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Abstract aresult the execution can become infeasible. Thus, efficient
mechanisms to provide fault-tolerance are not just desirable
In this paper a new checkpoint/recovery protocol called but absolutely necessary.
Theft-Induced Checkpointing defined for dataflow com- Recovery from faults without costly restart imply the ex-
putations in large heterogeneous environments. The proto-jstence of redundancy. The redundancy mechanisms must
col is especially useful in massively parallel multi-threaded aqqress the specific requirements associated with recov-
computations as found in cluster or grid computing and uti- ery in large heterogeneous systems. This includes tak-
lizes the principle of work-stealing to distribute work. BY ing into account a dynamic number of possibly dissimi-
basing the state of executions on a macro dataflow graph, jar computational nodes. Many possible solutions based
the protocol shows extreme flexibility with respect to roll- on fault-tolerance have been studied in the literature [7].
back. Specifically, it allows local rollback in dynamic het-  approaches based on duplication [14] can only tolerate a
erogeneous systems, even under a different number of profixed number of faults. More flexible approaches, e.g. log-
cessors and processes. To maximize run-time efficiencypased and checkpoint-based protocols, are based on saving
the overhead associated with checkpointing is shifted to theye state of the processes and on constructing a consistent
rollback operations whenever possible. Experimental re- gopal state [3]. The various protocols can be compared
sults show the overhead induced is very small. based on three fundamental criteria. The first criterion is
coordination where processes coordinate each other in or-
der to build a consistent global state at the time of check-

1. Introduction and Background pointing or recovery. The second lieterogeneitywhich
implies that the checkpoint state can be restored on a vari-

Large parallel architectures, most notably grid and clus- ety of platforms. The third criterion addresses sicepe of

ters, are gaining in popularity for computationally intensive € recoveryi.e. global or local recovery. If a single fault
applications. The computing infrastructure, consisting of c3US€s the roll-back of all processes in the application, one

a large number of computers, storage and networking de_speaks of global recovery. Local recovery implies that only

vices, poses challenges in overcoming the effects of nodet"e roll-back of the crashed process is necessary.
and communication link failures. Since the computation  Rollback-recovery methods are eitheg-based rely-
times are often significant, effective fault-tolerance mech- ing on logging and replaying messages [1] cbeckpoint-
anisms are required to recover from faults in a fashion thatbased Message logging is based on the fact that a process
avoids costly restarts. can be modelled by a sequence of interval states, each one
In the absence of fault-tolerance the probability of fail- representing a non-deterministic event [12]. Checkpoint-
ure, and thus the unreliability of these architectures, in- based methods rely on periodically saving a global state [3]
creases with the number of components that can fail [9]. of the computation to stable storage. In case of a fault, the
The resulting mean time between failure (MTBF) can computation is restarted from one of these previously saved
thereby sink below the time required by the application. As states. Checkpointing-based methods differ in the way pro-
cesses are coordinated and on the interpretation of a consis-
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all processes for building a consistent global state beforethe context of this researdfi is a dynamic graph, i.e. it

writing the checkpoints to stable storage. The disadvantagechanges during runtime as the result of task creations or ter-

is the large latency due to coordination in order to achieve minations.

a consistent checkpoint and the need for global recovery.

Its advantage is the simplified recovery without rollback 2.1. Work-stealing

propagation and minimal storage overhead, since there is

only one checkpoint per process. This protocol is included  \We adopt an online scheduling algorithm called work-

in[11, 15]. stealing [5, 6] in order to distribute the workload. The prin-
Uncoordinated checkpointing assumes that each processiple is simple, when a process becomes idle it triestéal

independently saves its state and a consistent global state igork from another process calleittim. The initiating pro-

achieved in the recovery phase [7]. The advantage of thiscess is calledhief

method is that each process can make a checkpoint when its

state is small. However, there are two main disadvantages? 2. Dataflow and work-stealing inK AAPI

First, there is a possibility of rollback propagation which

can result in a domino effect, i.e. rollback to the begin-  The target environment for multithreaded computations
ning of the computation. Second, the possibility of rollback \ith dataflow synchronization between threads is the Ker-
propagation requires the storage of multiple checkpoints for ne| for Adaptive, Asynchronous Parallel Interfaces®!1),
each process. implemented as a C++ library. The library is able to sched-
Communication-induced checkpointing is a compromise yle programs at fine or medium granularity in a distributed

between coordinated and uncoordinated ChECprinting. TOenvironment_ Figure 1 shows the genera| re|ationship be-
avoid a domino effect that can result from independent

checkpoints of different processes, a consistent global state Process 1 orocess2 Processi
is achieved by forcing each process to take additional check-
points based on some information piggybacked on the ap- Stack Stack Stack
plication messages [2]. The disadvantage of this approach | Ts
is the need for global rollback, the possibly large number of Ts Tr
forced checkpoints and the overhead associated with storing
them.

The checkpointing tools proposed in existing systems are Figure 1. KAAPI processor model.

system-specific. Moreover, the checkpoint state is not het-

erogeneous, and thus not portable [4], and does not support

multithreading. Portability is achieved by using portable tween processors and processesi#aKi. A processor con-
languages like Java, but not by the checkpointing mech-tains one or more processes. Each process maintains its own
anism itself. Other tools, e.g. Porch [13], require re- stack.

compilation to support heterogeneity at the cost of modi-

fications of code generation with loss in optimization. The
checkpointing protocol defined below will eliminate these
disadvantages by introducing portability and local rollback /

in multithreaded environments.

2. Execution Model /

At the base of the execution model is the macro dataflow .

model. A dataflow graph [10] allows for a natural repre-

sentation of a parallel execution, and it can be exploited to Figure 2. Life-cycle of a task in ~ KAAPI.

achieve fault-tolerance [8]. By the principle of dataflow,

tasks become ready for execution upon availability of their

input data. A dataflow graph is defined as a directed graph  The life-cycle of a task in the Kapi execution model is

G = (V,€), whereV is a finite set of vertices anfl is a depicted in Figure 2 and will be described first from a local
set of edges representing precedence relations between veprocess’ and then from a thief’s point of view, in the context
tices. The vertex set consists of computational tasks, as seenf a task stealing.

in the traditional context of task scheduling, and the edge set At task creation the task enters stateated At this time
represents the data dependencies between the tasks. Withiihis pushed onto the stack. When all input data is available



the task enters stateady. A ready-task which is on the top Whereas grapld: is viewed as a single dataflow graph,
of the stack can be executed, i.e. it can be popped off theits implementation can in fact be distributed. Specifically,
stack, thereby entering stag®ecuting A task in theready each procesg contains and executes a subgra@h of
state can also be stolen, in which case it entersstbken G. Thus the state of the entire application is defined by
state on the local process, which now becomes a victim.G = |J G; over all processes The checkpointing protocol
When the task is finished, either on the local process or ato be presented can take advantage of this execution state
thief, it enters statéinishedand proceeds to statkeleted formulation to allow for the rollback of only those processes

If a task has been stolen, the newly created thief procesghat have crashed. This is due to the fact t¥at by defi-
utilizes the same model. In Figure 1, the theft of td3k nition of the principle of macro dataflow, contains all infor-
on Process 2 by Processs shown, as indicated by the ar- mation necessary to identify exactly which data is missing.
row. Whereas this example shows task stealing on the samérom a practical point of view one should note that for a
processor, the concept applies also to stealing across procegrocess graphG; represents the dataflow representation of
sors. On the victim the stolen task is in statelen Upon its process stack.
theft, the stolen task enters stateatedon the thief. At this
instant of time, the stolen tagdk and a task’,. charged with 3.1. Definition of a checkpoint
returning the result are the only tasks in the thief’s stack, as
shown in the figure. Since a stolen task by the definition 5 copy of the dataflow grapl& represents a consis-
of work-stealing is ready, it immediately enters st&@dy.  tent global checkpoint of the application. In this research,
Itis popped from the stack, thereby entering s&tecut-  checkpoints are with respect to a process, and consist of
ing, and upon finishing, it enters stdfieished It should 5 ¢opy of its localG;, representing the stack. The check-
be noted that the task enters this state on the tmefthe  ginting protocol must ensure that checkpoints are created
victim. For the latter this is after receiving a corresponding i, such a fashion that is always a consistent global appli-
message from the thief. On both processes the task proceeds,tion state, even if only a single process is rolled back.
to statedeleted . o The checkpoint of5; itself consists of the entries of the

Work-stealing is the only mechanism for distributing the rgcess stack, i.e. its tasks and their associated inputs, and
workload constituting the application, i.e. an idle process ot of the task execution state on the processor itself. Un-
seeks to steal work from another process. From a practicalyerstanding this difference between the two concepts is cru-
point of view the application starts with the process execut- jg|. Checkpointing the tasks and their inputs simply re-
ing main(), which creates tasks. Typically some of these qyires to store the tasks and their input data as a dataflow
tasks are then stolen by idle processes, Which are eithgr |°'graph. On the other hand, checkpointing the execution of
cal or on other processors. Thus the principle mechanisms, a5k usually consists of storing the execution state of the
for dispatching tasks in the distributed environment is task- processor as defined by the processor context, i.e. the pro-
stealing. The communication due to the theft is the only cessor registers such as program counters and stack point-
communication between processes. Realizing that task theflys 55 well as data. In the first case, it is possible to move a
creates the only dependencies between processes is crucighsk and its inputs, assuming that both are represented in a
to understand the checkpointing protocol to be introduced patform-independent fashion. In the latter case the fact that
later. the process context is platform-dependent requires a homo-

It should be noted that the number of theft operations is geneous system in order to perform a restore operation or a
very small in comparison to the total number of tasks exe- yjrtyalization of this state [13].

cuted [5, 6] and that the only nondeterministic events inthe e jth checkpoint of proces®; will be denoted by

program execution are the thefts. These two properties arcp/. Thus the subscript denotes the process and the su-
exploited in the checkpointing protocol defined next. perscript the instance of the checkpoint.

3. Theft-Induced Checkpointing 3.2. Checkpoint protocol definition

We first define the state of an execution of a parallel ap-  We will now present the checkpointing protocol called
plication using a macro dataflow graph. This graph is dy- Theft-induced checkpointing’I/C), which was motivated
namic and can reflect changes occurring during program ex-by the method presented in [2]. The creation of checkpoints
ecution. Furthermore, it is portable, i.e. it allows the graph can be initiated by work-stealing or at specific checkpoint-
or portions of it to be moved during execution. Formally, at ing periods. We will first describe the protocol with respect
any instance of time, the macro dataflow gr&pdescribes  to work-stealing, since it is the cause of the only communi-

a platform-independent, and thus portable, consistent globalkation (and thus dependencies) between processes. Check-
state of the execution of an application. points resulting from work-stealing are callfaced check-



Po BCyPD & t a signal to checkpoint. The process can now take a check-
L Nz i . . .
! point. However, there are two exceptions. First, if the pro-
cess has a task in staeecutingt must wait until execution
; ‘ ; is finished. Second, if a process is in the critical section be-
o1 7 V 7 tween events B and C in Figure 3, checkpointing must be

Z)S E 2R3 delayed until exiting the critical section. A local checkpoint
is shown in Figure 3 for proced%, before event B.
Figure 3. TIC protocol.

3.2.3 TIC rollback
The objective of'/C'is to allow rollback of only crashed

points  Then we will consider the periodic checkpoints, processes. A process can be rolled back to its last check-
calledlocal CheCprlntSNthh are stored perlOdlca”y, after point_ In fact, for each process 0n|y the last Checkpoint is

expiration of the pre-defined periods kept. To show that one can roll back one process, while
guaranteeing a consistent global state of execution, one has
3.2.1 Forced checkpoints to consider the following two questions.

The TIC protocol is defined in Figure 3 with respect Q1 What does a process do that needs to send a message
to events A through G for two processgs and P;. Ini- to a crashed process?
tially P, is executing a task from its stack. The following

Q2 How can a process that is rolled back receive messages
sequence of events takes place:

that it received after the last checkpoint and before the

. . o ?
1. Aprocesd, is created on anidle resource. Ifitfinds a crash?

process that has a potential task to be stolen, itcre-  with respect to Q1, the KAPI environment contains a
ates a “theft” taskl; charged with stealing a task from  process manager implemented on a reliable resource. The

processr. Before executingry, processP; check- manager has a global view of all processes and directs the
points its state i’ Py Event A is the execution df; rollback of crashed processes by identifying the new pro-
which sends &heft requesto 7. cessP! replacing the crasheB;. An attempt to communi-

cate with a crashed process will result in failure, indicated
by an error code. The sender thus sends a message to the
manager to enquire the identifier of replacement prog¥ss
which it uses to resend the message.

With respect to Q2, the only messages received by a pro-
cess are (1) théheft requesievent B), (2) the receipt of
a stolen task (event E) and (3) the result of the stolen task
(event G). We will use the events of Figure 3 in the treat-
ment of each of the three cases.

4. Event E is the receipt of the stolen task fréin Thief Case (1): The loss of theft reques(event B) has no
P, creates entries for two taskg, and7,., in its stack. consequences. The thief will simply time out waiting for a

TaskT, is charged with returning the results of the ex- €Sponse and make another request. N
ecution of T, to P, and becomes ready whéh fin- Case (2): If the thief crashes after receiving the stolen
ishes. ) ) task (event E), but before it was able to checkpoint, it is sim-

ply rolled back asP; to the initial checkpointC P where
5. WhenP, finishes the execution dF, it takes a check- it will re-request a task fronf, (event A). Victim Py, rec-
point and executeg,, which returns the result df; to ognizing the redundant request, will change the statg; of

2. Event B is the receipt of thiéheft requesby P,. Be-
tween event B and C it identifies a tagk and flags it
as “stolen byP,”. Between events B and C victiff,
is in a critical section.

3. Between event C and D it forces a checkpoint to reflect
the theft. At this timeP, becomes a victim. Event D
constitutes sending; to P;.

P, inevent F. from stolento ready, thus nullifying the theft, and treats the
theft requesas a new request.
6. Event G is the receipt of the result B. Case (3): A crash of the victim after it has received the

result (event G) but before it could checkpoint would stall
the victim after rollback orP/ to a state where the task is
still flagged as stolen. Therefore, the manager takes the last

Local checkpoints of each process.e. G;, are stored  checkpoint of the crasheB, and inspects it for thefts, as
periodically, after the expiration of the pre-defined period part of the rollback procedure. If it contains references to
7. Specifically, after the expiration of a process receives a thief P, that is already terminated, it rolls baék on P}

3.2.2 Local checkpoints



using the checkpoint of, together with the thief’'s final  impact of p; be? Consider the sequential execution of a
checkpoint containing the result. Thus, the rollback usesprogram denoted by, and the execution time of the ap-
G, andG1, which contains onlyZ’,.. If the thief is still ex- plication as executed on an unbounded number of proces-
ecuting, no response is necessary. The thief will requestsors denoted b{,.. In a parallel application one always
the identity of the newP] from the manager after the failed assumed,, < T3. SinceT, is the critical path of the ap-
attempt to deliver the results to the crashed process. Thiglication anyp; < T... As a result one can assumegto be
occurs in event F while executing ta§k. The scenario  relatively small.
was addressed in the context of Q1.

By addressing Q1 and Q2 we have shown that no in- 4. Experimental Results
consistent global state can occur as the result of rollback.
However, it remains to be established why the three forced

checkpoints shown (shaded) in Figure 3 are necessary for The performance and overhead of tigC' protocol
the resolutions of Q1 and Q2. L&tPY and Cplf denote were experimentally determined for tiuadratic Assign-

the first and final checkpoint of a thiéf; respectively. ment Problem(instancé NUGENT 22) which was parak-

The initial checknoinP? hat th _ lelized in KAAPI. The experiments were conducted on the
e Initial checkpoinC'Fy guarantees_t atthere exists o) sier?. The cluster consists of 104 nodes interconnected
at least one record oftaeft requestor a thief that crashes.

ey by a 100Mbps Ethernet network. Each node features two
Thus, upon a crash, the thief is rolled back on the new pro- = i\ > processors (900 MHz) and 3 GB of local mem-
cessP;. In the worst case this is the initial checkpoint and ory

AR . : .
Py will contact Py with a theft requestith reference to In order to take advantage of the distributed fashion of

: : - . o
'tz Olg process ;]der;]t]ﬂfer. V\ﬂ;hql@]ljl any crash bfefore a fthe checkpoint, i.eG;, each processor keeps a local copy
checkpoint on the thiet would simply erase any reference of ¢ j; checkpoint. To eliminate this single source of failure,

the theft, and would stall the victim. The final checkpoint j ic 2<sumed that the checkpoint of eaGhis replicated

o]ttthe_ '[T]IBf,CPl ! |sdneheded ml cafse thehvm:]l&f ct;asf:)esf on other nodes [15]. This configuration has the advantage
after it has received the results from the thief, but before v one can measure the actual overhead of the checkpoint-

|thcogld_ check%omtbns state reflecgng tg? ref_sult. hThlliS' _'f ing mechanism, rather than the overhead associated with a
the victim crashes between event G and its first checkpoint g+~ iiaq checkpoint server,

after G, the actions described in the resolution of Q2 will

ensure the victim can receive the result of the stolen task. 2000 -
It should be noted that the final checkpoint of the thief can- 1800 mwithout checkpoint|—
not be deleted until the victim has taken a checkpoint after 1600 1 mTIC (1s) —
event G, thereby checkpointing the result of the stolen task. 1490 1 OTIC (205) -
Lastly, the forced checkpoint of the victim (between events £ Egg 1
C and D) ensures that a crash after this checkpointdoes not E g5 | |
result in the loss of the thief's computation. 600 1

The correctness of the actions associated with Q1 and Q2 400 1 |
was verified by enumeration over all possible failing scenar- 203 I ﬂI:[I]:
ios of the victim and thief, including simultaneous faults. 20 40 60 120

However, due to space limitations this enumeration could

) - # processors
not be included in the paper.

Figure 4. TIC overhead.
3.2.4 Bound on rollback

Finally, one has to address the amount of work that a pro- ~ Figure 4 shows the overhead of checkpointing when ex-
cess can lose due to a single rollback. This is the maximalecuting the application on configurations using different
difference in time between two consecutive checkpoints. Numbers of processors. For each processor configuration
This time is defined by the checkpointing perioéind the  the execution times without checkpointing and using”
execution time of a task, since a checkpoint of a process thatvith periodr = 1s andr = 20s are shown. As can be seen,
is executing a task cannot be made until the task finishesthere is very little observable overhead for each processor
execution. In the worst case, the process receives a checkconfiguration, which shows that the overheadIdfC' is
pointing signal after and has to wait for the end of the ex- negligible. However, there is small, but hardly visible over-
ecution of its current task before checkpointing. Thus, the head.
time between checkpoints is bound by- max(p;) where Isee http:/mww.opt.math.tu-graz.ac.at/qaplib/

p; is the processing time of task. But how bad can the 2http://www.inrialpes.frised/i-cluster2
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Figure 5. Relative TIC overhead.

The exact relative overhead f@r/C is shown in Fig-

5. Conclusions and Future Work

(3]

[4]

[5]

[6]

ure 5. In general, there is an increase in overhead with [7]
the number of processors. The reason for this is that as
the number of processors increase, so does the number of
forced checkpoints due to work-stealing. As expected, the
overhead is smaller for larget. Whereas Figure 5 shows
noticeable difference in overhead, one should note however
that the measured overhead is less than 1.5% in any config-
uration. This we consider negligible in view of Figure 4.

[8]

[9]

In order to address fault-tolerance of large parallel appli- [10]

cations we have introduced Theft-Induced Checkpointing.
The protocol has the main advantage that it only requires
crashed processes to be rolled back. The state of the appli-
cation is represented in a portable fashion utilizing macro [11]
dataflow graphs. This allows for a platform-independent
description of the application state, which makes it possible
to rollback in a dynamic environment, even when the num-
ber of processors changes. The overhead associated witl
checkpointing was shown to be very low, to the point of be-
ing negligible. The amount of work lost by a crashed pro-
cess, determined by the spacing between checkpoints, could
be controlled by the checkpointing period and the applica- [13]
tion’s granularity, which affects task execution times.
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