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Abstract

For many applications, parallelism is generated dur-
ing execution. Dynamic scheduling is then critical
to guarantee an efficient execution. We consider the
problem of scheduling an application that generates dy-
namically tasks of unknown duration with precedence
relations. We focus on the overhead related to schedul-
ing such a program on a PRAM, considering two as-
pects: the regularity of the application which measures
the minimal work to schedule it and the competitive
ratio of the scheduling algorithm which measures the
quality of the performed schedule.

1 Introduction

A parallel dynamic application is characterized by a
behaviour related to the input data. This means that
neither the precedence graph of the sequential tasks
of the application nor the duration of those tasks are
known before execution completes.

Such an application needs a dynamic scheduling al-
gorithm to be executed on a parallel machine. To
ensure efficient executions, this scheduling algorithm
should satisfy the following:

e the overhead due to the scheduling operations has
to be neglectible compared with the whole par-
allel time: this overhead is characterized by the
regularity of the application [17].

e the performed schedule has to be as close as pos-
sible to the optimal one. The competitive ratio,
introduced in [27] in the context of on-line al-
gorithms, allows a performance measure of the
scheduling algorithm [26].

In this paper, we analyze those two criterions on the
PRAM machine model. Despite the fact that comput-
ing an optimal schedule for a precedence graph with
known duration tasks is NP-complete, it is possible to
compute on-line a schedule that is within a constant
ratio to the optimal one.

Many dynamic scheduling algorithms have been de-
signed that can be classified among different criterions
[7]. A difficult point concerning dynamic scheduling
or load-balancing is to evaluate performances. Two
complementary approaches may be considered. On
the one hand, practical experimentations can be used
to justify a scheduling algorithm for certain classes of
applications on a given machine [30]. On the other
hand, complexity analysis are possible on theoretical
abstract models either in the static case [5, 11] or the
dynamic one [26, 23, 13]. This paper is in this last
context.

Organization of the paper. In part 2, we recall
the basic definitions introduced in [21] that character-
ize efficiency and scalability of an algorithm. Those
definitions do not take into account the overheads due
to routing data and scheduling tasks that are assumed
to be performed optimally. We point out the relation-
ships between those two problems.

This correspondance motivates the definition of the
scheduling problem as an extension of the routing
problem intoduced in [29]. Paragraph 3 recalls the
formalization proposed in [17] for the parallel execu-
tion problem.

The amount of work required to schedule an appli-
cation is measured by its scheduling complezity, which
can be roughly bounded by the number of tasks gen-
erated during the execution. Thus, the ratio of the
whole number of operations performed to the schedul-
ing complexity, which defines the regularity of the al-
gorithm, is used in paragraph 3.2 to classify algorithms
We illustrate this classification on two algorithms that
implement a quick-sort in parallel.

In part 4, we recall basics tools to analyze perfor-
mance of an on-line algorithm. Concerning on-line
scheduling, paragraph 5 reviews the results of [26]. An
important fact is that a greedy scheduling achieves
an optimal competitive ratio among a large class of
scheduling algorithms.



On a practical point of view, to obtain better
bounds leads to consider restrictive classes of algo-
rithms. Paragraph 5.4 exhibits a scheduling algorithm
for a set of independent tasks with unkown durations
that achieves a (1 + €) competitive ratio for any effi-
cient scalable PRAM algorithm with polynomial regu-
larity. This result is applied to the parallel quick-sort
algorithms previously introduced.

To conclude, we introduce in part 6 the ATHAPAS-

CAN parallel programming model developed by the
APACHE project. It is a C++ library where paral-
lelism can be expressed dynamically by building task
graphs with precedence relations. Basic class hierar-
chy is presented.
The quick-sort algorithm studied in section 3 has been
implemented on this environment. Its performances,
obtained using two different scheduling mechanisms,
are then presented.

2 From Parallel

portable code

Writing a portable parallel program to solve a given
problem needs the building of a parallel algorithm on a
general machine model. Several machine models have
been proposed in the litterature [12, 2, 29]. Among
them, the PRAM model [15] and some of its variants
is the most widely used to build parallel algorithms.
Two approaches can be distinguished:

Algorithms to

e The first consists in trying to emphasize on par-
allelism. The model is then both simple and very
powerful to express complex parallel structures.
The PRAM model is in keeping with this general
pattern.

e The second approach consists in the definition of
a restrictive parallel model, easy to emulate on
any parallel practical machine with a bounded
loss of efficiency. In this framework, the BSP
model plays an important role [28].

Parallel complexity [9, 20, 19] aims at building
on general theoretical models such as PRAM (Paral-
lel Random Access Machine [15]) parallel algorithms
both strongly parallel (thus scalable or with polyno-
mial speed-up ) and efficient (or having constant in-
efficiency) [21].

More precisely, let P,, be a problem and T(n) be
the time of the best sequential algorithm solving it.
Let A be a parallel algorithm solving P,, in parallel
time 7,(n) using P(n) processors.

A is said to have polynomial speed-up [20] (or to be
scalable) if there exists € < 1 such that:

Ts(ne) =0 (T//(n)) .

Let H(n) be the number of operations performed by A
(without considering nop operations). H(n) is upper
bounded by W(n) = T;,(n)P(n), the work of algo-
rithm A.

To characterize the work overhead, the notion of
inefficiency is introduced. Inefficiency of A is said:

e constant (A is said efficient) iff

o poly-logarithmic iff

H(n) =0 (Ts(n) logo(l)(Ts(n))) .

e polynomial iff

H(n) =0 (Ts(n)o(l)) .

Example The class EP is the set of problems that
may be solved in parallel by a constant efficiency algo-
rithm with polynomial speed-up. This class captures
problems whose parallelization may lead to practical
efficient execution. For instance, consider Gaussian
elimination. In practice, although this problem be-
longs to NC|, a parallel version of the algorithm that
performs sequentially column eliminations leads to a
parallel time n? using n processors. This algorithm,
although not of polylogarithmic depth is in EP and
of practical interest [11].

The main problem encountered in coding such a
parallel algorithm, optimal on a theoretical point of
view, on a given parallel architecture is to bound the
overheads due to communication and scheduling. The
communication overhead is due to the difficulty of ef-
ficiently simulating a PRAM on a general architec-
ture. Scheduling overhead is related to, as we will see
further, practical implementation of Brent’s principle
(see section 2.2).

2.1 Communications: locality

It is possible to characterize the communication
overhead inherent to an algorithm using the notion of
locality or gross locality, i.e. the ratio of the compu-
tational complexity by the communication complex-
ity [24]. Non local algorithms require high perfor-
mance communication capabilities to be efficiently im-
plemented. As long as communication overheads are
significant on the existing parallel computers or in
other words, as long as the PRAM cannot be effi-
ciently simulated, the exploitation of locality will be
one of the main issues to address in order to achieve
high performance.



The notion of locality may also been understood as
a notion of irregularity. Indeed, problems that have
regular, oblivious or predictable patterns of memory
accesses, give rise more easily to programs organized
so that they have low communication costs. It may be
argued that the more local an algorithm is, the more
regular it is. Consequently, a relevant criterion for the
irregularity of an algorithm is the irregularity of the
communication patterns that it involves [10]. The lo-
cality concept relies on the fact that models of parallel
computation emphasize that the tasks of computation
and of communication may be distinguished [28].

2.2 Scheduling: irregularity

Task management is the next important issue to
be considered to execute efficiently parallel programs.
For instance, optimal solutions for key problems such
as list ranking may rely on task scheduling solu-
tions [8].

More precisely, Brent’s lemma [6] says that any
synchronous parallel computation performing x oper-
ations in time ¢ may be scheduled on p processors in
time [z/p] + t. However, this principle does not take
into account the overhead due to the computation of
such a schedule.

The proof of Brent’s lemma is based on indexing
the operations performed in the parallel algorithm, ac-
cording to their depth in the related precedence graph.
Then, a cyclic — modulo p — allocation of the oper-
ations to processors leads to schedule the algorithm
with no overhead.

However, in the case where the precedence graph
corresponding to some input data can only be deter-
mined by a complete execution of the algorithm, in-
dexing tasks cannot be performed without overhead.

In the following, we will consider two criterions to
evaluate the scheduling overhead:

e the quality of the schedule: on a given parallel
algorithm, this quality may be evaluated either
by a comparison to the best possible schedule on
the same machine or by the speed-up with respect
to the sequential time.

e the cost of the computation of the schedule. This
cost is directly related to the number of parallel
tasks in an execution of a parallel algorithm, and
can be formalized using the notion of irregularity

[17].

The next section, written from [17], is dedicated to
the definition of the scheduling complexity of a given
algorithm, that gives a lower bound to the cost of the
computation of any schedule for the algorithm.

3 Scheduling and irregularity

We recall definitions introduced in [17]. The model
of parallel computer that we use consists of a set P of
p processors. A processor works sequentially with its
local memory and communicates with other processors
via a global memory. We consider that an execution
of a parallel algorithm is a set 1" of tasks each execut-
ing on an in-datum z taken from a set X. Let O be
the subset of T' x X of the couples (¢, z) such that ¢
executes on x.

3.1 The parallel execution problem

Abstractions of the communication overhead are
usually formalized as routing problem or memory ac-
cess scheduling problem. The task management over-
head leads to the scheduling problem. If we abstract
the whole overheads as the parallel execution problem,
a solution to this problem can be given as a solution to
the routing problem and a solution to the scheduling
problem. The quality of a solution to the routing prob-
lem governs the time needed to simulate a PRAM by
other machines with communications like DCM [21],
LPRAM [1] or XRAM [29].

Following [29] we propose a unique framework, and
we formalize a solution to the parallel execution prob-
lem as a parallel execution scheme (PES). A PES
is a couple (P,S) where S is a scheduler that han-
dles objects in O. An initialized PES is a quadruple
(P,S,Z,D), where T is the input specification i.e. a
mapping O C T x X — P x P, this mapping indicates
where the data and the tasks are initially situated. In
the same way, D is the output specification. It is a
mapping O C T x X — P that specifies where the
tasks in T" will execute and thus where the data in X
has to be routed.

We also assume that tasks are indivisible. More-
over, we assume that having started one task, a pro-
cessor will complete it: this means that we assume
that no task migration is allowed (we refer to [4] for a
detailed discussion using process migration). This is
not a restriction, since a non atomic task may always
be splitted in a succession of more elementary tasks,
each forked at the end of the previous one.

The two problems of routing and scheduling are of-
ten considered separately but have, at least from a
theoretical point of view, remarkably similar proper-
ties and are handled in similar ways.

If routing problem is addressed alone, we have
O = X a set of packets. The scheduler & manages
the transfers (or equivalently the memory accesses). It
consists of a routing algorithm which actually routes
the packets that have been scheduled by the queuing
discipline [29]. The communication overhead is usu-



ally the cost of the communications themselves (on
a real machine, links have a given bandwidth or ac-
cesses to a common memory can be quantified). It
is unusual to associate an overhead to the computa-
tion of the specifications Z and D. When the routing
problem is considered, these specifications are known.
The problem of routing can be solved before execu-
tion (off-line) or during execution (on-line). An exe-
cution may consists of alternative phases of computa-
tions and of synchronizations [28] or such phases may
execute asynchronously [10]. Every synchronization
phase may consists in structured communication pat-
terns like permutations or message may be generated
dynamically and ask for unstructured patterns.

If scheduling problem is addressed, we take T = X
a set of tasks. The scheduler S handles the compu-
tational tasks generated by the algorithm. It con-
sists of a load estimator that measures the load of
the machine and of a decider that assigns a sched-
ule to the tasks [31, 7]. As opposed to the routing
problem, the scheduling overhead is usually the cost of
measuring the load [14] and of deciding task creation
and the schedule. In other words, at task creation,
the input and output specifications have to be com-
puted. This duality leads to formalize the irregular-
ity (as it has been done for locality) of an algorithm
as being the scheduling cost. The more the sched-
uler is working, the more the algorithm is irregular.
The problem of scheduling can be solved before execu-
tion (static scheduling) or during execution (dynamic
load-balancing and load-sharing). An execution may
consists of alternative phases of computations and of
scheduling [8] or phases can be done asynchronously.
Associated patterns may be regular (e.g. constant
unit time tasks to distribute on processors at a given
moment) or irregular if tasks are created dynamically
with varying time requirements that cannot be deter-
mined in advance.

3.2 Scheduling overhead and irregularity

In the following we focus on overheads that take
place during execution. Both communication and
scheduling overheads have to be considered, the former
usually corresponds to carry out the data exchanges
while the latter corresponds to compute the specifica-
tions. In [24] the locality of a problem is the ratio of
the parallel work of the best PRAM algorithm that
solves the problem to the communication complex-
ity on two processors. From there it will be easy to
express the worst-case irregularity of algorithms pro-
vided that we can measure a scheduling complexity.
The model of parallel machine that we use will be
a p-PRAM (CREW PRAM with p processors). The

parallelism is usually expressed by the following state-
ment:

for all z € X in parallel do instruction(z)
which assigns to each data element 2 in X the proces-
sor indexed code(z) that is uniquely determined by z
in constant time.

Instead of, generalizing the fork instruction [15, 2],
a program will generate parallelism through state-
ments of the following type:
for allt¢t € G in parallel do schedule(t) (1)
The execution of this statement consists of scheduling
the tasks of the precedence graph G on p processors
so that the execution time is optimal. More precisely,
schedule is an oracle solving the Graph Scheduling
Problem, GSP. This problem is defined as follows:

Input. p a number of processors and G a DAG with

#G nodes. Each node of G is a task. A task is
a program that may be run on one processor but
that may contain schedule instructions.
The length of a task is its sequential time, i.e. the
number of unit time operations performed when
the graph is scheduled sequentially on one proces-
sor. It may not be known until the execution com-
pletes but is independent of the way the task is
scheduled, especially when it contains schedule
operations.

Output. L;(G) the optimal schedule length for the
execution of G on p processors.

Notice that a task may contain branching and
schedule instructions. Thus, GSP allows scheduling
of parallel programs for which the precedence graph is
unknown.

As a sub-problem, let us consider that all tasks in G
are sequential (i.e. do not execute schedule instruc-
tions) and of known duration. In this case, solving the
GSP is NP-complete and deciding whether L%(G) is
a given integer [ is co-NP complete [16].

Scheduling complexity. Let A be a parallel algo-
rithm (including schedule instructions) that solves a
given problem P. On any input z of size n, the execu-
tion of A will generate a DAG G, containing at most
#G, sequential tasks.

Let H(G,) be the number of operations performed
during the execution and L*(G,) be the length of the
critical path of G,. Thus, H(G;) is the total length
of the tasks and L*(G,) is the minimal parallel time
for the execution of G, on an infinite number of pro-
cessors. Notice that H(G,) and L*(G,) may not be
known until the execution completes.



Consider now the execution of A with input z on a
p-PRAM. We have the following bounds for Lj(G.):

[H(Gz)/p] < L3(G.) < [H(G.)/pl + L*(Gz) (1)

A lower bound for solving the GSP problem sequen-
tially is #G,. Moreover, since no information is
known about the optimal schedule computed by the
oracle, every schedule operations may be performed
on the same processor. Thus, the cost of computing
the schedule by the oracle is assumed to be #G,.

Definition 1 The (worst-case) scheduling complex-
ity of A, denoted as t,(n), is the mazimum number
of tasks that can be executed concurrently for any in-
put x of size n. ty(n) is upper bounded by #G, =
Maz(#G,/ | z |=n).

Let Ty(G:) be the optimal parallel time for the

execution of G, on p processors, including both exe-
cution time L7(G.) of the optimal schedule and the
scheduling complexity which gives a lower bound on
the time needed to compute such a schedule, whatever
the lengths of the tasks are.
Corresponding worst-case values for any input z of size
n are denoted H(n), L*(n), L}(n) and T,;(n). Then,
a lower bound for the whole parallel execution time,
including both execution time of the optimal schedule
and its computation by the scheduler oracle, is:

T;(Gz) 2 Max ([H(G.)/p], L*(Ge)) + tw(n)  (2)

Let Tseq(n) be the time of the fastest sequential
algorithm solving P. In practice, parallel algorithms
that provide both scalability and efficient execution
are in EP [21], thus verifying:

Ty (n) = O(Tseq(n)),
{ ge <1: L*(n) = Tseq (ne) (3)

Assuming that H(n) = O(Tseq(n)), (3) reduces to:
pw(n) = O(H(n)) (4)

Having a polynomial speed-up implies that A can the-
oretically be executed efficiently on a polynomial num-

ber of processors, thus it is needed that H(n)/t,(n) =
Q)
nt,

Definition 2 The worst-case regularity p,(n) of an
algorithm written with schedule instructions is the
ratio of the number of operations H (n) required to run
the algorithm to the scheduling overhead:
H(n)
pu(n) = ()

Lw (M)

As it is the case for locality [24], algorithms may be
classified with respect to their regularity.

Definition 3 An algorithm is said to be:
o irregular iff p,(n) = O(1),
e log-regular iff p,(n) = 1og®™) H(n),

e polynomially-regular (or regular in short) iff
pu(n) = H ()00,

Such definitions focus much more on practical al-
gorithms than on problems. An efficient dynamic
algorithm, that can be easily expressed using dy-
namic scheduling, will be irregular if the scheduler
contributes a lot to the efficiency. Conversely, any
algorithm that includes its own scheduling will be reg-
ular, since only one schedule operation will be per-
formed to start a sequential program on each of the p
processors.

For instance, the computation of an n-point FFT
graph is implemented with no effort with irregular-
ity O(1) by plugging the scheduling in the program.
However, if we assume that the costs of basic oper-
ations are of unknown durations, the previous static
mapping may lead to an inefficient execution due to
the large number of synchronizations involved in the
algorithm. Let us now consider the algorithm that
builds the precedence graph G, of the FFT (which is
only related to n), and then executes schedule(G,).
Since #G(n) = nlogn, this algorithm is irregular but
its execution will be efficient.

3.3 A didactic example: parallel quick-
sort

As a didactic example, we consider a variant of a
parallel sorting algorithm due to Reischuk [25]. This
algorithm may be seen as a generalization of the se-
quential quick-sort [19].

Let A be an array containing n elements to be
sorted. The algorithm consists in randomly choosing
k —1 pivot elements (k = 4/n) and in sorting them. In
the genuine algorithm this stage is performed in par-
allel on n processors but for the sake of simplicity we
will use a sequential sorting algorithm.

Let pg = —00,p1,...,Pk—_1,Pr = +00 be the sorted
pivot elements: two consecutive (p;,p;+1) elements
thus define a bucket B;, 0 <i < k.

Computing in parallel, using one processor per ele-
ment z of A, the bucket that the element belongs to,
leads to a rearrangment of A.

Sorting A may then be achieved by computing in
parallel either a sequential sorting (Algorithm AM) or
a recursive sorting (Algorithm A(®) of each bucket.



For both algorithm, irregularity depends of the
number of operations performed in the sequential sort-
ing algorithm. If this algorithm is the sequential quick-
sort, then, for each algorithm, the number H®) (n) and
H® (n) of operations performed is bounded by:

n<HO(n)<n? i=1,2.

The scheduling complexity of algorithm A™) is up-
per bounded by k£ + 1 since only one schedule op-
erations may be executed that contains k + 1 tasks.
Thus the worst case regularity p&’ (n) of A®"), which
is related to the input array, is bounded by:

n1/2 S pg)(n) S n3/2

and AW is regular.

In the A® algorithm, recursive splitting is per-
formed until only one element remains in the bucket.
Thus its scheduling complexity is H®(n). The algo-
rithm is of regularity p&’ (n) = 1 and A® is irregular.
3.4 Authorized scheduling operations

The parallel execution scheme (PES) specifies input
and output for a scheduling algorithm (i.e. a sched-
uler), but do not specify what operations a scheduler
can do, except the possibility of executing a basic task
— an elementary node in the PEP — on a processor.
The assignment of a set of tasks by the scheduler to a
given processor (referred in the following as allocation
operation) is assumed to be a unit-time operation.

Additional scheduling operations are [5]:

Preemption. The scheduler is said preemptive if it
can suspend a task during its execution on a pro-
cessor, thus handling the interleaving of execu-
tions of different tasks on a processor. A con-
trario, a non-preemptive scheduler has no control
of a task once it has assigned it to a processor, just
getting informations when the task is finished.

Migration. When migration is authorized, a pre-
emptive scheduler may suspend a task during its
execution on a given processor and transfer it to
another processor. The task will then continue
its execution on the new processor.

Non-preemptive constraint is very strong, and it
may be unrealistic to assume that once a task is
started it must be run without any form of recourse
until its unknown completion time [26]. The non-
preemptive with restarts model authorizes to cancel a
task during its execution and to restart it — from its
beginning — on another processor. This operation,
introduced in [26], appears in practice in some batch

systems. For instance, the “Easy” scheduler available
on the IBM-SP 2 [22] may kill a task if it exceeds an
amount of cpu time specified in the submission of the
task and later restart it on another processor.

4 On-line algorithms and competitive
ratio

The previous definition of irregularity focuses more

on the contribution required by a given algorithm from
a scheduler to provide efficient execution.
For a practical implementation, a scheduling algo-
rithm will be needed that is able to schedule optimally,
on a p-PRAM, the precedence tasks graph generated
during execution. When this graph is not completely
known (especially when task durations are unknown),
one needs to compute the schedule dynamically, taking
decision both from machine activity and knowledge of
the application. The scheduling algorithm is then an
on-line algorithm.

In the general case, due to the intrinsic difficulty of
scheduling (see previous section) on the one hand and
to the fact that we are interested mainly in ensuring
linear speed-up on the other hand, we may consider
only the building of a nearly optimal schedule, whose
length is within a constant factor from the optimal
one. In the framework of on-line algorithms, this cor-
responds to the competitive ratio.

In this section, the theory of on-line algorithms, de-
veloped in [27], is introduced following the paper [3].
One of the main particularity concerns performances
analysis of such an algorithm using the notion of com-
petitive ratio. We briefly recall basic definitions, illus-
trating how they can be applied to evaluate an on-line
scheduling algorithm.

4.1 Deterministic and randomized on-line
algorithms

The theory of on-line algorithms has been devel-
oped in the framework of query-answer games. In such
a game, an on-line algorithm has to answer a sequence
of questions, trying to minimize a given cost function.
The algorithm is said on-line if it answers a question
knowing neither the whole sequence of questions nor
its length. A contrario, an off-line algorithm can build
its sequence of answers with the complete knowledge
of the sequence of questions.

Preliminary Definitions. More precisely, a query-
answer game consists of a set of possible questions @,
a finite set of answers R and a set of cost functions
f = (fn)nen defined for any tuple of n elements in
Q@ x R:

fn: (@ X R)" — RU {o0}.



f will denote the cost function! associated to the
game.

A deterministic on-line algorithm A? is a sequence
of functions a,, : @™ — R, for n > 1. For any input
q=(q1,-.-,q,) € Q", A? produces a sequence r =
(r1,...,mn) € R® with 7; = a;(q1,...,¢:),i=1...n.
The cost of A% on ¢ is caa(q) = f(g,7) = fulg,r) =
fala, A%(g)).

A randomized on-line algorithm AP is a distribution
of deterministic on-line algorithms A% (X being the
random variable relative to the distribution). For any
input sequence g € Q™, the output sequence AP(q) =
(r1,...,rn) and the cost c4»(q) are random variables,
any r; being related to the randomized choice of the
deterministic algorithm A% at step i.

The optimal off-line algorithm Opt is defined as the
algorithm that delivers for any sequence of questions
q a sequence of answers r such that f(g,r) is minimal,
ie.

Opt: UZOZI Q"

— U, R
g=(q1,-..,qn) +— r=

T1yeeeyTn)

with f(g,r) = min{f,(q,7’) | 7 € R"}. Thus, the cost
function ¢* of the optimal off-line algorithm verifies:

Vge Q" ¢*(¢) = min{fn(g,r') | r' € R"}.

4.2 Competitive ratio.

The performance of an on-line algorithm is char-
acterized by its competitive-ratio which measures the
factor between the cost of the solution that it delivers
and the best one delivered by an algorithm in a given
class.

Let A? be a deterministic on-line algorithm and C
a class of algorithms. A? is said a-competitive against
C if there exists a constant « such that, for any input
sequence of requests g¢:

ca4(q) < amin{ca(q) | A € C}.

This definition is extended in a natural way to a
randomized on-line algorithm AP. AP is a-competitive
against C if there exists a constant a such that, for
any input sequence of requests q:

Ex (cAp(g)) < amin{ca(q) | A € C}

where the expectation Ex is taken over all random
choices in AP.

By extension, an on-line algorithm is said «-
competitive if it is a-competitive against the optimal
off-line algorithm.

1ie. VneN Vg:(qh,Qn)GQn V[Z('rl,---,"'n)e
R™: f(g;r) = fn(g,r)-

The competitive ratio gives an evaluation of the
efficiency of an algorithm more precise than a worst
or average-case analysis.

Two main techniques may be used to bound the
competitive ratio. To give an upper bound, it is suf-
ficient to exhibit an on-line algorithm that solves the
problem within the desired upper bound. To prove a
lower bound, a main technique consists in the concep-
tion of an algorithm, called the adversary, that builds
on-line its sequence of requests ¢ in the following way:
request gn41 is built from the k_nowledge of all previ-
ous couples (g;,r;), 1 < i < n, in order to maximize
the cost function f(ry,...7y).

4.3 Application to on-line scheduling.

In the framework of the scheduling problem, let G
be any instance of the parallel execution problem that
is to be scheduled on a p-PRAM.

The cost function f(G) to minimize is the makespan
or length of the schedule, denoted in the following as
L,(G). With the complete knowledge of the prece-
dence graph, the optimal off-line algorithm will com-
pute a schedule of minimal length L}(G).

Let A¢ be a deterministic on-line algorithm that
solves the parallel execution problem, and L%(G) be
the length of the schedule computed by A? for the
instance G.

Algorithm A? is a-competitive iff, for any instance
G, LYG) < aly(G).

5 On-line scheduling

Many on-line scheduling algorithms have been pro-
posed. In [26], D. Shmoys, J. Wein and D. Williamson
give different upper and lower bound for the schedul-
ing problem on various models of parallel machines,
notably on the identical machines model — that cor-
respond to the p-PRAM that we consider in this paper
—, the uniformly related machines model — speed ratio
between two machines is constant — and the unrelated
machines model — speed ratio between two machines
is constant for a given task but may vary from one
task to the other —.

In a first part, we consider the basic on-line algo-
rithm given by Graham [18] and its competitive ratio
analysis. Then lower bounds for this problem, intro-
duced in [26], are presented.

In a second part, we focus on the problem of
scheduling many independent tasks with unknown du-
ration. We recall the fundamental deterministic algo-
rithm from R. Cole and U. Vishkin [8].

We then present a coarse-grain variant of this algo-
rithm. which achieves an asymptotic 1+ e competitive
ratio for this problem and whose overhead, due to the



scheduling computation, is bounded by the parallel
time.

The main consequences, for the considered case
where machines are uniformly related, are:

e anon-preemptive deterministic on-line scheduling
algorithm with a competitive ratio of (2 - %) ex-
ists [18].

e a lower bound for the competitive ratio of
non-preemptive deterministic on-line (respec-
tively preemptive deterministic on-line and non-
preemptive randomized on-line) is at least

(2 - %) [26].
5.1 Greedy on-line scheduling algorithm

List scheduling algorithms are a classical way of
scheduling tasks. Such algorithms consists in man-
aging lists of executable tasks. When a processor ter-
minates the execution of a task, it frees its successors
corresponding to precedence constraints. If there are
still executable tasks, it gets one of them and begins
its execution. If no more tasks are executable, the
processor stays inactive until new tasks become exe-
cutable.

A list algorithm usually specifies an order on the
tasks by assigning to each task a priority (for instance
depending on the structure of the graph or on the
lengths of the tasks when they are known). In the on-
line case, since task duration is assumed unknown, the
greedy algorithm allocates tasks without taking care
of any priority.

Besides, the graph may be determined dynamically,
from execution of “ schedule” instructions.

Let us notice that we do not consider here the cost
of computing the schedule, notably to assign distinct
tasks to distinct processors. However, a lower bound
for this cost is n if a graph with n tasks is to be sched-
uled (cf paragraph 3.2).

5.2 Tight bounds for
scheduling
Proposition 1 The greedy scheduling algorithm has

competitive ratio (2 — %) on the p-PRAM.

non-preemptive

Proof. Let G be a precedence graph, L*(G) the
optimal scheduling time using the off-line algorithm
on the p-PRAM. The — unknown - duration of a task
t in G is denoted I(t). Let L(G) be the length of the
schedule given by the greedy algorithm.

Let I(G) be the total idle time in the greedy sched-
ule. We have:

IG) + Sieg 1)

L(G) = ; : (6)

Since 1+(G) > e

, (6) leads to:
I(G)
12, ™

Let C be any path in the DAG G ; we have L*(G) >
2tec L)

The greedy algorithm is such that, at any time, at
least one processor is executing a task. Moreover, if
at a given time a processor is idle then there exists
a task on a critical path which is being executed on
one processor. In the Gantt diagram of the greedy
schedule, consider the instants 6;, 1 < i < O, where
at least one processor is idle. Let ¢; be a unit operation
executed at 6; and that belongs to a critical task path.
Each unit operation t; belonging to a critical task, we
have:

L*(G) 2 L(G) -

0 < L*G) (8)
which gives the following bound on the idle time:
I(G) < (p—1)0 < (p—1)L*(G) 9)
Using this bound for I(G) in (7) leads to:
* p—- 1
L(G) < L*(G) (1 + T) (10)
which concludes the proof. O

Thus the greedy scheduling algorithm, which com-
putes a schedule with a competitive ratio lower than 2,
gives a satisfying solution (with asymptotic constant
inefficiency) to the GSP problem.

Corollary 1 Let A be a parallel algorithm with con-
stant inefficiency, polynomial speed-up and polynomial
regularity and that executes H(n) operations.

Then, AM > 1,35 > 0 such that Vn, Vp < n’, A may
be executed in parallel time

on a p-PRAM.

Proof. 1t is sufficient to schedule the parallel algorithm
using a centralized greedy scheduling algorithm. Each
time a processor becomes idle, it asks for a specific
processor (the master) for a new task. The schedule
instructions are directly forwarded to the master pro-
cessor, which allocates at most one task at each step.

On the one hand, since the algorithm has constant
inefficiency and polynomial speed up, there exist M
and k such that Vp < H(n):

H(n)

Ly(n) =M »



On the other hand, since the regularity is polynomial,
we have p,(n) = H(n)?W,

Let us consider the execution of A using the greedy
scheduling algorithm on p < Min(H (n)*, py,(n)) pro-
cessors. Since the number of tasks generated by the al-
gorithm is upper bounded by Z((Z)) , the parallel over-
head due to the computation of the greedy schedule is
bounded by the same term.

Besides, from proposition (1), Ly(n) < 2L3(n). We
obtain:

H(n) H(n)
Ty(n) < 2M= = +0 (pw(n)) (11)
which leads to Tp,(n) < O (@ . O

On-line greedy scheduling is then an efficient way
to schedule regular efficient parallel algorithms with
unknown precedence graphs.

5.3 Lower bounds for the greedy schedul-
ing competitive ratio

A natural question is then to determine if it is possi-
ble to have a better competitive ratio than (2 — %) , €i-

ther on the same model or by considering larger classes
of scheduling algorithms.

This problem has been studied in [26], in which the
following proposition is proved.

Proposition 2 [26] On the p-PRAM, the competitive
ratio is lower bounded by (2 — % for any scheduling
algorithm of the following classes:

1. Deterministic with no preemption.
2. Deterministic with preemption.

3. Randomized with no preemption.

Proof. We only sketch the proof for the first case.
The complete proof for this theorem is given in [26].

The adversary builds the following instance G due
to Graham [18]. G contains 1+ p(p — 1) independent
tasks. One task a; is of length p, while other tasks
Bk, 1 <k <p(p—1) are of length 1.

The optimal schedule is of length p. It executes the
task a; on a given processor, and the p(p — 1) unit
tasks B on the p — 1 remaining processors.

The length of any schedule of G is equal to p + t,
where t is the time when the task a; starts its execu-
tion. Since the tasks durations are unknown for the
scheduling algorithm, the adversary strategy will thus
consist in making ¢ as large as possible.

The tasks that are processed first are then the p(p—1)

unit time tasks (3, that are executed in p—1 time units
with no idle time. Then, at time £ = p — 1, the task
«y starts its execution. The length of the obtained
schedule is then 2p — 1, which provides the desired
lower bound. a.

When the task precedence graph is unknown, it is
then impossible to build an on-line algorithm with bet-
ter competitive ratio than the greedy algorithm.

To build more efficient on-line scheduling algo-
rithm, one may try to restrict the problem. In this
framework, it is possible to consider asymptotic com-
petitive ratio for specific graph structures, introducing
little knowledge on the tasks durations.

5.4 Independent tasks scheduling.

In this paragraph, we consider the following prob-
lem introduced by R. Cole and U. Vishkin in [8] and
referred in the following as the “Independent Task
Scheduling Problem” (ITSP for short). ITSP is a re-
striction of the GSP problem, defined as follows [8].
n tasks are given, each of unknown length bounded
between 1 and ¢(n). The total length of the tasks is
bounded by H(n) (¢(n) and H(n) are at most t poly-
nomials in n).

The problem IT'SP consists in scheduling the tasks
on a p-PRAM so that the tasks are completed in time
O(max{H (n)/p,c(n)}).

In [8], a sophisticated solution is built that needs
neither preemption nor migration. This solution leads
to the following proposition:

Proposition 3 [8] If H(n) = O(n) and c(n) =
O(logn), then, for any p < logn, it is possible to solve
the ITSP problem on the p-PRAM in time:

Tp(n) = O(H(n)/p)
including scheduling overheads.

For practical reasons, constant complexity factors
being pretty huge, it is interesting to consider coarse
grain scheduling algorithms.

In the following, we consider the following variant
of the ITSP problem:

input: p an integer and n independent tasks with
length bounded between T, (n) and Ths(n).

output: Execution of the n tasks on the p-PRAM.

This instance may be scheduled using the following
parallel scheduling algorithm on the p-PRAM:

1. Initialization: assign logp tasks to each processor
and store the r = n — others in an array
R[1..7].

P
log p



2. Execution: in parallel each processor executes
log p computation steps with the tasks assigned
to it. Let F}, be the number of terminated tasks
by the processor k during this stage.

3. Redistribution: Let 7, = Ele F; (prefix sum
computation). Let ig = r — mp.
If r is positive, in parallel for any k, each proces-
sor k takes the tasks indexed ¢g+7g—1,...,l0+ k.
Let r =r —mp.
If r is negative, then empty R by distributing
evenly tasks among the processors so that the
number of tasks of two different processors may
differ at most of one; then let r = 0.

Proposition 4 The coarse grain scheduling algo-
rithm schedules n tasks on p < ﬁg—n processors with
a competitive ratio bounded by:

p  Tu(n)
logp Tr(n)H(n)

Proof. Since plogp operations are performed dur-
ing step “Execution” when r is positive, the number
of iterations is bounded by: %. The cost of the re-
distribution is bounded by logp (prefix computation).

Finally the parallel time, including both the sched-
ule of the tasks and its computation, is bounded by:

7, < £ 4 log T () (12)

A lower bound for the length of the schedule given by
the optimal off-line algorithm is: @Tm(n). We thus
obtain the desired upper bound for the competitive
ratio. 0.

Corollary 2 Let € > 0 be an arbitrary constant. If
Ty < €(Ty,logn)?, the competitive ratio of the coarse
grain scheduling algorithm for the ITSP problem is
(1+¢€) on the p-PRAM for any p < —5%—

logZn "’

Proof. Direct from previous proposition. O

Application to the parallel quick-sort algo-
rithm. We turn back to the parallel sorting algo-
rithm AM). For the sake of simplicity, we consider
the average case where Tar(n) = Q(n'/2logn) and
H(n) = Q(nlogn). From proposition 4, we have:

nlogn

Tp(n) <Q < + log pn'/? logn> .

Executed with the coarse-grain scheduling algorithm,

the execution will provide optimal execution time for

Vn
pS logn*

5.5 Complementary results.

To conclude this section, a few extensions of previ-
ous on-line scheduling algorithms are reviewed.

Tasks with release dates scheduling. For some
scheduling problem, that have not been considered
in this paper, tasks may be generated dynamically
not only due to precedence constraints, as studied
previously, but after release dates. In the on-line
framework, those release dates are assumed unknown.
This problem captures notably interactive multi-users
scheduling.

In [26], the following scheduling algorithm is intro-
duced. Let A be an on-line algorithm solving the ITSP
problem, with competitive ratio a. A is used to build
a scheduling algorithm B dedicated to tasks with un-
known release dates.

At time Ty, B applies A to schedule executable
tasks. At T3, once every tasks are terminated, B ap-
plies A to schedule all new executable tasks. Such a
task may either have been generated due to satisfied
precedence constraint or have a release date bounded
between Ty and T .

After each application of algorithm A, B updates the
executable tasks and keeps on scheduling.

The important fact is that this very simple algo-
rithm B has a competitive ratio upper bounded by 2«
[26]. This justify the importance of having efficient
scheduling algorithm for independent tasks.

Dynamic trees. Another way of handling tight
bound for the competitive ratio, is to focus on some
specific graph structures. In this framework, tree are
of interest and have been studied in [23].

Many other extensions have been proposed, notably
to take in account communications [5, 23] or the topol-
ogy of the parallel machine [13].

6 Athapascan approach

The formalization of the parallel execution prob-
lem presented in section 3.1 leads us to define a par-
allel programming model, Athapascan, that allows
to schedule tasks according to their precedence con-
straints. This programming model separates the ex-
pression of a given algorithm from the way it is sched-
uled on a given machine.

Let us for instance consider the programming of a
parallel Gaussian elimination on a dense floating point
matrix, each column elimination being performed se-
quentially.

On a dedicated parallel machine, tasks durations may
be assumed to be known and a cyclic scheduling will



be efficient with a neglectible scheduling overhead.
However, this in not true anymore if the same algo-
rithm is executed on a network of workstations shared
between several users. Here, a dual modelization of
the unpredictable activity of other users may be to
consider that basic tasks in the Gaussian elimina-
tion are of unknown duration. In this case, an on-
line scheduling (for instance the greedy scheduling)
is needed to provide an efficient execution under any
circumstances?. The program then remains the same,
only the scheduling algorithm has been customized.

In this section, we focus on the presentation of the
ATHAPASCAN-1 programming model. ATHAPASCAN-1
is a parallel library (written in C++) and implemented
on the ATHAPASCAN-0 kernel. ATHAPASCAN-0 is a ba-
sic kernel that provides remote thread creation, group
communications and global memory accesses. This
kernel is implemented on the top of MPI and a kernel
of POSIX threads.

ATHAPASCAN-1 may be seen as an implementation
of the programming model described in section 3, that
provides an instruction similar to schedule(G) where
G is a precedence graph.

6.1  Graph building, interpretation and
execution

To build the precedence graph that corresponds to
the execution of an algorithm, a user has to write
a concrete class that derives from the abstract class
ExecutionGraph.

This class includes builders and access operators. Es-
pecially, a given graph G2 may be embedded in an-
other G1, with a specification of the operational se-
mantics of the embedding which may be of four types:

e sequential composition: G1.After( G2 ). The
graph G will be scheduled only when all tasks of
(1 are completed.

¢ parallel independent embedding:
G1.IndependentParallel ( G2 ). Graphs G;
and GG contains independent tasks.

o parallel concurrent embedding;:
G1.ConcurrentParallel ( G2 ). Tasks GGy and
Gy have to be executed concurrently. A special
case is when two tasks (one in Gy, the other in
G2) may communicate each one to each other.

¢ pipelined composition: G1.LinkedUp( G2 ) . In
this case, it is required that the number of output
tasks in GG; be the number of input tasks in Gs.
Each output task in G is then linked up to the

2let say IATEX-safe...

corresponding input task in G, i.e. the one with
the same index.

To ease the building of a specific graph, it is pos-
sible to derive a user class from some specific ab-
stract subclass of ExecutionGraph. For instance, the
SplitComputeMerge class (SCM for short) can be used
to build precedence graphs with independent tasks.

For each graph object G, a method G.Execute (
in Scheduler S ) is used to submit the scheduling
of tasks in G to the scheduler object S.

6.1.1 Building the precedence graph

In each concrete class which  inherits
from ExecutionGraph, client and server stubs spec-
ifying the operational semantics of a task have two be
performed.

For instance, a concrete class that inherits from
SCM has to specify the following methods which are
virtual in SCM:

e Split (in int i, in int K,
out athOStream ) : specifies the client stub —
locally executed — corresponding to the ¢ th task
among K independent ones. The output stream
is used to transmit arguments to the server stub.

e init(in int i, in int K, in athIStream ) is the server
stub corresponding to the Split client function.

e main() specifies the function to be performed on
the processor when the server task is scheduled.

e end(in int i, in int K, in athOStream ) is the
server stub corresponding to the Merge client
function.

e Merge (out int i, out int X, int
AthIStream specifies the merge function and the
corresponding client stub.

6.1.2 The Scheduler class

The abstract class Scheduler provides a standard in-
terface for a scheduler. Each specific implementa-
tion of a scheduling algorithm which inherits from
Scheduler has to implement the following virtual
methods:

e Execute ( in Graph G ) : thisis the symmet-
ric method of the Execute method in the class
ExecutionGraph.
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Figure 1: Hierarchy of class ExecutionGraph.

e vector<Processor> GetProcessors ( in int k
): delivers in output a vector of p > k pro-
cessors. This interface is used for the imple-
mentation of the Execution method in the class
ExecutionGraph.

6.2 Extensions: locality and granularity
Two important features proposed in ATHAPASCAN
are locality specification and adaptive granularity.

Locality specification. It is possible to associate a
locality attribute to each elementary task of a graph,
which may be assigned to the site of a previously
scheduled task. This attribute may be used by some
scheduling algorithm to provide affinity scheduling.

Adaptive granularity. It is also possible to pro-
pose to the scheduler an interval for the splitting factor
and let it choose one in the interval. This can used to
adapt the granularity of a program to the one of a ma-
chine. This may be of particular interest for a regular
algorithm: depending on the behavior of the hardware
support, the scheduler may choose the factor.

In addition, for many parallel algorithms, it is pos-
sible to associate — at least approximative - cost
informations about the tasks to be scheduled. The se-
mantics of those costs is dependent on a given sched-
uler. For instance, some list scheduling algorithm may
use cost informations for ordering tasks in a scheduling
queue.

6.3 Programming the parallel quick-sort
algorithm

We consider the practical implementation of the
regular algorithm A®) for parallel sorting. We used
the fact that its execution is optimal for any p < 11\){;:;
using the coarse-grain scheduling algorithm.

6.3.1 The program

The program inherits from the abstract class SCM.
The sequential sorting function is gsort of the
standard C library. The elements to be sorted
are 32-bits integers and the comparison function
is: int IntCompare (int *i, int *j) { return (
*i - *j ) ; h

6.3.2 Experimental results

Two different scheduling algorithms have been used:
a mapping computed from cost predictions and a cen-
tralized greedy algorithm with thresholds. The ex-
perimentations have been performed for various size
arrays on an IBM - SP2 (32 processors).

Cost-prediction algorithm. If n; is the number
of elements of bucket B;, the cost of the sequential
sorting may be evaluated to n; logn;, average cost of
the quick-sort algorithm. A mapping that takes into
account this information is then computed.

Total time :14.531090
Communication : 678.902238

Figure 2: Mapping of the algorithm executed on 2 pro-
cessors. Bold lines represent threads, and thin lines com-
munications.

Figure 1 presents an execution of the algorithm
with the list scheduler. Communication overheads are
overlapped by computations. The small variance of
the sequential quick-sort cost makes this strategy effi-
cient on a uniform machine.

Centralized greedy algorithm. Tasks to be com-
puted are centralized on a given processor, the mas-
ter and load of slave processors ranges between two
thresholds S,, and Sy;. When the number r; of tasks
on a given slave processor becomes lower than a given
threshold S,,, the processor requests for Sp; —r; tasks
to the master. Figure 3 gives performance results.
Tuning the thresholds Sy, and Sy is very important
to get efficiency. This on-line approach leads to good



results: 10 millions of 32 bits integers are sorted in
156 s in sequential and in 8 s on 29 processors, corre-
sponding to an efficiency of 67%.

7 Summary and Conclusions

The theoretical framework of on-line algorithms can
be used to analyze dynamic scheduling algorithms.
Two overheads are to be considered: the cost of the
determination of the schedule and the quality of the
computed schedule itself. Both costs are related to the
parallel algorithm that is to be scheduled.

The first is related to the scheduling complexity
which is used to define the regularity of an algorithm.
Intuitively, the less regular the algorithm is the more
costly to schedule efficiently it is.

The second may be captured by the competitive ra-
tio of the algorithm. Even for an unknown graph, the
optimal competitive ratio is (2 — 1/p) on p uniformly
related processors, which is realized by the greedy al-
gorithm.

To improve the competitive ratio, it is then needed
to restrict the parallel execution problem to specific
graph families, such as independent tasks scheduling.

An interesting question remains to analyze if theo-
retical competitive ratio corresponds to experimental
results.
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