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Abstract

In this paper a new checkpoint/recovery protocol called
Theft-Induced Checkpointingis defined for dataflow com-
putations in large heterogeneous environments. The proto-
col is especially useful in massively parallel multi-threaded
computations as found in cluster or grid computing and uti-
lizes the principle of work-stealing to distribute work. By
basing the state of executions on a macro dataflow graph,
the protocol shows extreme flexibility with respect to roll-
back. Specifically, it allows local rollback in dynamic het-
erogeneous systems, even under a different number of pro-
cessors and processes. To maximize run-time efficiency,
the overhead associated with checkpointing is shifted to the
rollback operations whenever possible. Experimental re-
sults show the overhead induced is very small.

1. Introduction and Background

Large parallel architectures, most notably grid and clus-
ters, are gaining in popularity for computationally intensive
applications. The computing infrastructure, consisting of
a large number of computers, storage and networking de-
vices, poses challenges in overcoming the effects of node
and communication link failures. Since the computation
times are often significant, effective fault-tolerance mech-
anisms are required to recover from faults in a fashion that
avoids costly restarts.

In the absence of fault-tolerance the probability of fail-
ure, and thus the unreliability of these architectures, in-
creases with the number of components that can fail [9].
The resulting mean time between failure (MTBF) can
thereby sink below the time required by the application. As
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a result the execution can become infeasible. Thus, efficient
mechanisms to provide fault-tolerance are not just desirable
but absolutely necessary.

Recovery from faults without costly restart imply the ex-
istence of redundancy. The redundancy mechanisms must
address the specific requirements associated with recov-
ery in large heterogeneous systems. This includes tak-
ing into account a dynamic number of possibly dissimi-
lar computational nodes. Many possible solutions based
on fault-tolerance have been studied in the literature [7].
Approaches based on duplication [14] can only tolerate a
fixed number of faults. More flexible approaches, e.g. log-
based and checkpoint-based protocols, are based on saving
the state of the processes and on constructing a consistent
global state [3]. The various protocols can be compared
based on three fundamental criteria. The first criterion is
coordination, where processes coordinate each other in or-
der to build a consistent global state at the time of check-
pointing or recovery. The second isheterogeneity, which
implies that the checkpoint state can be restored on a vari-
ety of platforms. The third criterion addresses thescope of
the recovery, i.e. global or local recovery. If a single fault
causes the roll-back of all processes in the application, one
speaks of global recovery. Local recovery implies that only
the roll-back of the crashed process is necessary.

Rollback-recovery methods are eitherlog-based, rely-
ing on logging and replaying messages [1] , orcheckpoint-
based. Message logging is based on the fact that a process
can be modelled by a sequence of interval states, each one
representing a non-deterministic event [12]. Checkpoint-
based methods rely on periodically saving a global state [3]
of the computation to stable storage. In case of a fault, the
computation is restarted from one of these previously saved
states. Checkpointing-based methods differ in the way pro-
cesses are coordinated and on the interpretation of a consis-
tent global state.

Coordinated checkpointing requires the coordination of



all processes for building a consistent global state before
writing the checkpoints to stable storage. The disadvantage
is the large latency due to coordination in order to achieve
a consistent checkpoint and the need for global recovery.
Its advantage is the simplified recovery without rollback
propagation and minimal storage overhead, since there is
only one checkpoint per process. This protocol is included
in [11, 15].

Uncoordinated checkpointing assumes that each process
independently saves its state and a consistent global state is
achieved in the recovery phase [7]. The advantage of this
method is that each process can make a checkpoint when its
state is small. However, there are two main disadvantages.
First, there is a possibility of rollback propagation which
can result in a domino effect, i.e. rollback to the begin-
ning of the computation. Second, the possibility of rollback
propagation requires the storage of multiple checkpoints for
each process.

Communication-induced checkpointing is a compromise
between coordinated and uncoordinated checkpointing. To
avoid a domino effect that can result from independent
checkpoints of different processes, a consistent global state
is achieved by forcing each process to take additional check-
points based on some information piggybacked on the ap-
plication messages [2]. The disadvantage of this approach
is the need for global rollback, the possibly large number of
forced checkpoints and the overhead associated with storing
them.

The checkpointing tools proposed in existing systems are
system-specific. Moreover, the checkpoint state is not het-
erogeneous, and thus not portable [4], and does not support
multithreading. Portability is achieved by using portable
languages like Java, but not by the checkpointing mech-
anism itself. Other tools, e.g. Porch [13], require re-
compilation to support heterogeneity at the cost of modi-
fications of code generation with loss in optimization. The
checkpointing protocol defined below will eliminate these
disadvantages by introducing portability and local rollback
in multithreaded environments.

2. Execution Model

At the base of the execution model is the macro dataflow
model. A dataflow graph [10] allows for a natural repre-
sentation of a parallel execution, and it can be exploited to
achieve fault-tolerance [8]. By the principle of dataflow,
tasks become ready for execution upon availability of their
input data. A dataflow graph is defined as a directed graph
G = (V, E), whereV is a finite set of vertices andE is a
set of edges representing precedence relations between ver-
tices. The vertex set consists of computational tasks, as seen
in the traditional context of task scheduling, and the edge set
represents the data dependencies between the tasks. Within

the context of this researchG is a dynamic graph, i.e. it
changes during runtime as the result of task creations or ter-
minations.

2.1. Work-stealing

We adopt an online scheduling algorithm called work-
stealing [5, 6] in order to distribute the workload. The prin-
ciple is simple, when a process becomes idle it tries tosteal
work from another process calledvictim. The initiating pro-
cess is calledthief.

2.2. Dataflow and work-stealing inKAAPI

The target environment for multithreaded computations
with dataflow synchronization between threads is the Ker-
nel for Adaptive, Asynchronous Parallel Interface (KAAPI),
implemented as a C++ library. The library is able to sched-
ule programs at fine or medium granularity in a distributed
environment. Figure 1 shows the general relationship be-
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Figure 1. KAAPI processor model.

tween processors and processes in KAAPI. A processor con-
tains one or more processes. Each process maintains its own
stack.
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Figure 2. Life-cycle of a task in KAAPI.

The life-cycle of a task in the KAAPI execution model is
depicted in Figure 2 and will be described first from a local
process’ and then from a thief’s point of view, in the context
of a task stealing.

At task creation the task enters statecreated. At this time
it is pushed onto the stack. When all input data is available



the task enters stateready. A ready-task which is on the top
of the stack can be executed, i.e. it can be popped off the
stack, thereby entering stateexecuting. A task in theready
state can also be stolen, in which case it enters thestolen
state on the local process, which now becomes a victim.
When the task is finished, either on the local process or a
thief, it enters statefinishedand proceeds to statedeleted.

If a task has been stolen, the newly created thief process
utilizes the same model. In Figure 1, the theft of taskTs

on Process 2 by Processi is shown, as indicated by the ar-
row. Whereas this example shows task stealing on the same
processor, the concept applies also to stealing across proces-
sors. On the victim the stolen task is in statestolen. Upon
theft, the stolen task enters statecreatedon the thief. At this
instant of time, the stolen taskTs and a taskTr charged with
returning the result are the only tasks in the thief’s stack, as
shown in the figure. Since a stolen task by the definition
of work-stealing is ready, it immediately enters stateready.
It is popped from the stack, thereby entering stateexecut-
ing, and upon finishing, it enters statefinished. It should
be noted that the task enters this state on the thiefand the
victim. For the latter this is after receiving a corresponding
message from the thief. On both processes the task proceeds
to statedeleted.

Work-stealing is the only mechanism for distributing the
workload constituting the application, i.e. an idle process
seeks to steal work from another process. From a practical
point of view the application starts with the process execut-
ing main(), which creates tasks. Typically some of these
tasks are then stolen by idle processes, which are either lo-
cal or on other processors. Thus the principle mechanisms
for dispatching tasks in the distributed environment is task-
stealing. The communication due to the theft is the only
communication between processes. Realizing that task theft
creates the only dependencies between processes is crucial
to understand the checkpointing protocol to be introduced
later.

It should be noted that the number of theft operations is
very small in comparison to the total number of tasks exe-
cuted [5, 6] and that the only nondeterministic events in the
program execution are the thefts. These two properties are
exploited in the checkpointing protocol defined next.

3. Theft-Induced Checkpointing

We first define the state of an execution of a parallel ap-
plication using a macro dataflow graph. This graph is dy-
namic and can reflect changes occurring during program ex-
ecution. Furthermore, it is portable, i.e. it allows the graph
or portions of it to be moved during execution. Formally, at
any instance of time, the macro dataflow graphG describes
a platform-independent, and thus portable, consistent global
state of the execution of an application.

Whereas graphG is viewed as a single dataflow graph,
its implementation can in fact be distributed. Specifically,
each processi contains and executes a subgraphGi of
G. Thus the state of the entire application is defined by
G =

⋃
Gi over all processesi. The checkpointing protocol

to be presented can take advantage of this execution state
formulation to allow for the rollback of only those processes
that have crashed. This is due to the fact thatGi, by defi-
nition of the principle of macro dataflow, contains all infor-
mation necessary to identify exactly which data is missing.
From a practical point of view one should note that for a
processi graphGi represents the dataflow representation of
its process stack.

3.1. Definition of a checkpoint

A copy of the dataflow graphG represents a consis-
tent global checkpoint of the application. In this research,
checkpoints are with respect to a process, and consist of
a copy of its localGi, representing the stack. The check-
pointing protocol must ensure that checkpoints are created
in such a fashion thatG is always a consistent global appli-
cation state, even if only a single process is rolled back.

The checkpoint ofGi itself consists of the entries of the
process stack, i.e. its tasks and their associated inputs, and
not of the task execution state on the processor itself. Un-
derstanding this difference between the two concepts is cru-
cial. Checkpointing the tasks and their inputs simply re-
quires to store the tasks and their input data as a dataflow
graph. On the other hand, checkpointing the execution of
a task usually consists of storing the execution state of the
processor as defined by the processor context, i.e. the pro-
cessor registers such as program counters and stack point-
ers as well as data. In the first case, it is possible to move a
task and its inputs, assuming that both are represented in a
platform-independent fashion. In the latter case the fact that
the process context is platform-dependent requires a homo-
geneous system in order to perform a restore operation or a
virtualization of this state [13].

The jth checkpoint of processPi will be denoted by
CP j

i . Thus the subscript denotes the process and the su-
perscript the instance of the checkpoint.

3.2. Checkpoint protocol definition

We will now present the checkpointing protocol called
Theft-induced checkpointing(TIC), which was motivated
by the method presented in [2]. The creation of checkpoints
can be initiated by work-stealing or at specific checkpoint-
ing periods. We will first describe the protocol with respect
to work-stealing, since it is the cause of the only communi-
cation (and thus dependencies) between processes. Check-
points resulting from work-stealing are calledforced check-
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Figure 3. TIC protocol.

points. Then we will consider the periodic checkpoints,
calledlocal checkpoints, which are stored periodically, after
expiration of the pre-defined periodsτ .

3.2.1 Forced checkpoints

The TIC protocol is defined in Figure 3 with respect
to events A through G for two processesP0 andP1. Ini-
tially P0 is executing a task from its stack. The following
sequence of events takes place:

1. A processP1 is created on an idle resource. If it finds a
processP0 that has a potential task to be stolen, it cre-
ates a “theft” taskTt charged with stealing a task from
processP0. Before executingTt, processP1 check-
points its state inCP 0

1 . Event A is the execution ofTt

which sends atheft requestto P0.

2. Event B is the receipt of thetheft requestby P0. Be-
tween event B and C it identifies a taskTs and flags it
as “stolen byP1”. Between events B and C victimP0

is in a critical section.

3. Between event C and D it forces a checkpoint to reflect
the theft. At this timeP0 becomes a victim. Event D
constitutes sendingTs to P1.

4. Event E is the receipt of the stolen task fromP0. Thief
P1 creates entries for two tasks,Ts andTr, in its stack.
TaskTr is charged with returning the results of the ex-
ecution ofTs to P0 and becomes ready whenTs fin-
ishes.

5. WhenP1 finishes the execution ofTs it takes a check-
point and executesTr, which returns the result ofTs to
P0 in event F.

6. Event G is the receipt of the result byP0.

3.2.2 Local checkpoints

Local checkpoints of each processi, i.e. Gi, are stored
periodically, after the expiration of the pre-defined period
τ . Specifically, after the expiration ofτ a process receives

a signal to checkpoint. The process can now take a check-
point. However, there are two exceptions. First, if the pro-
cess has a task in stateexecutingit must wait until execution
is finished. Second, if a process is in the critical section be-
tween events B and C in Figure 3, checkpointing must be
delayed until exiting the critical section. A local checkpoint
is shown in Figure 3 for processP0 before event B.

3.2.3 TIC rollback

The objective ofTIC is to allow rollback of only crashed
processes. A process can be rolled back to its last check-
point. In fact, for each process only the last checkpoint is
kept. To show that one can roll back one process, while
guaranteeing a consistent global state of execution, one has
to consider the following two questions.

Q1 What does a process do that needs to send a message
to a crashed process?

Q2 How can a process that is rolled back receive messages
that it received after the last checkpoint and before the
crash?

With respect to Q1, the KAAPI environment contains a
process manager implemented on a reliable resource. The
manager has a global view of all processes and directs the
rollback of crashed processes by identifying the new pro-
cessP ′

i replacing the crashedPi. An attempt to communi-
cate with a crashed process will result in failure, indicated
by an error code. The sender thus sends a message to the
manager to enquire the identifier of replacement processP ′

i

which it uses to resend the message.
With respect to Q2, the only messages received by a pro-

cess are (1) thetheft request(event B), (2) the receipt of
a stolen task (event E) and (3) the result of the stolen task
(event G). We will use the events of Figure 3 in the treat-
ment of each of the three cases.

Case (1): The loss of atheft request(event B) has no
consequences. The thief will simply time out waiting for a
response and make another request.

Case (2): If the thief crashes after receiving the stolen
task (event E), but before it was able to checkpoint, it is sim-
ply rolled back asP ′

1 to the initial checkpointCP 0
1 where

it will re-request a task fromP0 (event A). VictimP0, rec-
ognizing the redundant request, will change the state ofTs

from stolento ready, thus nullifying the theft, and treats the
theft requestas a new request.

Case (3): A crash of the victim after it has received the
result (event G) but before it could checkpoint would stall
the victim after rollback onP ′

0 to a state where the task is
still flagged as stolen. Therefore, the manager takes the last
checkpoint of the crashedP0 and inspects it for thefts, as
part of the rollback procedure. If it contains references to
a thiefP1 that is already terminated, it rolls backP0 on P ′

0



using the checkpoint ofP0 together with the thief’s final
checkpoint containing the result. Thus, the rollback uses
G0 andG1, which contains onlyTr. If the thief is still ex-
ecuting, no response is necessary. The thief will request
the identity of the newP ′

0 from the manager after the failed
attempt to deliver the results to the crashed process. This
occurs in event F while executing taskTr. The scenario
was addressed in the context of Q1.

By addressing Q1 and Q2 we have shown that no in-
consistent global state can occur as the result of rollback.
However, it remains to be established why the three forced
checkpoints shown (shaded) in Figure 3 are necessary for
the resolutions of Q1 and Q2. LetCP 0

1 andCP f
1 denote

the first and final checkpoint of a thiefP1 respectively.
The initial checkpointCP 0

1 guarantees that there exists
at least one record of atheft requestfor a thief that crashes.
Thus, upon a crash, the thief is rolled back on the new pro-
cessP ′

1. In the worst case this is the initial checkpoint and
P ′

1 will contact P0 with a theft requestwith reference to
its old process identifier. WithoutCP 0

1 any crash before a
checkpoint on the thief would simply erase any reference of
the theft, and would stall the victim. The final checkpoint
of the thief,CP f

1 , is needed in case the victimP0 crashes
after it has received the results from the thief, but before
it could checkpoint its state reflecting the result. Thus, if
the victim crashes between event G and its first checkpoint
after G, the actions described in the resolution of Q2 will
ensure the victim can receive the result of the stolen task.
It should be noted that the final checkpoint of the thief can-
not be deleted until the victim has taken a checkpoint after
event G, thereby checkpointing the result of the stolen task.
Lastly, the forced checkpoint of the victim (between events
C and D) ensures that a crash after this checkpoint does not
result in the loss of the thief’s computation.

The correctness of the actions associated with Q1 and Q2
was verified by enumeration over all possible failing scenar-
ios of the victim and thief, including simultaneous faults.
However, due to space limitations this enumeration could
not be included in the paper.

3.2.4 Bound on rollback

Finally, one has to address the amount of work that a pro-
cess can lose due to a single rollback. This is the maximal
difference in time between two consecutive checkpoints.
This time is defined by the checkpointing periodτ and the
execution time of a task, since a checkpoint of a process that
is executing a task cannot be made until the task finishes
execution. In the worst case, the process receives a check-
pointing signal afterτ and has to wait for the end of the ex-
ecution of its current task before checkpointing. Thus, the
time between checkpoints is bound byτ + max(pi) where
pi is the processing time of taskTi. But how bad can the

impact of pi be? Consider the sequential execution of a
program denoted byT1 and the execution time of the ap-
plication as executed on an unbounded number of proces-
sors denoted byT∞. In a parallel application one always
assumesT∞ � T1. SinceT∞ is the critical path of the ap-
plication anypi ≤ T∞. As a result one can assumepi to be
relatively small.

4. Experimental Results

The performance and overhead of theTIC protocol
were experimentally determined for theQuadratic Assign-
ment Problem(instance1 NUGENT 22) which was paral-
lelized in KAAPI. The experiments were conducted on the
iCluster22. The cluster consists of 104 nodes interconnected
by a 100Mbps Ethernet network. Each node features two
Itanium-2 processors (900 MHz) and 3 GB of local mem-
ory.

In order to take advantage of the distributed fashion of
the checkpoint, i.e.Gi, each processor keeps a local copy
of its checkpoint. To eliminate this single source of failure,
it is assumed that the checkpoint of eachGi is replicated
on other nodes [15]. This configuration has the advantage
that one can measure the actual overhead of the checkpoint-
ing mechanism, rather than the overhead associated with a
centralized checkpoint server.

Figure 4. TIC overhead.

Figure 4 shows the overhead of checkpointing when ex-
ecuting the application on configurations using different
numbers of processors. For each processor configuration
the execution times without checkpointing and usingTIC
with periodτ = 1s andτ = 20s are shown. As can be seen,
there is very little observable overhead for each processor
configuration, which shows that the overhead ofTIC is
negligible. However, there is small, but hardly visible over-
head.

1see http://www.opt.math.tu-graz.ac.at/qaplib/
2http://www.inrialpes.fr/sed/i-cluster2



Figure 5. Relative TIC overhead.

The exact relative overhead forTIC is shown in Fig-
ure 5. In general, there is an increase in overhead with
the number of processors. The reason for this is that as
the number of processors increase, so does the number of
forced checkpoints due to work-stealing. As expected, the
overhead is smaller for largerτ . Whereas Figure 5 shows
noticeable difference in overhead, one should note however
that the measured overhead is less than 1.5% in any config-
uration. This we consider negligible in view of Figure 4.

5. Conclusions and Future Work

In order to address fault-tolerance of large parallel appli-
cations we have introduced Theft-Induced Checkpointing.
The protocol has the main advantage that it only requires
crashed processes to be rolled back. The state of the appli-
cation is represented in a portable fashion utilizing macro
dataflow graphs. This allows for a platform-independent
description of the application state, which makes it possible
to rollback in a dynamic environment, even when the num-
ber of processors changes. The overhead associated with
checkpointing was shown to be very low, to the point of be-
ing negligible. The amount of work lost by a crashed pro-
cess, determined by the spacing between checkpoints, could
be controlled by the checkpointing period and the applica-
tion’s granularity, which affects task execution times.
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