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Abstract. Efficient execution of multithreaded iterative numerical computations
requires to carefully take into account data dependencies. This paper presents an
original way to express and schedule general dataflow multithreaded computa-
tions. We propose a distributed dataflow stack implementation which efficiently
supports work stealing and achieves provable performances on heterogeneous
grids. It exhibits properties such as non-blocking local stack accesses and gener-
ation at runtime of optimized one-sided data communications.
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1 Introduction

Multithreaded languages have been proposed as a general approach to model dy-
namic, unstructured parallelism. They include data parallel ones —e.g. NESL [5] -
, data flow —ID[7] -, macro dataflow — Athapascan [10], Jade[15]— languages
with fork-join based constructs —Cilk [6]— or with additional synchronization
primitives Hood [2], EARTH[11] . Efficient execution of a multithreaded com-
putation on a parallel computer relies on the schedule of the threads among the
processors. In the work stealing scheduling[2,1], when becoming idle, a proces-
sor steals a ready task (the oldest one) on a randomly chosen victim processor.
Usual implementations of work stealing are based on stacks to store, locally on
each processor, the tasks still to complete.

Such scheduling has been proven to be efficient for fully-strict multithreaded
computations [6,8] while requiring a bounded memory space with respect to a
depth first sequential execution [14]. However, some numerical simulations gen-
erate non serie-parallel data dependencies between tasks; for instance, itera-
tive finite differences computations have a diamond dag dependency structure.
Such a structure cannot be efficiently expressed in term of neither fully-strict
nor strict multithreaded computation without adding artificial synchronizations
which may limit drastically the effective degree of parallelism. The Athapascan
[10] parallel language enables to describe such recursive multithreaded compu-
tations with non serie-parallel data dependencies as described in Section 2.

In this paper, we propose an original extension named DDS (Section 3) of
the stack management in order to handle programs which data dependencies
do not fit the class of strict multithreaded computations. The key point con-
sists in linking one-sided write-read data dependencies in the stack to ensure
constant time non-blocking stack operations. Moreover, on distributed architec-
tures, data links between stacks are used to implement write-read dependencies



as one-sided efficient communications. Those properties enable DDS to imple-
ment macrodataflow languages such as Athapascan with provable performances
(Section 4). Section 5 reports experimental performances on classical benchmarks
on both cluster and grid architectures up to a thousand processors confirming
the theoretical performances.

2 Model for recursive dataflow computations

This section describes the basic set of instructions (abstract machine) used to
express parallel execution as a dynamic data flow graph. It is based on Atha-
pascan which models a parallel computation from three concepts: tasks, shared
objects and access specifications[10]. Following Jade [15], Athapascan extends
Cilk [9] to take into account data dependencies; however, while Jade is restricted
to iterative computations, Athapascan includes nested recursive parallelism to
take benefit from the work stealing.
The programming model. A task represents a non-blocking sequence of in-
structions: Like in ordinary functional programming languages, a task is the
execution of a function that is strict in all arguments (no side effect) and makes
all result values available upon termination. Tasks may declare new tasks. Syn-
chronization between tasks is performed through the use of write-once shared
objects denoted Data. Each task has an access specification that declares how
it (and its child tasks) will read and write individual shared objects: the type
Data: :Read (resp. Data: :Write) specifies a read (resp. write) access to the effective
parameter. To create a task, a block of memory called a closure is first allocated
using AllocateClosure (Figure 1). Then the effective parameters of the task
are pushed to the closure, either immediate values or shared objects. For each
shared parameter, the access specification is given: either read (push::Read) or
write (push: :Write). An immediate value parameter is copied using push: : Value.
Finally, the commit instruction completes the description of the task.
Synchronization between tasks is only related to access specification. The se-
mantic is lexicographic: statements are lexicographically ordered by ’;’. In other
words, any read of a parameter with a Read access specification sees the last write
according to a lexicographic order called reference order. Figure 1 is an exam-
ple of code using Athapascan for the folk recursive computation of Fibonacci
numbers: the tasks Sum reads a, b and writes r.
Spawn tree and Reference order. Recursive description of tasks is repre-
sented by a tree 7, called spawn tree, whose root is the main task. A node n in
T corresponds to a task ¢ and the successor nodes of n to the child tasks of t.
Due to the semantics of Athapascan, the non-preemptive sequential schedule of
tasks that follows the depth-first ordering of 7 is a valid schedule. This ordering
is called reference order and denoted by R. According to R, the closures con-
secutively committed by a task ¢ are executed after completion of ¢ in the same
order, while in a depth-first sequential schedule, a closure is executed just after
committing.



1. void Sum (Data a, Data b, Data r) { 12. Task f2 = AllocateClosure ( Fibo );

2. r.write(a.read() + b.read()); 13. £2.push( ReadAccess, n-2);

3. } 14. £2.push( WriteAccess, r2);
15. £2.commit () ;

4. void Fibo(int n,Data r) { 16. Task sum = AllocateClosure ( Sum );

5. if (n <2) r.write( n ); 17. sum.push( WriteAccess, r);

6. else { 18. sum.push( ReadAccess, ril);

7. int r1l, r2; 19. sum.push( ReadAccess, 12);

8. Task f1 = AllocateClosure( Fibo ); 20. sum.commit () ;

9. f1.push( ReadAccess, n-1); 21. 3}

10. f1.push( WriteAccess, rl ); 22. }

11. f1.commit();

Fig. 1. Fibonacci program with abstract machine instructions (it corresponds to the
folk original Athapascan code for Fibonacci in [10], fig. 3.).

Work-stealing scheduling based on reference order. The nested struc-
ture of the spawn tree enables a depth-first work-stealing scheduling, similar to
DFDeques scheduling proposed in [14] but here based on the reference order R
instead of the standard sequential depth first order. All tasks in the systems are
ordered according to R in a distributed way. Locally, each processor manages
its own deque in which tasks are ordered according to R. When a closure is
allocated on a processor, it is pushed on the top of the local deque but, following
R, execution of current closure pursues. When the current closure completes, a
new one is popped from the local deque. If this deque is empty, a new closure is
stolen from the bottom of the deque of another randomly chosen processor.

3 Distributed implementation: DDS

This section presents the distributed data-flow stack implementation, named
DDS, of the abstract machine model presented in section 2. DDS implements
local stacks by allocating contiguous blocks of memory that can store several
frames. A frame is related to the execution of a task; it is used to store all
closures created by the task with direct links describing Read or Write data
accesses. A new frame is pushed on the stack when a task begins its execution.
Tasks are executed according to the reference order R.

Figure 2.a, shows the state of the stack during the execution of the recursive
computation of the program of Figure 1. Starting from the base stack pointer,
the frame related to the task fibo(n,r) is first pushed on the stack. During its ex-
ecution fibo (n,r) creates three new tasks: fibo(n-1,r1), fibo(n-2,r2) and a sum
task to compute r:=r1+r2. The associated closures including their arguments are
then allocated in the frame. When fibo(n,r) completes, the task fibo(n-1,r1) is
popped from the top of the frame and a new frame is allocated for its execution.
This new frame is pushed on the stack. When all closures allocated by a task
are completed or stolen, its associated frame is popped and the execution of its
successor according to R can start. In order to manage data dependencies, Read
or Write data accesses are pushed into the closure and linked between closures
according to the reference order (Figure 2.b).
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Fig. 2. (a) Stack structure with activation frames. (b) Data flow link.

Distributed work stealing and extended stack management A new stack
is created when a processor becomes idle and steals work from another processor.
When the current stack of a thread becomes empty or the current task is not
ready, a steal request occurs. In this case, the thief thread first tries to steal a
ready closure in another stack: first locally on SMP machines or, when no closures
are found, a steal request is sent to a randomly chosen distant processor.

The stolen closure is ready to execute, i.e. all its input parameters are pro-
duced. For instance, in figure 2 a), in the top frame, the closure fibo(n-1,r1) is
already completed, the closure fibo(n-2, r2) is ready while the closure sum(r,
rl, r2) is not ready since its input parameter r2 has not been produced. Using
access links, the computation of ready closures is only performed on steal re-
quests. Indeed, since the reference order is a valid sequential schedule, local tasks
in a stack are executed without computing the readiness of closures. Following
work first principle [9], this enables to minimize scheduling overhead by transfer-
ring the cost overruns from local computations to steal operations. In particular,
atomicity of local accesses is ensured by non-blocking locks (compare-and-swap
instruction).

Once the choice of a victim has been made, a copy of the chosen closure
is pushed in a new stack owned by the thief processor. The original closure is
marked as stolen. If the thief is a remote processor, input parameters of the task
are copied and sent with the closure. In order to manage the data-flow for output
parameters, a signalization task is pushed after the closure copy. This task plays
the role of signaling that output accesses of the stolen task are produced —in
order to compute readiness of successors — and sending the produced data to the
victim processor.
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Fig. 3. Structure of both victim (a) and thief (b) stacks. A new task (Send Signal)
is forked into the thief stack. Its role is to send back the result and signal the tasks
marked as non ready that depend on the stolen task.

Remark Since DDS describes all tasks and their dependencies, it stores a
consistent global state; this is used in [12] to implement fault tolerant check-
point /restart protocols.

4 Theoretical analysis

This section provides a theoretical analysis of the DDS implementation, resulting
in a language-based performance model for Athapascan macrodataflow parallel
programs on heterogeneous grids. To model such an architecture, we adopt the
model proposed in [3]. Given p processors, let IT;(t) be the instantaneous speed
of processor i at time ¢, measured as the number of elementary operations per

_ 25:1 ZEJ:I Hl(t)

unit of time; let 1, = =*==#=—— be the average speed of the grid for a
computation with duration T

To predict the execution time T on the grid, following [4], we adopt a
language-based performance model using work and depth. The work W is the to-
tal number of elementary (unit) operations performed; the depth D is the critical-
path, i.e. the number of (unit) operations for an execution on an unbounded
number of processors. Note that D accounts not only for data-dependencies
among tasks but also for recursive task creations, i.e. the depth of the spawn
tree.

The work (and depth) of an Athapascan parallel program includes both the
sequential work (Ws) and the cost of task creations but without considering
the scheduling overhead; similarly to a sequential function call, the cost of a
task creation with n unit arguments is Tor, + n.Targ- If the cost of those task
creations is negligible in front of Wg, then W ~ Wg.



Theorem 1. In the DDS implementation, when no steal operation occurs, any
local access or modification in any stack is performed in a constant number of
operations. Then, Trork, and Tqrg are constants.

The proof is direct: when no steal operation occurs, each process only accesses
its own local stack. Due to the links in the stack and non-blocking locks, each
access is performed in (small) constant time.

Since DDS implements a distributed work-stealing scheduling, a steal oper-
ation only occurs when a stack becomes empty or when the current task is not
ready. In this case, the process becomes a thief and randomly scans the stack of
the other processes (from their top) to find a ready closure; the resulting over-
head is amortized by the work W when D <« W. Indeed steal operations are
very rare events as stated in [2,3] on a grid with processors speeds ratios may
vary only within a bounded interval.

Theorem 2. With high probability, the number of steal operations is O(p.D)
and the ezecution time T is bounded by T < HL +0 (p HD

ave

The proof (not included) is derived from theorems 6,8 in [3]. Then, when D <« W,

the resulting time is close to the expected optimal one HL

5 Experiments

A portable implementation of DDS supporting Athapascan has been realized
within the Kaapi C++ library [13].

Results on a cluster A first set of experiments has been executed on a
Linux cluster of 100 PC (100 Pentium III, 733Mhz, 256 MBytes of main mem-
ory) interconnected by fast Ethernet (100MBits/s). On this implementation,
Trork = 0.23us and 7,4 = 0.16us are observed constant in accordance to theo-
rem 1.

In the timing results (Figure 1): T} denotes the time, corresponding to W, to
execute the benchmark on one processor; T}, the time on p processors; Tg the
time of the pure C++ sequential version of the benchmark, it corresponds to
Wg. Recursive subtasks creation is stopped under a threshold th where further
recursive calls are performed with a sequential C++ recursive function call; the
timing of a leaf task with th = 15 (resp. th = 20) is 0.1 ms (resp. 1 ms). Left
and right tables report times respectively for the Fibonacci benchmark with up
to 32 processors and for the Knary benchmark up to 100 processors. Both show
scalable performances up to 100 processors, conformally to theorem 2.

Results of grid experiments We present here experimental results computed
on the french heterogeneous GRID5000 platform during the plugtest! interna-
tional contest held in november 2006. On the NQueens challenge (Takkaken

! http://www.etsi.org/plugtests/Upcoming/GRID2006/GRID2006 . htm



Knary(35,10) ; th = 15

T, [T1i/T,|Ts/T,
1 2435.28 1 0.984
8 306.17 | 7.95 | 7.83
16 || 153.52 | 15.86 | 15.61
32 77.68 |31.35| 30.86
64 40.51 | 60.12 | 59.18
100|| 26.60 |91.55| 90.13

fib(40) ; th = 156 Ab(45) ; th = 20
Ty 11 /Ty Ts /Tyl Tp |T1/Tp|Ts/Th
9.1 1 |0846 ([ 88.2] 1 |0.981
2.75| 3.3 | 2.8 |[22.5] 3.92 | 3.84
1.66| 5.48 | 4.6 |12.35| 7.14 | 7

101 9 | 7.62 | 6.4 |13.78|13.52
99| 9.19 | 7.78 || 3.7 | 23.83| 23.37

wW =
oo 0 =T

Table 1. T3, T}, and T (in second) for Fibonacci (a) and KNary (b) benchmarks.

sequential code), our implementation in Athapascan on DDS/Kaapi showed
the best performances, honored by a special prize: On instance 23 solved in
T = 4434.9s, an idle time of 22.72s was measured on the 1422 processors; this
experimentally verifies theorem 2 with a maximal relative error 42423‘229 = 0.63%.
Figure 4 shows the global grid load together with CPU and network load on one
of the clusters composing the grid (cluster from the sophia site). These results
have been obtained using GRID5000 monitoring tools during the last hour of
execution. Our computations start approximately at 01:50. Different instances
of nqueens problems are executed sequentially. The different graphs show a very
good use of CPU ressources. At the end of each execution work stealing occurs,
increasing briefly network load while enabling to maintain efficient CPU usage.
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Fig. 4. CPU/network loads and timing reports.

6 Conclusions

Multithreaded computations may take benefit of the description of non strict
data dependencies. In this paper we present a novel approach, DDS, to im-
plement efficient work stealing for multithreaded computations with data flow
dependencies. Local stack operations are guaranteed in small and constant time,
while most of the overhead is postponed onto unfrequent steal operations. This
important property enables us to predict accurately the time of a (fine grain)



parallel program on an heterogeneous platform where processors speeds vary
in a bounded ratio (theorem 2). Experiments reported on a cluster and a grid
infrastructure with 1400 processors showed scalable performances.

Besides, by providing a consistent global state, DDS implementation enables
to support fault tolerance. A perspective of this work is to use fault-tolerance to
extend theorem 2) to dynamic grid platforms where speed ratios cannot be con-
sidered bounded anymore, e.g. when a processor leaves (resp. enrolls) its speed
becomes zero (resp. non zero). Under a given speed threshold, considering a pro-
cessor as faulty might be a practical way to ensure the bounded ratio property.

Acknowledgments. The authors gratefully acknowledge Serge Guelton, Samir
Jafar and Rémi Revire for useful discussions and participation to implementation
and experimentations.

References

1. U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing.
Theory Comput. Syst., 35(3):321-347, 2002.

2. N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multipro-
grammed multiprocessors. Theory Comput. Syst., 34(2):115-144, 2001.

3. M. A. Bender and M. O. Rabin. Online scheduling of parallel programs on hetero-
geneous systems with applications to cilk. Th. Comp. Sys., 35(3):289 304, 2002.

4. G. E. Blelloch. Programming parallel algorithms. Com. ACM, 39(3):85-97, 1996.

5. G.E. Blelloch. NESL: A Nested Data-Parallel Language. Technical Report CMU-
(CS-93-129, April 1993.

6. R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. Journal of Parallel and
Distributed Computing, 37(1):55-69, 1996.

7. D.E Culler and Arvind. Resource requirements of dataflow programs. In Proceed-
ings of the 15th Annual International Symposium on Computer Architecture, pages
141-150, Honolulu, Hawai, 1989.

8. P. Fatourou and P.G. Spirakis. Efficient scheduling of strict multithreaded com-
putations. Theory of Computing Systems, 33(3):173-232, 2000.

9. M. Frigo, C.E. Leiserson, and K.H. Randall. The implementation of the cilk-5
multithreaded language. In Sigplan’98, pages 212-223, 1998.

10. F. Galilée, J.-L. Roch, G. Cavalheiro, and M. Doreille. Athapascan-1: On-line
building data flow graph in a parallel language. In IEEE, editor, Pact’98, pages
8895, Paris, France, October 1998.

11. L. J. Hendren, G. R. Gao, X. Tang, Y Zhu, X. Xue, H. Cai, and P. QOuellet.
Compiling ¢ for the earth multithreaded architecture. In IEEE, editor, Pact’96,
pages 12 23, Boston, USA, 1996.

12. S. Jafar, T. Gautier, A. W. Krings, and J.-L. Roch. A checkpoint/recovery model
for heterogeneous dataflow computations using work-stealing. In LNCS Springer-
Verlag, editor, EUROPAR’2005, Lisboa, Portogal, August 2005.

13. MOAIS Team. KAAPI. http://gforge.inria.fr/projects/kaapi/, 2005.

14. G.J. Narlikar. Scheduling threads for low space requirement and good locality.
Number TR CMU-CS-99-121, may 1999. Extended version of Spaa’99 paper.

15. M.C. Rinard and M.S. Lam. The design, implementation, and evaluation of Jade.
ACM Trans. Programming Languages and Systems, 20(3):483 545, 1998.



