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Abstract

We propose in this article a classification of the different notions of hybridization
and a generic framework for the automatic hybridization of algorithms. Then, we detail
the results of this generic framework on the example of the parallel solution of multiple
linear systems.

Introduction

Large-scale applications, software systems and applications are getting increasingly com-
plex. To deal with this complexity, those systems must manage themselves in accordance
with high-level guidance from humans. Adaptive and hybrid algorithms enable this self-
management of resources and structured inputs. In this paper, we propose a classification of
the different notions of hybridization and a generic framework for the automatic hybridiza-
tion of algorithms. We illustrate our framework in the context of combinatorial optimiza-
tions and linear algebra, in a sequential environment as well as in an heterogeneous parallel
one. In the sequel, we focus on hybrid algorithms with provable performance. Performance
is measured in terms of sequential time, parallel time or precision.
After surveying, classifying and illustrating the different notions of hybrid algorithms in
section 1, we propose a generic recursive framework enabling the automation of the process
of hybridization in section 2. We then detail the process and the result of our generic
hybridization on the example of solving linear systems in section 3.

1 A survey and classification of hybrid algorithms

1.1 Definitions and classification

In this section we propose a definition of hybrid algorithm, based on the notion of strategic
choices among several algorithms. We then refine this definition to propose a classification

∗This work is supported by the INRIA-IMAG project AHA: Adaptive and Hybrid Algorithms.
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of hybrid algorithms according to the number of choices performed (simple, baroque) and the
amount of inputs/architecture information used (tuned, adaptive, introspective, oblivious,
engineered). Figure 1 summarizes this classification.

Definition 1.1 (Hybrid). An algorithm is hybrid (or a poly-algorithm) when there is a
choice at a high level between at least two distinct algorithms, each of which could solve
the same problem.

The choice is strategic, not tactical. It is motivated by an increase of the performance of the
execution, depending on both input/output data and computing resources. The following
criterion on the number of choices to decide is used to make a first distinction among hybrid
algorithms.

Definition 1.2 (Simple versus Baroque). A hybrid algorithm may be

• simple: O(1) choices are performed whatever the input (e.g. its size) is. Notice that,
while only a constant number of choises are done, each choice can be used several
times (an unbounded number of times) during the execution. Parallel divide&conquer
algorithms illustrate this point in next section.

• baroque: the number of choices is not bounded: it depends on the input (e.g. its size).

While choices in a simple hybrid alogrithm may be defined statically before any execution,
some choices in baroque hybrid algorithms are necessarily computed at run time.
The choices may be performed based on machine parameters. But there exist efficient
algorithms that do not base their choices on such parameters. For instance, cache-oblivious
algorithms have been successfully explored in the context of regular [11] and irregular [1]
problems, on sequential and parallel machine models [2]. They do not use any information
about memory access times, or cache-line or disk-block sizes. This motivates a second
distinction based on the information used.

Definition 1.3 (oblivious, tuned, engineered, adaptive, introspective). Considering
the way choices are computed, we distinguishe the following class of hybrid algorithms:

• A hybrid algorithm is oblivious, if its control flow depends neither on the particular
values of the inputs nor on static properties of the resources.

• A hybrid algorithm is tuned, if a strategic decision is made based on static resources
such as memory specific parameters or heterogeneous features of processors in a dis-
tributed computation.
A tuned algorithm is engineered if a strategic choice is inserted based on a mix of the
analysis and knowledge of the target machine and input patterns. A hybrid algorithm
is self-tuned if the choices are automatically computed by an algorithm.

• A hybrid algorithm is adaptive if it avoids any machine or memory-specific parame-
terization. Strategic decisions are made based on resource availability or input data
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Figure 1: Classification of hybrid algorithms

properties, both discovered at run-time (such as idle processors).
An adaptive algorithm is introspective if a strategic decision is made based on assess-
ment of the algorithm performance on the given input up to the decision point.

In [12], Ganek and Corbi defined autonomic computing to be the conjunction of self-
configuring, self-healing, self-optimizing and self-protecting systems. Self-configuring re-
lates to what we call adaptivity, self-optimizing to self-tuning. Autonomic computing thus
adds fault-tolerance (self-healing) and security (self-protecting) to our notion of hybrid com-
puting. Above definitions deliberately focus on a general characterization of adaptation in
the algorithm. They consider neither implementation nor performance. To implement an
adaptive algorithm, we may distinguish two approaches. Either the choices are included in
the algorithm itself, or they may be inserted dynamically to change the software itself, or
its execution environment. An algorithm is evolutive (or interactive) if a strategic choice
is inserted dynamically. Reflexive languages enable to change the behavior of a program
dynamically [19]. Polymorphism or template specialization is a way to optimize an algo-
rithm. We view polymorphism and template mechanisms as a possible way to implement
the different kinds of hybrid algorithm we propose.

1.2 Illustrations on examples

We illustrate the previous criteria on some examples of hybrid algorithms or libraries.

BLAS libraries. ATLAS [24] and GOTO [14] are libraries that implement basic linear
algebra subroutines. Computation on matrices are performed by blocks. The block size
and the sequential algorithm used for a basic block are chosen based on performance mea-
sures on the target architecture. The decisions are computed automatically at installation
with ATLAS while they are provided only for some architectures with GOTO. ATLAS
implements self-tuned simple hybrid algorithms and GOTO simple engineered ones.

Granularity in sequential divide&conquer algorithms. Halting recursion in di-
vide&conquer to complete small size computations with another more efficient algorithm is
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a classical technique to improve the practical performance of sequential algorithms. The re-
sulting algorithm is a simple hybrid one. Often the recursion threshold is based on resource
properties. This is the case for the GMP integer multiplication algorithm that succes-
sively couples four algorithms: Schönhage-Strassen Θ(n log n log log n), Toom-Cook 3-way
(Θ(n1.465)), Karatsuba Θ(nlog23) and standard Θ(n2) algorithms.

Linpack benchmark for parallel LU factorization. Linpack [6] is one milestone in
parallel machines’ power evaluation. It is the reference benchmark for the top-500 ranking
of the most powerful machines. The computation consists in a LU factorization, with raw
partial pivoting in the ”right-looking” variant [6], the processors assumed being identical.
To limit the volume of communication to O(n2√p), a cyclic bidimensional block partitioning
is used on a virtual grid of q2 = p processors. The block (i, j) is mapped to the processor of
index P (i, j) = (i mod q)q+(j mod q) and operations that modify block (i, j) are scheduled
on processor P (i, j). Linpack has a standard implementation on top of MPI with various
parameters that may be tuned: broadcast algorithm (for pivot broadcasting on a line of
processors), level of recursion in the ”right-looking” decomposition algorithm and block
size. The parallel architecture may also be tuned to improve the performance [22]. Linpack
is an engineered tuned simple hybrid algorithm.

FFTW. FFTW [10] is a library that implements discrete Fourier transform of a vector
of size n. We summarize here the basic principle of FFTW. For all 2 ≤ q ≤ √

n, the FFT

Cooley-Tuckey recursive algorithm reduces to q FFT subcomputations of size
⌈

n
q

⌉

and
⌈

n
q

⌉

FFT subcomputations of size q, plus O(n) additional operations. Hybridization in FFTW
occurs at two levels:

• at installation on the architecture. For a given n0 the best unrolled FFT algorithm
for all n ≤ n0 is chosen among a set of algorithms by experimental performance
measurements. This hybrid algorithm is simple tuned.

• at execution. FOr a given size n of the input vectors and for all n0 ≤ m ≤ n, a
planner precomputes the splitting factor qm that will be further used for any recursive
FFT with size m. This precomputation is performed by dynamic programming: it
optimizes each sub-problem of size m locally, independently of the larger context where
it is invoked. The planner adds a precomputation overhead. This overhead may be
amortized by using the same plan for computing several FFTs of the same size n.
FFTW3 also proposes heuristic algorithms to compute plans with smaller overhead
than dynamic programming.

The number of choices in FFTW depends on the size n of the inputs. FFTW is a self-tuned
baroque hybrid algorithm.

Granularity in parallel divide&conquer algorithms. Parallel algorithms are often
based on a mix of two algorithms: a sequential one that minimizes the number of operations
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T1 and a parallel one that minimizes the parallel time T∞. The cascading divide&conquer
technique [17] is used to construct a hybrid algorithm with parallel time O(T∞) while per-
forming O(T1) operations. For instance, iterated product of n elements can be performed
in parallel time T∞ = 2. log n with n

log n processors by choosing a grain size of log n. Even
if this choice depends on the input size n, it can be computed only once at the beginning
of the execution. The algorithm is a simple hybrid one.
Other examples of such parallel simple hybrid algorithms are: computation of the maximum
of n elements in asymptotic optimal time Θ(log log n) on a CRCW PRAM with n

log log n pro-

cessors [17]; solving of a triangular linear system in parallel time O(
√

n log n) with Θ(n2)
operations [20]. In section 3 we detail an extended baroque hybridization for this problem,
enabling a higher performance on a generic architecture.

Parallel adaptive algorithms by work-stealing - Kaapi. Cilk [18], Athapascan/Kaapi
[16] and Satin [23] are parallel programming interfaces that support recursive parallelism
and implement a work-stealing scheduling based on the work first principle. A program ex-
plicits parallelism and synchronization. While Cilk and Satin are restricted to serie-parallel
tasks DAGs, Kaapi accepts any kind of dataflow dependencies. However, all are based on
a sequential semantics: both depth first sequential search (DFS) and width (or breadth)
first parallel search (BFS) are correct executions of the program. Then the program imple-
ments a parallel algorithm (BFS) that can also be considered as a sequential one (DFS).
The (recursive) choices between both are performed by the scheduler. To save memory,
depth-first execution (DFS) is always locally preferred. When a processor becomes idle, it
steals the oldest ready task on a non-idle processor This stealing operation then corresponds
to a breadth first execution (BFS). Since each parallel task creation can be performed ei-
ther by a sequential call (DFS algorithm) or by creation of a new thread (BFS algorithm)
depending on resource idleness, any parallel program with non-fixed degree of parallelism
is a hybrid baroque algorithm. Because the choice does not depend on the input size but
only on resource idleness, the algorithm is adaptive. In section 2.3 we detail a more general
coupling for this problem.

2 Generic algorithmic schemes for hybrid algorithms

In this section we detail a generic scheme to control the time overhead due to choices in
a hybryd algorithm, providing a proven upperbound for sequential and parallel baroque
hybridization.

2.1 Basic representation

Let f be a problem with input set I and output set O. For the computation of f , a hybrid
algorithm is based on the composition of distinct algorithms (fi)i=1,...,k, each solving the
problem f . Since an algorithm is finite, the number k ≥ 2 of algorithms is finite; however,
each of those algorithms may use additional parameters, based on the inputs, outputs or
machine parameters (e.g. number of processors).
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We assume that each of those algorithms is written in a recursive way: to solve a given
instance of f , algorithm fi reduces it to subcomputations instances of f of smaller sizes. Hy-
bridization then consists in choosing for each of those subcomputations the suited algorithm
fj to be used (fig. 2). This choice can be implemented in various ways. For instance, f may

Algorithm fi ( I n, input, O output, . . . ) {
. . .
f( n-1, . . . ) ;
. . .
f( n / 2, . . . ) ;
. . .

};

Figure 2: Recursive description of a hybrid algorithm fi.

be implemented as a pure virtual function, each of the fi being an inherited specialization.

Scheme for decreasing overhead due to choices. For baroque algorithms the choices
between the different fi’s are performed at runtime. Therefore an important problem is
related to reducing the overhead related to the computation of each choice. In the next
section, we describe an original alternative scheme to decrease the overhead induced by
the choices for each call to f in the previous algorithm. Generalization to various com-
putations [5] (namely Branch&X computations and linear algebra) is based on the use of
an exception mechanism. For a given subcomputation, a default given computation fj is
favored. However, this choice may be changed under some exceptional circumstances de-
pending on values or machine parameters. Then, if the total number of such exceptions is
small with respect to the total number of subcomputations, the overhead due to choices
become negligible. We detail such a scheme in next section.

2.2 Baroque coupling of sequential and parallel algorithms

We presented the coupling of a sequential algorithm fseq and a parallel one fpar that solve
the same problem f . For the sake of simplicity, we assume that the sequential algorithm
performs a first part of the sequential computation (called ExtractSeq) and then performs
a recursive terminal call to f to complete the computation. Besides, we assume that the
sequential algorithm is such that at any time of its execution, the sequence of operations
that completes the algorithm fseq can be performed by another parallel recursive (fine grain)
algorithm fpar. The operation that consists in extracting the last part of the sequential
computation in progress to perform it in parallel with fpar is called ExtractPar. After
completion of fpar, the final result is computed by merging both the result of the first
part computed by fseq (not affected by ExtractPar) and the result of the ExtractPar part
computed by fpar.
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More precisely, given a sequential algorithm fseq (resp. parallel fpar), the result r of its
evaluation on an input x is denoted fseq(x) (resp. fpar(x)). We assume that x has a
list structure with a concatenation operator ♯ and that there exists an operator ⊕ (not
necessarily associative) for merging the results. At any time of evaluation of fseq(x), x
can be split into x1♯x2, due to either an ExtractSeq or an ExtractPar operation on x. The
result computed by the parallel algorithm is then fpar(x) = f(x1)⊕ f(x2). We assume that
both results fseq(x) and fpar(x) are equivalents with respect to a given measure. In the
restricted framework of list homomorphism [3], this hypothesis can be written as f(x♯y) =
f(x)⊕f(y). However, it is possible to provide parallel algorithms for problems that are not
list homomorphisms [4] at the price of an increase in the number of operations.
To decrease overhead related to choices for f between fseq and fpar, fseq is the default choice
used. Based on a workstealing scheduling, fpar is only chosen when a processor becomes
idle, which leads to an ExtractPar operation.
This exception mechanism can be implemented by maintaining during any execution of
fseq(x) a lower priority process ready to perform an ExtractPar operation on x resulting in
an input x2 for fpar only when a processor becomes idle.
Then the overhead due to choices is only related to the number of ExtractPar operations
actually performed.
To analyze this number, we adopt the simplified model of Cilk-5 [18] also valid for Kaapi [16].

It relies on Graham’s bound (see Equation 2 in [18]). Let T
(seq)
1 (resp. T

(par)
1 ) be the exe-

cution time on a sequential processor (i.e. work) of fseq (resp. fpar), and let T
(par)
∞ be the

execution time of fpar on an unbounded number of identical processors.

Theorem 2.1. When the hybrid program is executed on a machine with m identical pro-
cessors, the number of choices that result in a choice fpar for f instead of fseq is bounded

by (m − 1).T
(par)
∞

Proof. On an infinite number of processors, all the computation is performed by fpar; the

parallel time of the hybrid algorithm is then T
(par)
∞ . Then the number of steal requests is

bounded by T
(par)
∞ on each processor (Graham’s bound), except for the one running fseq.

The latter only executes the sequential algorithm, but is subject to ExtractPar, due to steal
requests from the others. This is true for any execution of such hybrid baroque algorithm.

The consequence of this theorem is that for a fine grain parallel algorithm that satisfies

T
(par)
∞ ≪ T

(seq)
1 , even if the hybrid algorithm is baroque (non constant number of choices),

the overhead in time due to choices in the hybrid algorithm is negligible when compared to
the overall work.

Remark. The overhead due to the default call to ExtractSeq can also be reduced. Ideally,
ExtractSeq should extract a data whose computations by fpar would require a time at least

T
(par)
∞ , which is the critical time for fpar.
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2.3 Application to the coupling of DFS/BFS for combinatorial optimiza-
tion

The performance and overhead of the previous scheme were experimentally determined for
the Quadratic Assignment Problem (for instance NUGENT 221). This application imple-
ments a Branch&Bound algorithm: it recursively generates nodes in the search tree, which
has 221938 nodes and a maximal depth of 22.
Locally, each processor implements by default a sequential algorithm fseq that implements
a depth first search (DFS) in the tree. It enables to save memory and also to optimize
branching in the tree without copy (sons of a node n are sequentially created from the value
of n with backtracking). To minimize critical time, the alternative fpar parallel algorithm
implements a breadth first search (BFS) algorithm. When a processor becomes idle, it
picks the oldest node of a randomly chosen non-idle processor (ExtractPar). This parallel
algorithm introduces an overhead due to node copy.
The experiments were conducted on the iCluster22, a cluster of 104 nodes interconnected by
a 100Mbps Ethernet network. Each node features two Itanium-2 processors (900 MHz) and 3
GB of local memory. The algorithm was parallelized using Kaapi. The degree of parallelism
(threshold) can be adjusted: after a given depth, the subtree of a node is computed locally
by fseq. This thresold defined the minimum granularity and should be chosen such that the
time of the local computation by fseq is comparable to the time overhead of parallelism.

Figure 3: Impact of granularity Figure 4: Execution time (sequential time: 34,695s)

The sequential execution time (C++ code without Kaapi) was 34,695 seconds. With Kaapi,
at fine grain (threshold ≥ 10), the execution on a single processor generated 225,195 tasks
and ran in 34,845 seconds. The impact of the degree of parallelism can be seen in Figure 3
that gives the number of parallel tasks generated for different thresholds. The degree of
parallelism increases drastically for threshold 5 and approaches its maximum at threshold
10. Figure 4 shows that the application is scalable with a fine threshold (8, i.e. 209406
nodes). Since the critical time T∞ is small, there are few successful steals and the overhead
of hybridation between fseq and fpar has small impact on efficiency.

1http://www.opt.math.tu-graz.ac.at/qaplib
2http://www.inrialpes.fr/sed/i-cluster2
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Notice that Kaapi also includes a (hybrid) checkpoint/restart mechanism [16] to support the
resilience and the addition of processors. This features makes the application itself oblivious
to dynamic platforms. The overhead of this checkpoint mechanism appears negligible for
this application (Figure 4).
In the next section, we detail various forms of hybridation on a single example, the solving
of a triangular system.

3 Hybridization for triangular system solving

3.1 Triangular system solving with matrix right-hand side

Exact matrix multiplication, together with matrix factorizations, over finite fields can now
be performed at the speed of the highly optimized numerical BLAS routines. This has
been established by the FFLAS and FFPACK libraries [8, 9]. In this section we discuss
the implementation of exact solvers for triangular systems with matrix right-hand side (or
equivalently left-hand side). This is also the simultaneous resolution of n triangular systems.
Without loss of generality for the triangularization, we here consider only the case where the
row dimension, m, of the the triangular system is less than or equal to the column dimension,
n. The resolution of such systems is e.g. the main operation in block Gaussian elimination.
For solving triangular systems over finite fields, the block algorithm reduces to matrix
multiplication and achieves the best known algebraic complexity. Therefore, from now on
we will denote by ω the exponent of square matrix multiplication (e.g. from 3 for classical,
to 2.375477 for Coppersmith-Winograd). Moreover, we can bound the arithmetical cost
of a m × k by k × n rectangular matrix multiplication (denoted by R(m,k, n)) as follows:
R(m,k, n) ≤ Cωmin(m,k, n)ω−2max(mk,mn, kn) [15]. In the following subsections, we
present the block recursive algorithm and two optimized implementation variants.

3.2 Scheme of the block recursive algorithm

The classical idea is to use the divide and conquer approach. Here, we consider the upper
left triangular case without loss of generality, since any combination of upper/lower and
left/right triangular cases are similar: if U is upper triangular, L is lower triangular and B
is rectangular, we call ULeft-Trsm the resolution of UX = B. Suppose that we split the
matrices into blocks and use the divide and conquer approach as follows:

A X B
︷ ︸︸ ︷
[

A1 A2

A3

]
︷ ︸︸ ︷
[

X1

X2

]

=

︷ ︸︸ ︷
[

B1

B2

]

1. X2 :=ULeft-Trsm(A3, B2);

2. B1 := B1 − A2X2;

3. X1 :=ULeft-Trsm(A1, B1);
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With m = n and classical matrix multiplication, the arithmetic cost of this algorithm is
TRSM(m) = m3 as shown e.g. in [9, Lemma 3.1].
We also now give the cost of the triangular matrix multiplication, TRMM, and of the
triangular inversion, INVT, as we will need them in the following sections.
To perform the multiplication of a triangular matrix by a dense matrix via a block decom-
position, one requires four recursive calls and two dense matrix-matrix multiplications. The
cost is thus TRMM(m) = 4TRMM(m/2) + 2MM(m/2). The latter is TRMM(m) = m3

with classical matrix multiplication.
Now the inverse of a triangular matrix requires two recursive calls to invert A1 and A3.
Then, the square block of the inverse is −A−1

1 A2A
−1
3 . The cost is thus INV T (m) =

2INV T (m/2) + 2TRMM(m/2). The latter is INV T (m) = 1
3m3 with classical matrix

multiplication.

3.3 Two distinct hybrid degenerations

3.3.1 Degenerating to the BLAS “dtrsm”

Matrix multiplication speed over finite fields was improved in [8, 21] by the use of the nu-
merical BLAS3 library: matrices were converted to floating point representations (where
the linear algebra routines are fast) and converted back to a finite field representation after-
wards. The computations remained exact as long as no overflow occurred. An implementa-
tion of ULeft-Trsm can use the same techniques. Indeed, as soon as no overflow occurs one
can replace the recursive call to ULeft-Trsm by the numerical BLAS dtrsm routine. But
one can remark that approximate divisions can occur. So we need to ensure both that only
exact divisions are performed and that no overflow appears. However when the system is
unitary (only 1’s on the main diagonal) the division are of course exact and will even never
be performed. Our idea is then to transform the initial system so that all the recursive calls
to ULeft-Trsm are unitary. For a triangular system AX = B, it suffices to factor first the
matrix A into A = UD, where U , D are respectively an upper unit triangular matrix and
a diagonal matrix. Next the unitary system UY = B is solved by any ULeft-Trsm (even a
numerical one), without any division. The initial solution is then recovered over the finite
field via X = D−1Y . This normalization leads to an additional cost of O(mn) arithmetic
operations (see [9] for more details).
We now care for the coefficient growth. The use of the BLAS routine trsm is the resolution
of the triangular system over the integers (stored as double for dtrsm). The restriction is
the coefficient growth in the solution. Indeed, the kth value in the solution vector is a linear
combination of the (n − k) already computed next values. This implies a linear growth in
the coefficient size of the solution, with respect to the system dimension: for a given p, the
dimension n of the system must satisfy p−1

2

[
pn−1 + (p − 2)n−1

]
< 2ma where ma is the size

of the mantissa [9]. Then the resolution over the integers using the BLAS trsm routine is
exact. For instance, with a 53 bits mantissa, this gives quite small matrices, namely at most
55× 55 for p = 2, at most 4× 4 for p ≤ 9739, and at most p = 94906249 for 2× 2 matrices.

3
www.netlib.org/blas
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Nevertheless, this technique is speed-worthy in many cases.
In the following, we will denote by SBLAS(p) the maximal matrix size for which the BLAS
resolution is exact. Also, BLASTrsm is the recursive block algorithm, switching to the BLAS
resolution as soon as the splitting gives a block size lower than SBLAS(p).

3.3.2 Degenerating to delayed modulus

In the previous section we noticed that BLAS routines within Trsm are used only for small
systems. An alternative is to change the cascade: instead of calling the BLAS, one could
switch to the classical iterative algorithm: Let A ∈ Z/pZ

m×m and B,X ∈ Z/pZ
m×n such

that AX = B, then ∀i,Xi,∗ = 1
Ai,i

(Bi,∗ −Ai,[i+1..m]X[i+1..m],∗) The idea is that the iterative

algorithm computes only one row of the whole solution at a time. Therefore its threshold
t is greater than the one of the BLAS routine, namely it requires only t(p − 1)2 < 2ma for
a 0..p − 1 unsigned representation, or t(p − 1)2 < 2ma+1 for a 1−p

2 ..p−1
2 signed one. Now

we focus on the dot product operation, base for matrix-vector product. According to [7],
where different implementations of a dot product are proposed and compared on different
architecture (Zech log, Montgomery, float, ...), the best implementation is a combination
of a conversion to floating point representation with delayed modulus (for big prime and
vector size) and an overflow detection trick (for smaller prime and vector size).
DelayTrsmt is the recursive block algorithm, switching to the delayed iterative resolution as
soon as the splitting gives a block size lower than t (of course, t must satisfy t ≤ SBLAS(p)).

3.4 Tuning the “Trsm” implementation

3.4.1 Experimental tuning

As shown in section 3.2 the block recursive algorithm Trsm is based on matrix multiplica-
tions. This allows us to use the fast matrix multiplication routine of the FFLAS package
[8]. This is an exact wrapping of the ATLAS library4 used as a kernel to implement the
Trsm variants. The following table results from experimental results of [9] and expresses
which of the two preceding variants is better. Mod<double> is a field representation from
[7] where the elements are stored as floating points to avoid one of the conversions. G-Zpz

is a field representation from [13] where the elements are stored as small integers.

n 400 700 1000 2000 5000
Mod<double>(5) BLASTrsm BLASTrsm BLASTrsm BLASTrsm BLASTrsm

Mod<double>(32749) DelayTrsm50 DelayTrsm50 DelayTrsm50 BLASTrsm BLASTrsm

G-Zpz(5) DelayTrsm100 DelayTrsm150 DelayTrsm100 BLASTrsm BLASTrsm

G-Zpz(32749) DelayTrsm50 DelayTrsm50 DelayTrsm50 DelayTrsm50 DelayTrsm50

Table 1: Best variant for Trsm on a P4, 2.4GHz

In the following, we will denote by SDel(n, p) the threshold t for which DelayTrsmt is the
most efficient routine for matrices of size n. SDel(n, p) is set to 0 if e.g. the BLASTrsm routine

4
http://math-atlas.sourceforge.net[24]
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is better. The experiment shows that SDel(n, p) can be bigger or smaller than SBLAS(p)
depending on the matrix size, the prime and the underlying arithmetic implementation.

3.4.2 Hybrid tuned algorithm

The experimental results of previous section, thus provide us with an hybrid algorithm where
we can tune some static threshold in order to benefit from all the variants. Moreover, some
choices have to be made for the splitting size k in order to reach the optimal complexity
Topt:

Topt(m) = Mink{Topt(k) + Topt(m − k) + R(m − k, k, n)}.
Algorithm ULeft-Trsm(A,B)

Input: A ∈ Z/pZ
m×m, B ∈ Z/pZ

m×n.
Output: X ∈ Z/pZ

m×n such that AX = B.
if m ≤ SDel(m, p) then // Hybrid modulus degeneration 3.3.2

X := DelayTrsm(A,B);
else if m ≤ SBLAS(p) then // Hybrid BLAS degeneration 3.3.1

X := BLASTrsm(A,B);
else // Hybrid block recursive 3.2

k := Choice(1..⌊m
2 ⌋);

Split matrices into k and m−k blocks

[
A1 A2

A3

] [
X1

X2

]

=

[
B1

B2

]

X2 :=ULeft-Trsm(A3, B2);
B1 := B1 − A2X2;
X1 :=ULeft-Trsm(A1, B1);

return X;

3.5 Baroque hybrid parallel Trsm

The previous algorithm takes benefit of parallelism at the level of Blas matrix product
operations. However, using the scheme proposed in §2.2, it is possible to obtain an algo-
rithm with more parallelism in order to decrease the critical time when more processors are
available. Furthermore, this also improves the performance of the distributed work-stealing
scheduler.
Indeed, while X2 and B1 are being computed, additional idle processors may proceed to
the parallel computation of A−1

1 . Indeed, X1 may be computed in two different ways:

i. X1 = TRSM(A1, B1): the arithmetic cost is T1 = k3 and T∞ = k;

ii. X1 = TRMM(A−1
1 , B1): the arithmetic cost is the same T1 = k3 but T∞ = log k.

Indeed the version (ii) with TRMM is more efficient on a parallel point of view: the two
recursive calls and the matrix multiplication in (ii) (TRMM) are independent. They can
be performed on distinct processors requiring less communications than TRSM.
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Since precomputation of A−1
1 increases the whole arithmetic cost, it is only performed if

there are extra unused processors during the computation of X2 and B1; the latter has
therefore higher priority.
The problem is to decide the size k of the matrix A1 that will be inverted in parallel.
With the optimal value of k, the computation of A−1

1 completes simultaneously with that
of X2 and B1. This optimal value of k depends on many factors: number of processors,
architecture of processors, subroutines, data. The algorithm presented in the next paragraph
uses the oblivious adaptive scheme described in 2.2. to estimate this value at runtime using
the hybrid coupling of a “sequential” algorithm fs with a parallel one fp.

3.5.1 Parallel adaptive TRSM

We assume that the parallel hybrid TRSM is spawned by a high priority process. Then the
parallel hybrid TRSM consists in computing concurrently in parallel (Figure 5):

• “sequential” computation (fs) at high priority: bottom-up computation of X =
TRSM(A,B) till reaching k, implemented by BUT algorithm (Bottom-Up TRSM
- §A.1); all processes that perform parallel BLAS operations in BUT are executed at
high priority;

• parallel computation (fp) at low priority: parallel top-down inversion of A till reach-
ing k, implemented by TDTI algorithm (Top Down Triangular Inversion - §A.2); all
processes that participates in parallel TDTI are executed at low priority.

Algorithm HybridParallelTrsm(A;B)
kBUT

k I kB

kTDTI

Top−Down

Inverse

Bottom−Up

TRSM

1 m

Figure 5: Parallel adaptive TRSM

Input: A ∈ Z/pZ
m×m, B ∈ Z/pZ

m×n.
Output: X ∈ Z/pZ

m×n such that AX = B.
kTDTI := 0 ; kBUT := m;
Parallel {

At high priority: (X2, B
′

1) := BUT (A,B);
At low priority: M := TDTI(∅, A);

}
Here, BUT has stopped TDTI and kBUT ≤ kTDTI .
Now, let A

′
−1
1 = M1..kBUT ,1..kBUT

;

X1 := A
′
−1
1 .B′

1;

At each step, the sequential bottom-up BUT algorithm
(resp. the parallel top-down TDTI) performs an Ex-
tractSeq (resp. ExtractPar) operation on a block of size kB (resp. kI) (Figure 5 and detailed
subroutines BUT and TDTI in appendices). Note that the values of kB and kI may vary
during the execution depending on the current state.
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3.5.2 Definiton of parameters kI and kB

Parameters kB (resp. kI) corresponds to the ExtractSeq (resp. ExtractPar) operations
presented in §2.2. The choice of their values is performed at each recursive step, depending
on resources availability. This section analyzes this choice in the case where only one system
is to be solved, i.e. n = 1.
Let r = kBUT − kTDTI .

• On the one hand, to fully exploit parallelism, kB should not be larger than the critical
time T∞ of TDTI, i.e. kB = log2 r.

• On the other hand, in order to keep an O(n2) number of operations if no more pro-
cessors become idle, the number of operations O(k3

I ) required by TDTI should be
balanced by the cost of the update, i.e. kI .r, which leads to kI =

√
r.

With those choices of kI and kB , and assuming that there are enough processors, the number
of choices for kI (and so kB) will then be O(

√
r); the cost of the resulting hybrid algorithm

becomes T1 = O(n2) and T∞ = O(
√

n log2(n)), a complexity similar to the one proposed
in [20] with a fine grain parallel algorithm, while this one is coarse grain and dynamically
adapts to resource idleness. Notice that if only a few processors are available, the parallel
algorithm will be executed at most on one block of size

√
n. The BUT algorithm will

behave like the previous hybrid tuned TRSM algorithm. Also, the algorithm is oblivious to
the number of resources and their relative performance.

4 Conclusion

Designing efficient hybrid algorithms is the key to get most of the available resources and
most of the structure of the inputs of numerous applications as we have shown e.g. for linear
algebra or for combinatorial optimization Branch&X. In this paper, we have proposed a
classification of the distinct forms of hybrid algorithms and a generic framework to express
this adaptivity. On a single simple example, namely solving linear systems, we show that
several of these “hybridities” can appear. This enables an effective hybridization of the
algorithm and a nice way to adapt automatically its behavior, independent of the execution
context. This is true in a parallel context where coupling of algorithms is critical to obtain
a high performance.
The resulting algorithm is quite complex but can be automatically generated in our simple
framework. The requirements are just to provide recursive versions of the different methods.
In the AHA group5, such coupling are studied in the context of many examples: vision and
adaptive 3D-reconstruction, linear algebra in general, and combinatorial optimization.

Acknowledgments. The authors gratefully acknowledge David B. Saunders for useful
discussions and suggestions for the classification of hybrid algorithms.
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A Appendix

A.1 Bottom-up TRSM

We need to group the last recursive ULeft-Trsm call and the update of B1. The following
algorithm thus just computes these last two steps ; the first step being performed by the
work stealing as shown afterwards.
Algorithm BUT

Input: (A2;A3;B).
Output: X2, kBUT .

Mutual Exclusion section {
if (kTDTI ≥ kBUT ) Return;
kB := Choice(1..(kBUT − kTDTI)).
Split remaining columns into kTDTI ..(kBUT−kB) and (kBUT−kB)..kBUT





A2,1 A2,2

A3,1 A3,2

A3,3





[
X2,1

X2,2

]

=





B1

B2,1

B2,2





kBUT := kBUT − kB ;
}
X2,2 :=ULeft-Trsm(A3,3, B2,2);
B1 := B1 − A2,2X2,2;
B2,1 := B2,1 − A3,2X2,2;

X2,1 :=BUT

(

A2,1;A3,1;

[
B1

B2,1

])
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A.2 Top down triangular inversion of A1

Algorithm TDTI

Input:
(
A−1

1 ;A2;A3

)
.

Output: A−1, kTDTI .
Mutual Exclusion section {

if (kTDTI ≥ kBUT ) Return;
kI := Choice(1..(kBUT − kTDTI)).
Split remaining columns of A2 and A3 into kTDTI ..(kTDTI + kI) and (kTDTI +

kI)..kBUT 



A2,1 A2,2

A3,1 A3,2

A3,3





}
Parallel {

A−1
3,1 :=Inverse(A3,1);

T := A−1
1 .A2,1

}
A′

2,1 = −T.A−1
3,1

Now, let A
′
−1
1 =

[
A−1

1 A′

2,1

A−1
3,1

]

and A′

2 =

[
A2,2

A3,2

]

Mutual Exclusion section {
kTDTI := kTDTI + kI ;

}
A−1

3,3 :=TDTI(A
′
−1
1 ;A′

2;A3,3);
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