each version of the control algorithm has been run 10 times, in
order to obtain statistically significant results.

For each run, the total number of iterations R has been measured, as well
as the number of synchronization and the time that they lasted. Of course, the
timing results highly depend on the hardware and software implementation. Table 2
presents the results obtained on each algorithm, for each one of the two implemented
Allgathers.

Of course, the number of iterations and synchronizations is equal with both
Allgathers. The standard deviations are not presented in the table, because they
are insignificant. These measures show, without surprise, the number of synchro-
nizations that are spared by the k-step and i/ log i algorithms. Due to the very
low value for k, the k-step algorithm appears as specially interesting. Regarding
timings, as far as 38 seconds are gained, on a total of some 180 (i.e. 20%), due
to a reduced use of synchronizations, in the case of the Global Allgather. With an
optimized Reduced Allgather, the gain is less (some 2 seconds), yet visible.

These measures, even for a template application running on few nodes, may be

11



Global Allgather

Standard Algorithm k-step algorithm i/ log i algorithm
niter 1000 1000 100
R 1000 1047 1078
S 1000 28 72
Sc 1000 ? ?
Sd 0 ? ?

Titer (mean) 185.7 s 181.4 s 188.2 s
Tsynch (mean) 40.2 s 1.0 s 2.1 s

Titer/niter (mean) 185.7 ms 181.4 ms 188.2 ms
Tsynch/niter (mean) 40.2 ms 1.0 ms 2.1 ms

Reduced Allgather

Standard Algorithm k-step algorithm i/ log i algorithm
Tsynch (mean) 2.8 s 0.9 s 2.8 s

Table 2: Number of iterations, of synchronizations, and associated cumulated time for
each, using the Global and the Reduced Allgather.

seen as promising. The mere increase in the number of nodes or, even simpler,
the same runs, but on 20 nodes that would not be interconnected by a complete
network, would simply amplify the gain that is already measured with this limited
benchmark.

6 Conclusion

Minimizing the number of global synchronizations in a distributed computation
enables to increase efficiency of synchronous algorithms. In this paper, we focus
on iterative methods where a global stopping criterion is evaluated at each step.
We analyzed various strategies in order to decrease the number of synchronizations
while ensuring that the computed output result is the same than the one delivered
by the sequential method. We propose a new control technique named ρ-amortized,
original to the best of our knowledge, where the global test is performed only after
iteration ρf(i) with 1 < ρ < 2 (f being a non-decreasing function). Analyzing
various trade-offs for ρ and f , we prove that, when the total number of iterations
niter performed by the sequential method is unknown, the whole number of global
synchronizations may be reduced close to the lower theoretical bound (log niter) on
the overall number of tests, while performing an asymptotically optimal number of
iterations (niter + o(niter)).

Experiments have been run on a synthetic benchmark, meant as a template for
scientific computing based on iterative methods. Running on a small number of
nodes, using a complete interconnecting network, they have shown a clear gain in
time spent doing synchronization. This implementation, as well as theoretical con-
siderations, show that the proposed methods are robust and may be implemented
efficiently.

12



References

[1] Baserman (A.), Reichel (B.) et Scheltoff (C.) - Preconditioned CG methods for sparse
matrices on massively parallel machines - Parallel Computing 23 (1997).

[2] Bernard (Pierre-Eric), Gautier (Thierry) et Trystram (Denis) - Large Scale Simu-
lation of Parallel Molecular Dynamics - Proceedings of Second Merged Symposium
IPPS/SPDP 13th International Parallel Processing Symposium and 10th Symposium
on Parallel and Distributed Processing, San Juan, Puerto Rico, avril 1999.

[3] Bahi (J.), Miellou (J.-C.), and Rhofir (K.)- Asynchronous multisplitting methods for
nonlinear fixed point problems - Numerical Algorithms 15 - pp. 315-345,1997.

[4] Bertsekas (Dimitri D.) et Tsitsiklis (John N.) - Parallel and distributed computation,
numerical methods - Prentice-Hall, Englewood Cliffs N.J. 1989.

[5] Cormen (T.H.), Leiserson (C.E.), Rivest (R.L.) and Stein (C.) - Introduction to Al-
gorithms - Second Edition, McGraw-Hill, 2001.

[6] El Baz (D.), Spiteri (P.), Miellou (J.-C) and Gazen (D.) - Asynchronous Iterative
Algorithms with Flexible Communication for Nonlinear Network Flow Problems. J.
Parallel Distrib. Comput. 38 - pp 1-15 - 1996

[7] Elnozahy (E.N.), Alvisi (L.), Wang (Y.-M.) and Johnson (D.B.) - A survey of rollback-
recovery protocols in message-passing systems - ACM Computing Survey 34(3), pp
375–408, 2002.

[8] Frommer (A.), Szyld (D.B.) - On asynchronous iterations - J. Comp. Appl. Math. 123
- pp 201–216 - 2000.

[9] Kalaiselvi, (S.) et Rajaraman (V.) - A survey of checkpointing algorithms for parallel
and distributed computers - Sadhana 25(5), pp 489-510 - 2000

[10] Knuth (Donald E.) - The Art of Computer Programming - Vol. 2 - 3rd edition - §3.1
p.7 - Addison Wesley Longman - 1997.

[11] Maillard (Nicolas) - Calcul haut-performance et mecanique quantique: analyse des
ordonnancements en temps et en mémoire - Thèse, ID-IMAG, 19 Novembre 2001.

13


