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Abstract. We propose a new adaptive algorithm for the exact simul-
taneous resolution of several triangular systems over finite fields: it is
composed of several practicable variants solving these systems (a pure
recursive version, a reduction to the numerical dtrsm routine and a de-
laying of the modulus operation). Then a cascading scheme is proposed
to merge these variants into an adaptive sequential algorithm.
We then propose a parallelization of this resolution by a coupling of
the sequential algorithm and of the parallel one in order to get the best
performances on any number of processors. The resulting cascading is
then an adaptation to resources.
This shows that the same process has been used both for adaptation to
data and to resources. We thus propose a generic framework enabling
automatic adaptation of algorithms using recursive cascading.

1 Introduction

Large-scale applications and software systems are getting increasingly complex.
To deal with this complexity, those systems must manage themselves in accor-
dance with high-level guidance from humans. Adaptive and hybrid algorithms
enable this self-management of resources and of structured inputs.
In this paper, we first propose a classification of the different notions of adap-
tivity. For us, an algorithm is adaptive when there is a choice at a high level
between at least two distinct algorithms, each of which could solve the same
problem [1]. The choice is strategic, not tactical. It is motivated by an increase
of the performance of the execution, depending on both input/output data and
computing resources.
An adaptive algorithm may be

– simple: O(1) choices are performed whatever the input (e.g. its size) is. Notice
that, while only a constant number of choises are done, each choice can be
used several times (an unbounded number of times) during the execution.
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– baroque: the number of choices is not bounded: it depends on the input (e.g.
its size).

While choices in a simple adaptive alogrithm may be defined statically before any
execution, some choices in baroque adaptive algorithms are necessarily computed
at run time or pre-computed.
The choices may be performed based on machine parameters. But there exist effi-
cient algorithms that do not base their choices on such parameters. For instance,
cache-oblivious algorithms have been successfully explored in the context of reg-
ular [2] and irregular [3] problems, on sequential and parallel machine models [4].
They do not use any information about memory access times, or cache-line or
disk-block sizes. This motivates a second distinction based on the information
used:

– An adaptive algorithm is oblivious, if its control flow depends neither on the
particular values of the inputs nor on static properties of the resources.

– An adaptive algorithm is tuned, if a strategic decision is made based on static
resources such as memory specific parameters or heterogeneous features of
processors in a distributed computation.
A tuned algorithm is engineered if a strategic choice is inserted based on a
mix of the analysis and knowledge of the target machine and input patterns.
An adaptive algorithm is self-tuned if the choices are automatically computed
by an algorithm.

– An adaptive algorithm is introspective if it avoids any machine or memory-
specific parameterization. Strategic decisions are made based on resource
availability or input data properties, both discovered at run-time (such as idle
processors). For instance, a strategic decision is made based on assessment
of the algorithm performance on the given input up to the decision point.

In this paper we want to use adaptive algorithms to improve exact linear algebra
performances.
Indeed, exact matrix multiplication, together with matrix factorizations, over
finite fields can now be performed at the speed of the highly optimized numeri-
cal BLAS routines[5, 6]. This has been established by the FFLAS and FFPACK
libraries [7, 8]. We now discuss the implementation of exact solvers for triangu-
lar systems with matrix right-hand side (or equivalently left-hand side). This
is also the simultaneous resolution of n triangular systems. The resolution of
such systems is e.g. the main operation in block Gaussian elimination. For solv-
ing triangular systems over finite fields, the block algorithm reduces to matrix
multiplication and achieves the best known algebraic complexity.
After recalling the block recursive scheme of triangular system solving we detail
in section 2 two distinct sequential adaptive degenerations. The first one is a
reduction to the numerical routine dtrsm and the second one is a delaying of the
modulus operation. Then we compare their respective behaviors in practice and
propose a new self-tuned cascading sequential triangular solver. Then, in section
3, we propose to adapt the work stealing parallel scheduler to obtain a generic
baroque coupling of sequential and parallel algorithms and use this scheme to
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propose a parallel triangular solver. As a conclusion we then propose a generic
recursive framework enabling the automation of the process of adaptation in
section 4.
A more detailed classification of adaptive and hybrid algorithms as well as some
preliminary results on the sequential variants of triangular solving have been pre-
sented in [1]. We here propose a new self-tuned cascading sequential algorithms
and more experimental results.

2 Data tuned exact triangular system solving

2.1 Triangular system solving with matrix right-hand side

In the following, we consider without loss of generality that the system to solve
is upper triangular and the unknown is a matrix at its right-hand side. Thus we
consider the system AX = B where A is a m×m non singular upper triangular
matrix and X and B are m × n matrices. We consider the case m ≤ n.
From now on we will denote by ω the exponent of square matrix multiplication
(e.g. from 3 for classical, to 2.375477 for Coppersmith-Winograd). Moreover, we
can bound the arithmetical cost of a m × k by k × n rectangular matrix mul-
tiplication (denoted by R(m, k, n)) as follows: R(m, k, n) ≤ Cω

⌈
m
z

⌉ ⌈
n
z

⌉ ⌈
k
z

⌉
zω

where z = min(m, k, n) [9].
This system resolution can be reduced to matrix multiplication by a block recur-
sive algorithm. In the following, we first recall it and then present two variants
improving its efficiency. At last, we combine them into a cascade algorithm tak-
ing benefit of each of their advantage.

2.2 Scheme of the block recursive algorithm

The recursive algorithm 1 is based on a recursive splitting of the matrices into
blocks and a divide and conquer approach.
With m = n and classical matrix multiplication, the arithmetic cost of this
algorithm is TRSM(m) = m3 as shown e.g. in [8, Lemma 3.1].
We now also give the cost of the triangular matrix multiplication, TRMM, and
of the triangular inversion, INVT, as we will need them in the following sections.
To perform the multiplication of a triangular matrix by a dense matrix, one can
use a similar block decomposition:

1. X1 :=trmm (A1, B1);
2. B1 := B1 + A2X2;
3. X2 :=trmm (A3, B2);

The cost is thus TRMM(m, n) = TRMM(m/2, n)+R(m/2, m/2, n). The latter
is TRMM(m, n) = m2n with classical matrix multiplication.

Now the inverse of the matrix

[
A1 A2

A3

]

is the matrix

[
A−1

1 −A−1
1 A2A

−1
3

A−1
3

]

, so the

cost of its computation is INV T (m) = 2INV T (m/2) + 2TRMM(m/2, m/2).
The latter is INV T (m) = 1

3m3 with classical matrix multiplication.
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Algorithm 1: trsm : recursive algorithm

Data: A ∈ Z/pZ

m×m, B ∈ Z/pZ

m×n

Result: X ∈ Z/pZ

m×n s.t. AX = B
begin

if m=1 then
X := A−1

1,1 × B

else
/* (splitting of the matrices into blocks of size

⌊
m
2

⌋

and
⌈

m
2

⌉
) */

A
︷ ︸︸ ︷
[

A1 A2

A3

]

X
︷ ︸︸ ︷
[

X1

X2

]

=

B
︷ ︸︸ ︷
[

B1

B2

]

X2 :=trsm(A3, B2)

B1 := B1 − A2X2

X1 :=trsm(A1, B1)

return X
end

2.3 A tuned cascading algorithm

Degenerating to the BLAS “dtrsm” Matrix multiplication speed over finite
fields was improved in [7, 10] by the use of the numerical BLAS1 library: the ele-
ments of the input matrices are converted to floating point representations, thus
enabling the use of the efficient numerical linear algebra subroutines, and the
result is converted back to a finite field representation afterwards. This compu-
tation corresponds to an injection of the finite field into Z. The conversion back
to the finite field is made possible if the computation only involved additions and
multiplications and if now overflow of the integer representation has occured.
Therefore this technique can be applied to the trsm routine under the following
conditions:

– the triangular matrix must have a unit diagonal to avoid the n divisions by
each of the diagonal entries of the triangular matrix

– all intermediate integral result must be representable in the floating point
mantissa, so the growth of the coefficients must be controlled.

For the first point, it suffices to factorize the triangular matrix A = AD, where
U is unit triangular and D is diagonal (D is exactly the diagonal of A). After
solving the unit diagonal triangular system UY = B (without division), there
only remains to compute X = D−1Y by n divisions over the finite field. This
normalization leads to an additional cost of O(mn) arithmetic operations (see
[8] for more details).

1
www.netlib.org/blas
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We now deal with the control of the coefficients growth. The kth row of the
solution matrix X is a linear combination of the (n− k) last rows of X , already
computed. This imply an exponential growth of the value of the coefficients, or
equivalently, a linear growth in their size, with respect to the system dimension.
More precisely, if the finite fields elements are represented by integers between
0 and p − 1, the system must satisfy

p − 1

2

[
pn−1 + (p − 2)n−1

]
< 2ma (1)

where ma is the size of the mantissa [8]. Under this condition, the resolution
over the integers using the BLAS trsm routine is exact. For instance, with a
53 bits mantissa, this gives quite small matrices, namely at most 55 × 55 for
p = 2, at most 4× 4 for p ≤ 9739, and at most p = 94906249 for 2× 2 matrices.
Nevertheless, this technique is speed-worthy in many cases.
In the following, we will denote by SBLAS(p) the maximal matrix size for which
the BLAS resolution is exact. We can now build the first cascade algorithm,
BLASTrsm: the recursive block algorithm is used until the block size is lower than
SBLAS(p), where the BLAS resolution is then applied.

Interleaving delayed modulus The block recursive algorithm consist in sev-
eral matrix multiplications of different sizes. Over a finite field, this imply numer-
ous unnecessary modular reductions, after each block multiplication. Therefore,
we propose to delay these reductions: the matrix multiplications are performed
over Z, and the reduction is only applied when necessary. Over Z, the matrix
multiplication remains correct as long as

k(p − 1)2 < 2mA , (2)

where k is the common dimension of the two matrices to be multiplied.

U =
i

i B 1..i−1

B i

V X

X i

1..i−1

Fig. 1. Splitting for the double cascade trsm algorithm

This equation defines a second threshold SDEL: for k < SDEL, the matrix multi-
plication can be performed without modular reductions. To combine it with the
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previous threshold SBLAS, we define SSPLIT as the larger multiple of SBLAS

lower than SDEL. From these two thresholds, one can build the splitting of the
system, shown on figure 1.

Algorithm 2: trsm-blas-del : Recursive Blas Delayed

Data: A ∈ Z/pZ

m×m, B ∈ Z/pZ

m×n

Result: X ∈ Z/pZ

m×n s.t. AX = B
begin

Compute SBLAS(p) from equation (1)
Compute SDEL from equation (2)
SSPLIT ← Min(m/2, SDEL)
/* Adjusting SSPLIT to a multiple of SBLAS */

SSPLIT ← (SSPLIT/SBLAS)SBLAS

foreach block column of A of dimension m× SSPLIT of the form

2

4

Vi

Ui

0

3

5 do

Xi = trsm del(Ui, Bi)
Xi = Xi mod p
B1...i−1 = B1...i−1 − ViXi

B1...i−1 = B1...i−1 mod p

return X
end

Algorithm 2 is a loop on every block of column dimension SDEL. For each of
them, a triangular system is solved using algorithm 3, a modular reduction is
performed and the solution is updated by a matrix multiplication. Algorithm
3 is simply the adaptive algorithm, formed by the block recursive algorithm 1
and the BLAS resolution with dtrsm. The matrix multiplication are delayed,
since the dimension is supposed to satisfy equation (2). So the only modular
reductions are performed after the call to dtrsm.

2.4 Experiments

We now compare four implementations of the trsm routine:

Pure recursive (pure-rec): simply algorithm 1,
Recursive-BLAS (rec-BLAS): the cascade algorithm formed by the recursive

algorithm and the BLAS routine dtrsm,
Recursive-Delayed (rec-delayed) : the recursive algorithm, with delayed ma-

trix multiplication (rec-BLAS-delayed without the cascade to dtrsm)
Recursive-BLAS-Delayed (rec-BLAS-delayed): the double cascade algorithm

(algorithm 2)

We compare these four variants on finite fields with different characteristics, so
as to make the parameters SBLAS and SDEL vary as in the following table:
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Algorithm 3: trsm del

Data: A ∈ Z/pZ

m×m, B ∈ Z/pZ

m×n, m must be lower than nDEL

Result: X ∈ Z/pZ

m×n s.t. AX = B
begin

if m ≤ nBLAS then

X = dtrsm(A, B) ; /* the BLAS routine */

X = X mod p
else

/* (splitting of the matrix into blocks of dimension
¨

m
2

˝
and

˚
m
2

ˇ
) */

A X B
z }| {
»

A1 A2

A3

–
z }| {
»

X1

X2

–

=

z }| {
»

B1

B2

–

X2 :=trsm del(A3, B2)

B1 := B1 − A2X2 ; /* without modular reduction */

X1 :=trsm del(A1, B1)

return X
end

p ⌈log2 p⌉ SBLAS SDEL

5 3 23 2 147 483 642
1 048 583 20 2 8190
8 388 617 23 2 126

On the experiments of figure 2, the matrix B is square (m = n). One can first
notice the gain provided by the use of dtrsm by comparing the curves rec-BLAS
and pure-rec for p = 5. This advantage shrinks when the characteristic gets
larger, since SBLAS = 2 for p = 1 048 583 or p = 8 388 61.
Now the delaying of the modular reduction improves by 500Mfops the speed
of computation. This gain similar for p = 5 and p = 1 048 583 since in both
cases n < SDEL and there is therefore no modular reduction between the matrix
multiplications.
Lastly for p = 8 388 617, the splitting in blocks of size SDEL is much faster than
the variants rec-delayed and rec-blas-delayed. The variants pure-rec and
rec-BLAS are penalised by their dichotomic splitting, creating too many modular
reductions after each matrix multiplication.
But we still can not explain the reason why the variant rec-blas-delayed is
faster than rec-delayed for p = 8 388 617, whereas it is slightly slower for p = 5
or p = 1 048 583.

3 Resource introspective exact triangular system solving

3.1 Parallel adaptive algorithms by work-stealing

Cilk [11], Athapascan/Kaapi [12] and Satin [13] are parallel programming inter-
faces that support nested parallelism and implement a work-stealing scheduling
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[14, 15] based on the work first principle.. A program explicits parallelism by
recursively forking tasks; a task is a procedure call that can be performed on
any computational resource. In Athapascan/Kaapi (resp. Cilk), tasks are crated
using a fork(resp. spawn) instruction: fork f( args ), where f is the name of
the function and args its effective parameters. Due to recursion, at execution,
forkinstructions define a fork tree T , similarly to the procedure calls tree in a
sequential program.

The tree T describes only task creations, not synchronization and data depen-
dencies that exist between tasks, that define another DAG G, also unfolded at
run time, which in general is not a tree. Any schedule that respect dependencies
in G is valid; among all parallel schedules, a parallel width (or breadth) first
parallel schedule (BFS) consists in executing tasks according to a breadth first
trasversal of the tree T but additionally respecting synchronizations defined by
G. While in Cilk (and Satin), G is restricted to be serie-parallel, Kaapi enables
to program more general dependencies graph.

However, both are based on a sequential lexicographic semantics defined only by
T : a depth first sequential execution (DFS), that executes tasks sequentially ac-
cording to a depth first traversal of the tree T , is a valid schedule. Indeed, when
a process creates a task, this task creation can be interpreted: either locally as a
sequential function call according to DFS, with small overhead with respect to a
direct function call and no synchronization overhead; or as a new thread creation
on another process that will perform the task, with then synchronization over-
head between both processes to migrate the task and to merge its results. Then
the program implements a parallel algorithm (BFS) that can also be executed
as a sequential one (DFS). The (recursive) choices between both are performed
by the work-stealing schedule.

In a work-stealing schedule [14, 15], each process manages a local double-ended
queue (deque) where it stores the tasks it has created, at the bottom of the
deque. When a processor completes a task or blocks on a synchronization, two
cases arise. Either its local deque contains some ready tasks: then it executes the
first one corresponding to a depth-first sequential execution (DFS), by popping
from the bootom of its deque. Or its local deque contains no ready task, then
the process becomes a thief: it randomly scans the deque of the other processors
(steal request), until finding one that contains ready tasks; then it steals a ready
task from the top of this victim deque, according to BFS order in the local tree of
task on the victim. This stealing operation then corresponds to a breadth first
execution (BFS). The work stealing hybrids two algorithms, a DFS schedule
and a BFS one. Since each parallel task creation can be performed either by a
sequential call (DFS algorithm) or by creation of a new thread (BFS algorithm)
depending on resource idleness, any parallel program with non-fixed degree of
parallelism is an adaptive baroque algorithm. Because the choice does not depend
on the input size but only on resource idleness, the algorithm is adaptive.

Even if the workstealing is an hybrid of both a sequential (DFS) and parallel
(BFS) schedule, the algorithm (i.e. the tree T and the data dependencies in G)
remains the same, since a single algorithm is executed. In the next section, we
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extend this model to hybrid two distinct algorithms, one sequential the other
parallel, based on the workstealing.

3.2 Baroque coupling of sequential and parallel algorithms

We present the coupling, based on workstealing, of a sequential algorithm fseq

and a parallel one fpar that both solve the same problem f . Following [16, 17],
we assume that the sequential algorithm performs a first part of the sequential
computation (called ExtractSeq) and then performs a recursive terminal call to f
to complete the computation. Besides, we assume that the sequential algorithm is
such that at any time of its execution, the sequence of operations that completes
the algorithm fseq can be performed by another parallel recursive (fine grain)
algorithm fpar. The operation that consists in extracting the last part of the
sequential computation in progress to perform it in parallel with fpar is called
ExtractPar. After completion of fpar, the final result is computed by merging
both the result of the first part computed by fseq (not affected by ExtractPar)
and the result of the ExtractPar part computed by fpar.

More precisely, given a sequential algorithm fseq (resp. parallel fpar), the result
r of its evaluation on an input x is denoted fseq(x) (resp. fpar(x)). We assume
that x has a list structure with a concatenation operator ♯ and that there exists
an operator ⊕ (not necessarily associative) for merging the results. At any time
of evaluation of fseq(x), x can be split into x1♯x2, due to either an ExtractSeq or
an ExtractPar operation on x. The result computed by the parallel algorithm is
then fpar(x) = f(x1) ⊕ f(x2). We assume that both results fseq(x) and fpar(x)
are equivalents with respect to a given measure. In the restricted framework of
list homomorphism [18], this hypothesis can be written as f(x♯y) = f(x)⊕ f(y).
However, it is possible to provide parallel algorithms for problems that are not
list homomorphisms [19] at the price of an increase in the number of operations.

To decrease overhead related to choices for f between fseq and fpar, fseq is the
default choice used. Based on a workstealing scheduling, fpar is only chosen when
a processor becomes idle, which leads to an ExtractPar operation.

This exception mechanism may be implemented by maintaining during any ex-
ecution of fseq(x) a lower priority process ready to perform an ExtractPar op-
eration on x resulting in an input x2 for fpar only when a processor becomes
idle.

Then the overhead due to choices is only related to the number of ExtractPar
operations actually performed.

To analyze this number, we adopt the simplified model of Cilk-5 [11] also valid for
Kaapi [12]; it relies on the bound on the number of steals requests performed

by the workstealing (see theorems 9 in [14]). Let T
(seq)
1 (resp. T

(par)
1 ) be the

execution time on a sequential processor (i.e. work) of fseq (resp. fpar), and

let T
(par)
∞ be the execution time of fpar on an unbounded number of identical

processors.
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Theorem 1. When the adaptive program is executed on a machine with m
identical processors, the expected number of choices fpar instead of fseq for f

is bounded by (m − 1).T
(par)
∞

Proof. On an infinite number of processors, all the computation is performed by

fpar; the parallel time of the adaptive algorithm is then T
(par)
∞ . The execution

is based on the workstealing schedule. From theorem 9 in [14], the expected

number of steal requests is bounded by T
(par)
∞ on each processor (Graham’s

bound), except for the one running fseq. The latter only executes the sequential
algorithm, but is subject to ExtractPar, due to steal requests from the others.
This is true for any execution of such adaptive baroque algorithm.

The consequence of this theorem is that for a fine grain parallel algorithm that

satisfies T
(par)
∞ ≪ T

(seq)
1 , even if the adaptive algorithm is baroque (non constant

number of choices), the overhead in time due to choices in the adaptive algorithm
is negligible when compared to the overall work.

Remark. The overhead due to the default call to ExtractSeq can also be reduced.
Ideally, ExtractSeq should extract a data whose computations by fpar would

require a time at least T
(par)
∞ , which is the critical time for fpar.

In the next section we apply the above coupling of a sequential and a parallel
algorithm to the TRSM algorithm.

3.3 Baroque introspective parallel Trsm

The previous algorithm takes benefit of parallelism at the level of Blas matrix
product operations. However, using the scheme proposed in §3.2, it is possible
to obtain an algorithm with more parallelism in order to decrease the critical
time when more processors are available. Furthermore, this also improves the
performance of the distributed work-stealing scheduler.
Indeed, while X2 and B1 are being computed, additional idle processors may
proceed to the parallel computation of A−1

1 . Indeed, X1 may be computed in
two different ways:

i. X1 = TRSM(A1, B1): the arithmetic cost is T1 = k3 and T∞ = k;
ii. X1 = TRMM(A−1

1 , B1): the cost is the same T1 = k3 but T∞ = log k.

Indeed the version (ii) with TRMM is more efficient on a parallel point of view:
the two recursive calls and the matrix multiplication in (ii) (TRMM) are inde-
pendent. They can be performed on distinct processors requiring less communi-
cations than TRSM.
Since precomputation of A−1

1 increases the whole arithmetic cost, it is only
performed if there are extra unused processors during the computation of X2

and B1; the latter has therefore higher priority.
The problem is to decide the size k of the matrix A1 that will be inverted
in parallel. With the optimal value of k, the computation of A−1

1 completes
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simultaneously with that of X2 and B1. This optimal value of k depends on many
factors: number of processors, architecture of processors, subroutines, data. The
algorithm presented in the next paragraph uses the oblivious adaptive scheme
described in 3.2. to estimate this value at runtime using the introspective coupling
of a “sequential” algorithm fs with a parallel one fp.

Parallel introspective TRSM Th parallel introspective TRSM algorithm 4
consists in computing concurrently in parallel (Figure 3):

– “sequential” computation (fs) at high priority: bottom-up computation of
X = TRSM(A, B) till reaching k, implemented by the parallel BUT algo-
rithm (Bottom-Up TRSM - §5); all processes that perform parallel BLAS
operations in BUT are executed at high priority;

– parallel computation (fp) at low priority: parallel top-down inversion of A
till reaching k, implemented by TDTI algorithm (Top Down Triangular In-
version - §6); all processes that participates in parallel TDTI are executed
at low priority.

Algorithm 4: AdaptiveParallelTrsm(A; B)

Data: A ∈ Z/pZ

m×m, B ∈ Z/pZ

m×n.

Result: X ∈ Z/pZ

m×n such that AX = B.
begin

kTDTI := 0 ; kBUT := m;
Parallel

At high priority: (X2, B
′

1) := BUT (A, B);
At low priority: M := TDTI(∅, A);

endpar
/* Now, BUT has stopped TDTI and kBUT ≤ kTDTI */

Let A
′
−1

1 = M1..kBUT ,1..kBUT
and compute X1 := A

′
−1
1 .B′

1;

return

[
X1

X2

]

end

At each step, the sequential bottom-up BUT algorithm (resp. the parallel top-
down TDTI) performs an ExtractSeq (resp. ExtractPar) operation on a block
of size kB (resp. kI) (Figure 3 and detailed subroutines BUT and TDTI are
following). Note that the values of kB and kI may vary during the execution
depending on the current state.

Bottom-up TRSM We need to group the last recursive trsm call and the
update of B1. Algorithm 5 thus just computes these last two steps ; the first
step being performed by the work stealing as shown afterwards.



Adaptive triangular system solving 13

kBUT

k I kB

kTDTI

Top−Down

Inverse

Bottom−Up

TRSM

1 m

Fig. 3. Parallel introspective TRSM

Algorithm 5: BUT: Bottom-up trsm

Data: (A2; A3; B)
Result: X2, kBUT .
begin

Mutual Exclusion
if kTDTI ≥ kBUT then

Return;

kB := Choice(1..(kBUT − kTDTI));
Split remaining columns into kTDTI ..(kBUT − kB) and
(kBUT − kB)..kBUT :





A2,1 A2,2

A3,1 A3,2

A3,3





[
X2,1

X2,2

]

=





B1

B2,1

B2,2





kBUT := kBUT − kB ;
endmutex
X2,2 :=trsm (A3,3, B2,2);
B1 := B1 − A2,2X2,2;
B2,1 := B2,1 − A3,2X2,2;

X2,1 :=BUT

(

A2,1; A3,1;

[
B1

B2,1

])

;

end
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Top down triangular inversion of A1 Algorithm 6 is a block inversion of
the top part of the triangular matrix. It is fully parallel as it computes the next
triangular inverse while updating the upper rectangular part.

Algorithm 6: TDTI: Top-down triangular inverse

Data:
(
A−1

1 ; A2; A3

)
.

Result: A−1, kTDTI .
begin

Mutual Exclusion
if kTDTI ≥ kBUT then

Return;

kI := Choice(1..(kBUT − kTDTI));
Split remaining columns of A2 and A3 into
kTDTI ..(kTDTI + kI) and (kTDTI + kI)..kBUT ;





A2,1 A2,2

A3,1 A3,2

A3,3





endmutex
Parallel

A−1
3,1 :=Inverse(A3,1);

T := A−1
1 .A2,1;

endpar

A′

2,1 = −T.A−1
3,1;

Let A
′
−1

1 =

[
A−1

1 A′

2,1

A−1
3,1

]

and A′

2 =

[
A2,2

A3,2

]

;

Mutual Exclusion
kTDTI := kTDTI + kI ;

endmutex

A−1
3,3 :=TDTI(A

′
−1
1 ;A′

2;A3,3);

end

Definiton of parameters kI and kB Parameters kB (resp. kI) corresponds
to the ExtractSeq (resp. ExtractPar) operations presented in §3.2. The choice of
their values is performed at each recursive step, depending on resources avail-
ability. This section analyzes this choice in the case where only one system is to
be solved, i.e. n = 1.
Let r = kBUT − kTDTI .

– On the one hand, to fully exploit parallelism, kB should not be larger than
the critical time T∞ of TDTI, i.e. kB = log2 r.
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– On the other hand, in order to keep an O(n2) number of operations if no
more processors become idle, the number of operations O(k3

I ) required by
TDTI should be balanced by the cost of the update, i.e. kI .r, which leads
to kI =

√
r.

With those choices of kI and kB , and assuming that there are enough processors,
the number of choices for kI (and so kB) will then be O(

√
r); the cost of the

resulting adaptive algorithm becomes T1 = O(n2) and T∞ = O(
√

n log2(n)), a
complexity similar to the one proposed in [20] with a fine grain parallel algo-
rithm, while this one is coarse grain and dynamically adapts to resource idleness.
Notice that if only a few processors are available, the parallel algorithm will be
executed at most on one block of size

√
n. The BUT algorithm will behave

like the previous tuned TRSM algorithm. Also, the algorithm is oblivious to the
number of resources and their relative performance.

4 Generic framework for adaptive algorithms

The previous general adaptive algorithm for Trsm is based on the coupling of
various recursive algorithms self-adapting to input data and processor load. In
this section we generalize this coupling in order to provide a generic scheme for
baroque adaptive algorithms based on recursive choices performed at runtime.

4.1 Recursive representation

Let f be a problem with input set I and output set O. For the computation
of f , an adaptive algorithm is based on the composition of distinct algorithms
(fi)i=1,...,k, each solving the problem f . The sequential and parallel algorithms
presented in the previous sections are all instances of distinct fi for the compu-
tation of f=Trsm. Since an algorithm is finite, the number k ≥ 2 of algorithms is
finite; however, each of those algorithms may use additional parameters, based
on the inputs, outputs or machine parameters (e.g. number of processors).
Generalizing previous algorithms for Trsm, we assume that each of those algo-
rithms is written in a recursive way: to solve a given instance of f , algorithm fi

reduces it to subcomputations instances of f of smaller sizes. Adaptivity then
consists in choosing for each of those subcomputations the suited algorithm fj to
be used (fig. 4). This choice can be implemented in various ways. For instance, f
may be implemented as a pure virtual function, each of the fi being an inherited
specialization.
The benefits of this recursive approach is that the work already performed before
any choice is automatically reused by the new variant taking over. In this way
the overhead of the adaptive strategy is only that of the performed tests. In the
TRSM case some of these tests can even be statically pre-computed.
Furthermore, this recursive scheme can also give way to complexity improve-
ments: a fast practicable algorithm with bad worst-case complexity can be used
to perform the first part of the work ; then a proven better algorithm with slower
practicable performances can be used in a smaller part of the problem. This has
been successfully used e.g. in the case of the integer determinant [21].
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Algorithm fi ( I n, input, O output, . . . ) {
. . .
f( n-1, . . . ) ;
. . .
f( n / 2, . . . ) ;
. . .

};

Fig. 4. Recursive description of an adaptive algorithm fi.

4.2 Overhead due to choices and workstealing

For baroque algorithms the choices between the different fi’s are performed at
runtime . Therefore an important problem is related to reducing the overhead
related to the computation of each choice with respect to the arithmetic cost of
the computation. Also, for a given subcomputation, a default given algorithm f1

is favored; but this choice may be changed under some exceptional circumstances
depending on values or machine parameters. Then, if the total number of such
exceptions is small with respect to the total number of subcomputations, the
overhead due to choices may become negligible.
For instance, in the case of workstealing schedule, a sequential execution is the
default choice. We assume that this default choice corresponds to the algorithm
f1. Based on theorem 1, the expected number of choices different from f1 is
bounded with respect to the critical time T∞ of the execution on an unbounded
number of processors. Also, we assume that any of the (possibly many) algo-
rithms fi that may be chosen by the workstealing when a processor becomes
idle (ExtractPar operation) have a critical time bounded by T∞ on an infinite
number of processors. Then the expected number of choices different from f1 on
a finite number p of processor is O(T∞) on any processor, whatever the value of
p and the whole number of operations performed. In the case of workstealing,
the overhead due to choices is then bounded.

5 Conclusion

Designing efficient adaptive algorithms is the key to get most of the available
resources and most of the structure of the inputs. We have shown e.g. for exact
linear algebra or for combinatorial optimization Branch&X [1], that this is true
for numerous applications. From a classification of the distinct forms of adap-
tive algorithms, we have proposed in this paper a generic framework to express
this adaptivity. On a single simple example, namely solving linear systems, we
show that several of these “adaptivities” can appear. This enables an effective
adaptation of the algorithm and a nice way to adapt automatically its behavior,
independent of the execution context. This is true in a parallel context where
coupling of algorithms is critical to obtain a high performance.
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The resulting algorithm is quite complex but can be nearly automatically gen-
erated in our simple framework. The requirements are just to provide recursive
versions of the different methods.
In the AHA group, such coupling are studied in the context of many examples:
vision and adaptive 3D-reconstruction, linear algebra in general, and combina-
torial optimization.
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