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t. E�
ient exe
ution of multithreaded iterative numeri
al 
omputationsrequires to 
arefully take into a

ount data dependen
ies. This paper presents anoriginal way to express and s
hedule general data�ow multithreaded 
omputa-tions. We propose a distributed data�ow sta
k implementation whi
h e�
ientlysupports work stealing and a
hieves provable performan
es on heterogeneousgrids. It exhibits properties su
h as non-blo
king lo
al sta
k a

esses and gener-ation at runtime of optimized one-sided data 
ommuni
ations.Keywords: data�ow, distributed sta
k, work-stealing, work depth model.1 Introdu
tionMultithreaded languages have been proposed as a general approa
h to model dy-nami
, unstru
tured parallelism. They in
lude data parallel ones � e.g. NESL [5℄ �, data �ow � ID [7℄ �, ma
ro data�ow � Athapas
an [10℄ , Jade [15℄ � languageswith fork-join based 
onstru
ts �Cilk [6℄ � or with additional syn
hronizationprimitives �Hood [2℄, EARTH [11℄ �. E�
ient exe
ution of a multithreaded 
om-putation on a parallel 
omputer relies on the s
hedule of the threads among thepro
essors. In the work stealing s
heduling [2,1℄, when be
oming idle, a pro
es-sor steals a ready task (the oldest one) on a randomly 
hosen vi
tim pro
essor.Usual implementations of work stealing are based on sta
ks to store, lo
ally onea
h pro
essor, the tasks still to 
omplete.Su
h s
heduling has been proven to be e�
ient for fully-stri
t multithreaded
omputations [6,8℄ while requiring a bounded memory spa
e with respe
t to adepth �rst sequential exe
ution [14℄. However, some numeri
al simulations gen-erate non serie-parallel data dependen
ies between tasks; for instan
e, itera-tive �nite di�eren
es 
omputations have a diamond dag dependen
y stru
ture.Su
h a stru
ture 
annot be e�
iently expressed in term of neither fully-stri
tnor stri
t multithreaded 
omputation without adding arti�
ial syn
hronizationswhi
h may limit drasti
ally the e�e
tive degree of parallelism. The Athapas
an[10℄ parallel language enables to des
ribe su
h re
ursive multithreaded 
ompu-tations with non serie-parallel data dependen
ies as des
ribed in Se
tion 2.In this paper, we propose an original extension named DDS (Se
tion 3) ofthe sta
k management in order to handle programs whi
h data dependen
iesdo not �t the 
lass of stri
t multithreaded 
omputations. The key point 
on-sists in linking one-sided write-read data dependen
ies in the sta
k to ensure
onstant time non-blo
king sta
k operations. Moreover, on distributed ar
hite
-tures, data links between sta
ks are used to implement write-read dependen
ies



as one-sided e�
ient 
ommuni
ations. Those properties enable DDS to imple-ment ma
rodata�ow languages su
h as Athapas
an with provable performan
es(Se
tion 4). Se
tion 5 reports experimental performan
es on 
lassi
al ben
hmarkson both 
luster and grid ar
hite
tures up to a thousand pro
essors 
on�rmingthe theoreti
al performan
es.2 Model for re
ursive data�ow 
omputationsThis se
tion des
ribes the basi
 set of instru
tions (abstra
t ma
hine) used toexpress parallel exe
ution as a dynami
 data �ow graph. It is based on Atha-pas
an whi
h models a parallel 
omputation from three 
on
epts: tasks, sharedobje
ts and a

ess spe
i�
ations [10℄. Following Jade [15℄, Athapas
an extendsCilk [9℄ to take into a

ount data dependen
ies; however, while Jade is restri
tedto iterative 
omputations, Athapas
an in
ludes nested re
ursive parallelism totake bene�t from the work stealing.The programming model. A task represents a non-blo
king sequen
e of in-stru
tions: Like in ordinary fun
tional programming languages, a task is theexe
ution of a fun
tion that is stri
t in all arguments (no side e�e
t) and makesall result values available upon termination. Tasks may de
lare new tasks. Syn-
hronization between tasks is performed through the use of write-on
e sharedobje
ts denoted Data. Ea
h task has an a

ess spe
i�
ation that de
lares howit (and its 
hild tasks) will read and write individual shared obje
ts: the typeData::Read (resp. Data::Write) spe
i�es a read (resp. write) a

ess to the e�e
tiveparameter. To 
reate a task, a blo
k of memory 
alled a 
losure is �rst allo
atedusing Allo
ateClosure (Figure 1). Then the e�e
tive parameters of the taskare pushed to the 
losure, either immediate values or shared obje
ts. For ea
hshared parameter, the a

ess spe
i�
ation is given: either read (push::Read) orwrite (push::Write). An immediate value parameter is 
opied using push::Value.Finally, the 
ommit instru
tion 
ompletes the des
ription of the task.Syn
hronization between tasks is only related to a

ess spe
i�
ation. The se-manti
 is lexi
ographi
: statements are lexi
ographi
ally ordered by ';'. In otherwords, any read of a parameter with a Read a

ess spe
i�
ation sees the last writea

ording to a lexi
ographi
 order 
alled referen
e order. Figure 1 is an exam-ple of 
ode using Athapas
an for the folk re
ursive 
omputation of Fibona

inumbers: the tasks Sum reads a, b and writes r.Spawn tree and Referen
e order. Re
ursive des
ription of tasks is repre-sented by a tree T , 
alled spawn tree, whose root is the main task. A node n in
T 
orresponds to a task t and the su

essor nodes of n to the 
hild tasks of t.Due to the semanti
s of Athapas
an, the non-preemptive sequential s
hedule oftasks that follows the depth-�rst ordering of T is a valid s
hedule. This orderingis 
alled referen
e order and denoted by R. A

ording to R, the 
losures 
on-se
utively 
ommitted by a task t are exe
uted after 
ompletion of t in the sameorder, while in a depth-�rst sequential s
hedule, a 
losure is exe
uted just after
ommitting.



1. void Sum (Data a, Data b, Data r) {2. r.write(a.read() + b.read());3. }4. void Fibo(int n,Data r) {5. if (n <2) r.write( n );6. else {7. int r1, r2;8. Task f1 = Allo
ateClosure( Fibo );9. f1.push( ReadA

ess, n-1 );10. f1.push( WriteA

ess, r1 );11. f1.
ommit();
12. Task f2 = Allo
ateClosure ( Fibo );13. f2.push( ReadA

ess, n-2);14. f2.push( WriteA

ess, r2);15. f2.
ommit();16. Task sum = Allo
ateClosure ( Sum );17. sum.push( WriteA

ess, r);18. sum.push( ReadA

ess, r1);19. sum.push( ReadA

ess, r2);20. sum.
ommit();21. }22. }Fig. 1. Fibona

i program with abstra
t ma
hine instru
tions (it 
orresponds to thefolk original Athapas
an 
ode for Fibona

i in [10℄, �g. 3.).Work-stealing s
heduling based on referen
e order. The nested stru
-ture of the spawn tree enables a depth-�rst work-stealing s
heduling, similar toDFDeques s
heduling proposed in [14℄ but here based on the referen
e order Rinstead of the standard sequential depth �rst order. All tasks in the systems areordered a

ording to R in a distributed way. Lo
ally, ea
h pro
essor managesits own deque in whi
h tasks are ordered a

ording to R. When a 
losure isallo
ated on a pro
essor, it is pushed on the top of the lo
al deque but, following

R, exe
ution of 
urrent 
losure pursues. When the 
urrent 
losure 
ompletes, anew one is popped from the lo
al deque. If this deque is empty, a new 
losure isstolen from the bottom of the deque of another randomly 
hosen pro
essor.3 Distributed implementation: DDSThis se
tion presents the distributed data-�ow sta
k implementation, namedDDS, of the abstra
t ma
hine model presented in se
tion 2. DDS implementslo
al sta
ks by allo
ating 
ontiguous blo
ks of memory that 
an store severalframes. A frame is related to the exe
ution of a task; it is used to store all
losures 
reated by the task with dire
t links des
ribing Read or Write dataa

esses. A new frame is pushed on the sta
k when a task begins its exe
ution.Tasks are exe
uted a

ording to the referen
e order R.Figure 2.a, shows the state of the sta
k during the exe
ution of the re
ursive
omputation of the program of Figure 1. Starting from the base sta
k pointer,the frame related to the task fibo(n,r) is �rst pushed on the sta
k. During its ex-e
ution fibo(n,r) 
reates three new tasks: fibo(n-1,r1), fibo(n-2,r2) and a sumtask to 
ompute r:=r1+r2. The asso
iated 
losures in
luding their arguments arethen allo
ated in the frame. When fibo(n,r) 
ompletes, the task fibo(n-1,r1) ispopped from the top of the frame and a new frame is allo
ated for its exe
ution.This new frame is pushed on the sta
k. When all 
losures allo
ated by a taskare 
ompleted or stolen, its asso
iated frame is popped and the exe
ution of itssu

essor a

ording to R 
an start. In order to manage data dependen
ies, Reador Write data a

esses are pushed into the 
losure and linked between 
losuresa

ording to the referen
e order (Figure 2.b).
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Fig. 2. (a) Sta
k stru
ture with a
tivation frames. (b) Data �ow link.Distributed work stealing and extended sta
k management A new sta
kis 
reated when a pro
essor be
omes idle and steals work from another pro
essor.When the 
urrent sta
k of a thread be
omes empty or the 
urrent task is notready, a steal request o

urs. In this 
ase, the thief thread �rst tries to steal aready 
losure in another sta
k: �rst lo
ally on SMP ma
hines or, when no 
losuresare found, a steal request is sent to a randomly 
hosen distant pro
essor.The stolen 
losure is ready to exe
ute, i.e. all its input parameters are pro-du
ed. For instan
e, in �gure 2 a), in the top frame, the 
losure fibo(n-1,r1) isalready 
ompleted, the 
losure fibo(n-2, r2) is ready while the 
losure sum(r,r1, r2) is not ready sin
e its input parameter r2 has not been produ
ed. Usinga

ess links, the 
omputation of ready 
losures is only performed on steal re-quests. Indeed, sin
e the referen
e order is a valid sequential s
hedule, lo
al tasksin a sta
k are exe
uted without 
omputing the readiness of 
losures. Followingwork �rst prin
iple [9℄, this enables to minimize s
heduling overhead by transfer-ring the 
ost overruns from lo
al 
omputations to steal operations. In parti
ular,atomi
ity of lo
al a

esses is ensured by non-blo
king lo
ks (
ompare-and-swapinstru
tion).On
e the 
hoi
e of a vi
tim has been made, a 
opy of the 
hosen 
losureis pushed in a new sta
k owned by the thief pro
essor. The original 
losure ismarked as stolen. If the thief is a remote pro
essor, input parameters of the taskare 
opied and sent with the 
losure. In order to manage the data-�ow for outputparameters, a signalization task is pushed after the 
losure 
opy. This task playsthe role of signaling that output a

esses of the stolen task are produ
ed � inorder to 
ompute readiness of su

essors � and sending the produ
ed data to thevi
tim pro
essor.
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Fig. 3. Stru
ture of both vi
tim (a) and thief (b) sta
ks. A new task (Send Signal)is forked into the thief sta
k. Its role is to send ba
k the result and signal the tasksmarked as non ready that depend on the stolen task.Remark Sin
e DDS des
ribes all tasks and their dependen
ies, it stores a
onsistent global state; this is used in [12℄ to implement fault tolerant 
he
k-point/restart proto
ols.4 Theoreti
al analysisThis se
tion provides a theoreti
al analysis of the DDS implementation, resultingin a language-based performan
e model for Athapas
an ma
rodata�ow parallelprograms on heterogeneous grids. To model su
h an ar
hite
ture, we adopt themodel proposed in [3℄. Given p pro
essors, let Πi(t) be the instantaneous speedof pro
essor i at time t, measured as the number of elementary operations perunit of time; let Πave =

∑

T

t=1

∑

p

i=1
Πi(t)

T be the average speed of the grid for a
omputation with duration T .To predi
t the exe
ution time T on the grid, following [4℄, we adopt alanguage-based performan
e model using work and depth. The work W is the to-tal number of elementary (unit) operations performed; the depth D is the 
riti
al-path, i.e. the number of (unit) operations for an exe
ution on an unboundednumber of pro
essors. Note that D a

ounts not only for data-dependen
iesamong tasks but also for re
ursive task 
reations, i.e. the depth of the spawntree.The work (and depth) of an Athapas
an parallel program in
ludes both thesequential work (WS) and the 
ost of task 
reations but without 
onsideringthe s
heduling overhead; similarly to a sequential fun
tion 
all, the 
ost of atask 
reation with n unit arguments is τfork + n.τarg. If the 
ost of those task
reations is negligible in front of WS , then W ≃ WS .



Theorem 1. In the DDS implementation, when no steal operation o

urs, anylo
al a

ess or modi�
ation in any sta
k is performed in a 
onstant number ofoperations. Then, τfork and τarg are 
onstants.The proof is dire
t: when no steal operation o

urs, ea
h pro
ess only a

essesits own lo
al sta
k. Due to the links in the sta
k and non-blo
king lo
ks, ea
ha

ess is performed in (small) 
onstant time.Sin
e DDS implements a distributed work-stealing s
heduling, a steal oper-ation only o

urs when a sta
k be
omes empty or when the 
urrent task is notready. In this 
ase, the pro
ess be
omes a thief and randomly s
ans the sta
k ofthe other pro
esses (from their top) to �nd a ready 
losure; the resulting over-head is amortized by the work W when D ≪ W . Indeed steal operations arevery rare events as stated in [2,3℄ on a grid with pro
essors speeds ratios mayvary only within a bounded interval.Theorem 2. With high probability, the number of steal operations is O(p.D)and the exe
ution time T is bounded by T ≤ W
Πave

+ O
(

p D
Πave

)

.The proof (not in
luded) is derived from theorems 6,8 in [3℄. Then, when D ≪ W ,the resulting time is 
lose to the expe
ted optimal one W
Πave

.5 ExperimentsA portable implementation of DDS supporting Athapas
an has been realizedwithin the Kaapi C++ library [13℄.Results on a 
luster A �rst set of experiments has been exe
uted on aLinux 
luster of 100 PC (100 Pentium III, 733Mhz, 256MBytes of main mem-ory) inter
onne
ted by fast Ethernet (100MBits/s). On this implementation,
τfork = 0.23µs and τarg = 0.16µs are observed 
onstant in a

ordan
e to theo-rem1.In the timing results (Figure 1): T1 denotes the time, 
orresponding to W , toexe
ute the ben
hmark on one pro
essor; Tp the time on p pro
essors; TS thetime of the pure C++ sequential version of the ben
hmark, it 
orresponds to
WS . Re
ursive subtasks 
reation is stopped under a threshold th where furtherre
ursive 
alls are performed with a sequential C++ re
ursive fun
tion 
all; thetiming of a leaf task with th = 15 (resp. th = 20) is 0.1 ms (resp. 1 ms). Leftand right tables report times respe
tively for the Fibona

i ben
hmark with upto 32 pro
essors and for the Knary ben
hmark up to 100 pro
essors. Both shows
alable performan
es up to 100 pro
essors, 
onformally to theorem 2.Results of grid experimentsWe present here experimental results 
omputedon the fren
h heterogeneous GRID5000 platform during the plugtest1 interna-tional 
ontest held in november 2006. On the NQueens 
hallenge (Takkaken1 http://www.etsi.org/plugtests/Up
oming/GRID2006/GRID2006.htm



�b(40) ; th = 15 �b(45) ; th = 20p Tp T1/Tp TS/Tp Tp T1/Tp TS/Tp1 9.1 1 0.846 88.2 1 0.9814 2.75 3.3 2.8 22.5 3.92 3.848 1.66 5.48 4.6 12.35 7.14 716 1.01 9 7.62 6.4 13.78 13.5232 .99 9.19 7.78 3.7 23.83 23.37

Knary(35,10) ; th = 15p Tp T1/Tp TS/Tp1 2435.28 1 0.9848 306.17 7.95 7.8316 153.52 15.86 15.6132 77.68 31.35 30.8664 40.51 60.12 59.18100 26.60 91.55 90.13Table 1. T1, Tp and TS (in se
ond) for Fibona

i (a) and KNary (b) ben
hmarks.sequential 
ode), our implementation in Athapas
an on DDS/Kaapi showedthe best performan
es, honored by a spe
ial prize: On instan
e 23 solved in
T = 4434.9s, an idle time of 22.72s was measured on the 1422 pro
essors; thisexperimentally veri�es theorem 2 with a maximal relative error 22.72

4434.9 = 0.63%.Figure 4 shows the global grid load together with CPU and network load on oneof the 
lusters 
omposing the grid (
luster from the sophia site). These resultshave been obtained using GRID5000 monitoring tools during the last hour ofexe
ution. Our 
omputations start approximately at 01:50. Di�erent instan
esof nqueens problems are exe
uted sequentially. The di�erent graphs show a verygood use of CPU ressour
es. At the end of ea
h exe
ution work stealing o

urs,in
reasing brie�y network load while enabling to maintain e�
ient CPU usage.
NQueens p T21 1000 78s22 1458 502.9s23 1422 4434.9sFig. 4. CPU/network loads and timing reports.6 Con
lusionsMultithreaded 
omputations may take bene�t of the des
ription of non stri
tdata dependen
ies. In this paper we present a novel approa
h, DDS, to im-plement e�
ient work stealing for multithreaded 
omputations with data �owdependen
ies. Lo
al sta
k operations are guaranteed in small and 
onstant time,while most of the overhead is postponed onto unfrequent steal operations. Thisimportant property enables us to predi
t a

urately the time of a (�ne grain)



parallel program on an heterogeneous platform where pro
essors speeds varyin a bounded ratio (theorem 2). Experiments reported on a 
luster and a gridinfrastru
ture with 1400 pro
essors showed s
alable performan
es.Besides, by providing a 
onsistent global state, DDS implementation enablesto support fault toleran
e. A perspe
tive of this work is to use fault-toleran
e toextend theorem 2) to dynami
 grid platforms where speed ratios 
annot be 
on-sidered bounded anymore, e.g. when a pro
essor leaves (resp. enrolls) its speedbe
omes zero (resp. non zero). Under a given speed threshold, 
onsidering a pro-
essor as faulty might be a pra
ti
al way to ensure the bounded ratio property.A
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