
A Probabilistic Approach for Task and Result
Certification of Large-scale Distributed
Applications in Hostile Environments?

Axel Krings, Jean-Louis Roch, Samir Jafar, and Sébastien Varrette

Laboratoire ID-IMAG (CNRS-INPG-INRIA-UJF – UMR 5132), Grenoble, France
{axel.krings,jean-louis.roch,samir.jafar,sebastien.varrette}@imag.fr

Abstract. This paper presents a new approach for certifying the cor-
rectness of program executions in hostile environments, where tasks or
their results have been corrupted due to benign or malicious act. Extend-
ing previous results in the restricted context of independent tasks, we
introduce a probabilistic certification that establishes whether the results
of computations are correct. This probabilistic approach does not make
any assumptions about the attack and certification errors are only due
to unlucky random choices. Bounds associated with certification are pro-
vided for general graphs and for tasks with out-tree dependencies found
in a medical image analysis application that motivated the research.

1 Introduction

Large scale global computing systems like the GRID and Peer-to-peer comput-
ing platforms gather thousands of resources for computing parallel applications,
utilizing middleware infrastructures such as the Open Grid Service Architecture
(OGSA) [2] to provide strong authentication, secure communications [11], and
resource management. In this unbounded environment one should consider pos-
sible malicious act that may result in massive attacks against the whole global
computation. This is supported by an exponentially increasing number of re-
ported incidents [1], e.g. CERT/CC recorded close to 140,000 incidents in 2003.

Usually, global computations are expected to tolerate certain rates of faults [5,
9], e.g. small number of isolated intrusions. However, in order to ensure correct-
ness of the computed results, one should detect if the global computation has
been the victim of a massive attack resulting in an error rate larger than can be
tolerated by the application.

The problem of protecting a computation against massive attacks has been
mainly addressed for independent tasks. The analysis of voting, spot-checking
and credibility-based fault tolerance is presented in [9]. An approach based on
re-execution of tasks on reliable nodes is considered in [5], assuming that the
majority of workers are honest while workers compromised by an attack will

? This work has been supported by CNRS ACI Grid-DOCG and the Region Rhône-
Alpes (Ragtime project).

2

always falsify their results. Under the same assumption, task dependencies are
considered in [6], however, dependencies are used only for correction. Faults in
systems with task dependencies are addressed in [4] where tasks are determined
to execute on reliable or non-reliable nodes in order to maximize the expected
number of correct results. Whereas the approach considers the critical issue of
fault propagation, it is deterministic and therefore could be exploited by an
intelligent adversary.

In order to eliminate any assumption on the attack and the distribution of
errors in the context of a general parallel computation with dependencies, we
propose to adopt a view directly inspired by probabilistic algorithms. Specifically,
given the results of a global computation with task dependencies, we attempt
to detect if the execution contains faulty results. Probabilistic algorithms are
presented that make random choices and determine whether the execution is
correct or faulty. Since the detection is probabilistic, its output may be wrong.
However, contrary to previous approaches, the probability of certification error
is not related to the application, i.e. the global computation, but only to the
unlucky random choices associated with task selection for verification.

This work is motivated by medical applications [7] studied in the context
of the French research project Ragtime [8] where certain highly computational
manipulations of medical 3D/4D images, distributed over their production sites,
allow for an acceptable fraction of error. The probabilistic certification algo-
rithms presented can detect if these computations have been subjected to a
massive attack with a so-called attack ratio greater than or equal to q < 1,
with no other assumption about the attack. We show that pathological cases
exist that minimize the probability of detection. The bound on the error is not
related to q, but to the minimum number of so-called initiator tasks.

2 Definitions and assumptions

Applications are executed on the global computing platform presented in [6]. A
user initiates a computation, represented by a directed acyclic graph G, which
is then executed on (a potentially large number of) unreliable workers. In order
to verify the correctness of the results of the execution, verifiers, implemented
by reliable resources which know graph G, re-execute selected tasks. Communi-
cation between workers and verifiers is through a checkpoint server containing
computations submitted by workers [6]. Whereas any attack can occur on the
worker or between the worker and the checkpoint server, the checkpoint server
and verifiers are considered secure.

Dataflow graph: The data-flow graph referred to above is a directed graph
G = (V, E), where V is a finite set of vertices vj and E is a set of edges ejk,
j 6= k, representing precedence relations between vj , vk ∈ V. The vertex set con-
sists of two kinds of tasks. Let Tj denote the tasks as seen in the traditional
context of task scheduling, i.e. a task is the smallest program unit of an instance
of execution. Let Dk denote a data task. Data tasks represent the inputs and

3

outputs of a task. In the remainder of this paper, when talking about a task, it
is implied to be a task Tj . Data tasks will be referred to as inputs or outputs of
Tj . The total number of tasks Tj in G is n.

Executions and the impact of faults: We will first establish the notion of program
execution and the impact of faults. Let E denote the execution of a workload
represented by G with a set Î of initial inputs on a set of unreliable resources.
It is assumed that G is static, i.e. it is fixed. Each task T in E executes with
inputs i(T, E) and creates output o(T, E). The inputs of a task Tj are composed
of either inputs from Î or outputs of other tasks Tk, i.e. o(Tk, E).

Let Ê denote the execution of the program on a verifier, i.e. a reliable re-
source, or set thereof. If E = Ê, i.e. if every task in E uses the same inputs
and computes the same outputs as those in Ê, then E is said to be “correct”.
Conversely, if E 6= Ê, then at least one task in E produced a wrong result and
the execution is said to have “failed”.

In order to differentiate whether a task execution is considered to be on a
client or verifier and whether the inputs and outputs of the execution are those
of E or Ê, the following notation is adapted. Note that a “hat” always refers
to a reliable resource, input or output. Let i(T, E) denote the input of T in E

and î(T, Ê) the input of T in Ê. Furthermore, let o(T, E) denote the output of
T on the client, ô(T, E) the output of T on the verifier based on inputs from E,
and ô(T, Ê) the output of T on the verifier based on inputs from Ê. Note that
the notations ô(T, E) and ô(T, Ê) differ. Both indicate outputs generated on a
verifier, but the first assumes i(T, E) and the latter î(T, Ê) as inputs.

Probabilistic certification: We consider probabilistic certification based on a
probabilistic algorithm that uses randomization in order to state if E has failed
or not. Given an execution E, a Monte Carlo certification is defined as a ran-
domized algorithm that takes an arbitrary ε, 0 < ε ≤ 1, as input and delivers
(1) either CORRECT or (2) FAILED, together with a proof that E has failed.
The probabilistic certification is said to be with error ε if the probability of the
answer CORRECT, when E has actually failed, is less than or equal to ε.

For instance, a Monte Carlo certification may consist of re-executing ran-
domly chosen tasks in G on a verifier, comparing results to those obtained in E.
If the results differ E has failed. Otherwise, E may be correct or failed. How-
ever, if E has failed, a probabilistic certification with error ε ensures that the
probability of non-detection of failure (based on randomly selecting tasks in G
for re-execution) is less than or equal to ε.

Monte Carlo certification against massive attacks: In the sequel we denote the
number of forged tasks in G by nF . We are considering the two scenarios where
either all tasks execute correctly, i.e. nF = 0, or nF is large, corresponding to
a massive attack. A massive attack with attack ratio q consists of falsifying the
execution of at least nq = dqne ≤ nF tasks. E is said to be “attacked with
ratio q” and nF

n ≥ q. It should be noted that q is assumed relatively large, see
Section 5, resulting from massive attacks such as caused by a virus or Trojan.

4

The objective is to provide a probabilistic Monte Carlo certification against such
massive attacks. Note that detection of small attacks, e.g. single intrusions, is
not the scope of this work. As indicated in Section 1, global computations are
expected to tolerate certain fault rates.

3 Certification of independent tasks

We first consider the case where all tasks in G are independent. In this case,
certification of tasks is equivalent to certification of results. The following Monte-
Carlo Test (MCT), based on task re-execution on a verifier, will be used to detect
if execution E contains forged tasks.

Algorithm MTC

1. Uniformly choose one task T in G. The input and output of T in E are
i(T, E) and o(T, E) respectively.

2. Re-execute T on a verifier, using inputs from E, i.e. i(T, E), to get output
ô(T, E). If o(T, E) 6= ô(T, E) return FAILED;

3. Return CORRECT.

Since all tasks in G are independent1 we always have i(T, E) = î(T, Ê). If
Algorithm MTC selects a forged task, then one knows with certainty that the
execution E has failed. However, if MTC returns CORRECT, then one can only
make conclusions based on the probabilities of randomly selecting a falsified or
non-falsified task. The following lemma addresses these probabilities.

Lemma 1. Let E be an execution with n independent tasks, nF of which have
been forged. The probability that MTC returns FAILED is nF

n and the probability
that it returns CORRECT is 1− nF

n ≤ 1− q.

Proof. The probability that MTC chooses a forged task is nF

n . Then the prob-
ability that MTC returns CORRECT is n−nF

n = 1− nF

n ≤ 1− q. ut

The theorem below gives a lower bound on the number of tasks to be re-
executed in order to achieve a specific ε.

Theorem 1. Let E be an execution with only independent tasks and assume that
E is either correct or massively attacked with ratio q. For a given ε, the number
of independent executions of algorithm MTC necessary to achieve a certification
of E with probability of error less than or equal to ε is N ≥ d log ε

log(1−q)e.

Proof. Consider N executions of Algorithm MTC. If during any of the N exe-
cutions MTC selects a forged task, the execution has failed. Therefore, assume
that only non-forged tasks are selected. According to Lemma 1 the probability
of MTC selecting a non-forged task is n−nF

n ≤ 1−q. Then N independent appli-
cations of MTC lead to a Monte-Carlo certification with a probability of error
bound by ε ≤ (1−q)N . For a given ε, it is thus sufficient to select N ≥ d log ε

log(1−q)e
tasks. ut
1 In the case of task dependencies this assumption about the inputs does not hold

anymore, as will be addressed later.

5

4 Certification in the presence of task dependencies

In the previous section there is no difference between certification of tasks and
their respective results. If one allows for dependencies among tasks the certifica-
tion of the results of tasks is more difficult. The problem lies in the way a reliable
resource has to determine the validity of results. Any measure of validity of a
task’s result based on the comparison to the results obtained by re-executing
the same task on a reliable resource, depends on the validity of the inputs the
reliable resource uses for re-execution. Just the fact that the outputs of a task
execution and its re-execution on a reliable resource produce identical results
does not say much about the validity of that result, since in the assumed de-
terministic computing environment the same faulty input will produce identical
faulty output. Thus, in the presence of dependencies, o(T, E) = ô(T, E) only
indicates that the results are the same, but not that they are correct. It should
be noted that correctness would imply that o(T, E) = ô(T, Ê).

4.1 Faulty tasks and the concept of initiators

The randomized testing used in Section 3 is only valid for result certification
of independent tasks. If we were to apply the same reasoning in the presence
of dependencies, certification based on repeated application of Algorithm MTC
would only certify results if o(T, E) 6= ô(T, E) for each falsified T selected by
MTC. However, this assumption is too restrictive since it would assume that a
re-execution with some (perhaps incorrect) input values would always expose2

the forgery. This weak assumption could be easily exploited by an attacker.
Suppose Algorithm MTC is used. If o(T, E) 6= ô(T, E) then E has failed.

However, o(T, E) = ô(T, E) indicates a correct output only if the inputs are cor-
rect, i.e. î(T, Ê). This implies that T has no forged predecessors. In the following
discussion, falsified tasks which have no falsified predecessors will be called ini-
tiators. The probabilities associated with randomly selecting initiators will be
the basis for result certification. It should be noted that it is difficult to speculate
on the capabilities of detecting incorrect results of falsified tasks that are not
initiators. Pathological attacks may be derived where the output of one falsified
task may be custom tailored to produce results for other falsified tasks that do
not differ from their re-executions (with the forged inputs) on reliable resources.

4.2 Certification

Result certification is directly related to the probability of the certification algo-
rithm selecting initiators. Let nI denote the number of initiators in G. Note that
the determination of nI depends on the graph and which nodes have been falsi-
fied. The following lemma and theorem, modified from Lemma 1 and Theorem 1,
can be stated.
2 It should be noted that the task inputs define a rather limited “test vector” for the

task. The quality of test vectors with respect to fault coverage has been extensively
studied in the context of the Test Vector Generation Problem [3].

6

Lemma 2. Let E be an execution with n tasks with dependencies. Furthermore,
let nF and nI be the number of forged tasks and initiators respectively, nI ≤ nF .
The probability that MTC returns FAILED is at least nI

n and the probability that
it returns CORRECT is less than or equal to 1− nI

n .

Proof. The probability that MTC selects an initiator, and thus returns value
FAILED, is nI

n . Then the probability that MTC returns CORRECT is less than
or equal to n−nI

n = 1− nI

n . ut

Lemma 3. Let E be an execution of tasks with dependencies and assume that
E is either correct or massively attacked with ratio q. For a given ε, the number
of independent executions of algorithm MTC necessary to achieve a certification
of E with probability of error less than or equal to ε is N ≥ d log ε

log(1−nI
n)

e.

Proof. Consider N executions of Algorithm MTC. If during any of the N ex-
ecutions MTC selects an initiator, the execution has failed. Therefore, assume
that only non-initiator tasks are selected. According to Lemma 2 the probability
of MTC selecting a non-initiator task is n−nI

n = 1 − nI

n . Then N independent
applications of MTC lead to a Monte-Carlo certification with a probability of
error bound by ε ≤ (1 − nI

n)N . For a given ε, it is thus sufficient to select
N ≥ d log ε

log(1−nI
n)

e tasks. ut

Unlike the case of Theorem 1, this result is more restrictive since the value of
nI depends on G under consideration of the worst-case attack scenario and it is
likely to be small. In the remainder of the paper we study the implications of
worse case attacks, where the attacker knows or can estimate the structure of
the graph. We will prove that even in pathological cases a lower bound on the
number of initiators nI can be defined, considering G and attack ratio q.

Let G<(T) denote the sub-graph induced by all predecessors of a task T or a
set of tasks V , i.e. G<(V). Furthermore, let G≤(T) = G<(T)∪{T}. The graphs of
successors are denoted similarly, i.e. G>(T) and G≥(T). We now formally define
the set of initiators.

For a given G with n tasks let F denote the set of all falsified tasks. The
initiator set I(F) is defined as the set of all Ti ∈ F which have no predecessors
in F , i.e. I(F) = {Ti ∈ F : F ∩G<(Ti) = ∅}. It is obvious that the actual tasks
in sets F and I(F) are not known, since otherwise certification would be trivial.

Since re-execution of a task with incorrect inputs may still result in o(T, E) =
ô(T, E) one has to consider the limitations induced by the inputs.

Lemma 4. Given the set of all falsified tasks F and an arbitrary T in G, if the
outputs of T are not correct, then it must be that G≤(T) ∩ I(F) 6= ∅.

The proof follows directly from the fact that, if the output of T is not correct,
then either T is faulty, i.e. T ∈ F , or there must be at least one forged task
in predecessor set G<(T). Determining that the output of T is incorrect may
require to verify few or many tasks and is largely dictated by the size of G≤(T).

7

The following definitions will aid in capturing the difficulties associated with de-
termining whether results are incorrect, considering that a pathological attacker
will minimize the probability of finding forged tasks.

First, the minimum number of initiators with respect to given subgraph of
G is defined. Let V be a set of tasks in G and let k ≤ nF be the number
of falsified tasks assumed. Define γV (k) as the minimum number of initiators
with respect to V and k such that γV (k) = min|G≤(V) ∩ I(F)| for |F | ≥ k
and of all G≤(V) ∩ I(F) 6= ∅. Recall that nq ≤ nF is the smallest number of
falsified tasks as the result of an attack with ratio q. Then γG(nq) is the smallest
number of initiators possible, e.g. the number associated with a pathological
attack scenario. With respect to Lemma 2 the probability that MTC returns
correct can thus be written as 1− γG(nq)

n .
Next, we will define the minimal initiator ratio ΓV (k) as

ΓV (k) =
γV (k)
|G≤(V)|

. (1)

The minimum initiator ratio is helpful in determining bounds on probabilities
of selecting initiators in predecessor sets. This is of interest when the structure
of G will allow for adjustments of probabilities of finding initiators based on the
specific task considered by an algorithm like MTC. With respect to G this allows
the number of verifications in Lemma 3 to be expressed as N ≥ d log ε

log(1−ΓG(nq))e.

4.3 The impact of graph G

Knowing the graph, an attacker may attempt to minimize the visibility of even a
massive attack with ratio q. From an attacker’s point of view, it is advantageous
to “hide” falsified nodes in the successor graphs of certain tasks in order to
achieve the pathological minimum number of initiators γG(nF). This allows to
generate a general bound on γG(nF) based on the the size of successor graphs.

Lemma 5. Given height h (the length of the critical path) and maximum out-
degree d of a graph G, the minimum number of initiators is

γG(nF) = d nF(
1−dh

1−d

)e. (2)

Proof. Given h and d and any task Ti in G the maximal size of the successor
graph G≥(Ti) is bound by |G≥(Ti)| ≤ 1 + d + d2 + . . . + dh−1 = 1−dh

1−d . Thus, a

single initiator Ti can “hide” at most 1−dh

1−d of the nF falsified tasks in F . This
would, by definition, make all tasks in G>(Ti) non-initiators. If each initiator can
“hide” a maximum of 1−dh

1−d tasks in F , the minimum number of such initiators
is d nF(

1−dh

1−d

)e. Note that this term is has the smallest value for nF = nq. ut

For specific graphs this general worst-case scenario may be overly conserva-
tive. The following Extended Monte-Carlo Test (EMCT) will allow graphs with

8

relatively small predecessor subgraphs to overcome the restrictions imposed by
γG(nq). Note that it is similar to Algorithm MTC except that it contains pre-
visions to verify all predecessors for the task T selected for verification. Thus, it
effectively verifies G≤(T).

Algorithm EMTC

1. Uniformly chose one task T in G.
2. Re-execute all Tj in G≤(T), which have not been verified yet, with input

i(Tj , E) on a reliable resource and return FAILED if for any Tj we have
ô(Tj , E) 6= o(Tj , E).

3. Return CORRECT.

In the context of our application domain in which G consists mainly of
out-trees, Algorithm EMTC exhibits its strength, e.g. the worst number of
re-executions in Step 2 is less than height h.

Theorem 2. For a single execution of Algorithms EMTC the probability of
error is eE ≤ 1 − q. The average cost in terms of verification, i.e. the expected
number of verifications, is

C =

∑
Ti∈G |G≤(Ti)|

n
. (3)

Proof. A pathological attacker who knows that uniform random task selection
is used and that all predecessor tasks are verified can minimize detection by
falsifying tasks in such a way as to minimize error propagation, thereby mini-
mizing the total number of tasks affected by falsifications. In other words, in the
worst case nq falsified tasks in G are distributed so that the number of T whose
G≤(T) contain falsified tasks is minimized. This can be achieved in any scenario
which attacks the nq tasks Ti with the smallest successor graph G≥(i), e.g. first
attack only leaf tasks, then tasks at the second level etc. until nq tasks have been
attacked. Finally, the error eE is 1 minus the probability of G≤(T) containing a
faulty task. In the worst case described above this leads to eE ≤ 1− nq

n ≤ 1− q.
The average number of verifications is simply the average number of tasks in

the predecessor graph verified in EMTC Step 2. Note that once T is selected,
the cost can be specified exactly as |G≤(T)|. ut

5 Results

Table 1 shows results with respect to a single invocation of the algorithm specified
for pathological cases associated with general graphs and out-trees (as indicated).
The number of effective initiators is the number of initiators as perceived by the
algorithm3. The probability of error is a direct result of the number of effective
3 The term “effective” initiator is used to emphasize that in Algorithm EMTC step 2

any falsification in G≤(T) is guaranteed to result in detection.

9

Algorithm MTC EMTC

Number of effective initiators d nq(
1−dh

1−d

)e nq

Probability of error 1−
d nq(

1−dh

1−d

) e
n

1− q

Verification cost: general G 1 O(n)

Verification cost: G is out-tree 1 h− logd(nv)

Ave. # effective initiators, G is out-tree d nq(
1−(h+2)dh+1+(h+1)dh+2

(1−d)(1−dh+1)

)e nq

Table 1. Results for general graph and forest of out-trees

initiators. The cost of verification reflects the number of tasks verified for each
invocation of the algorithm. When G is a forest of out-trees the cost of verification
changes based on the number of tasks verified, nv, since only non-verified tasks
are re-executed. If attacks are random, the average number of effective initiators
depends on the average size of successor graphs.

Fig. 1. Impact of q on N Fig. 2. Impact of ε on N

The impact of ε and q on the number of invocations of MTC or EMTC
is shown next. The results shown in the Figures 1 and 2 are identical for cer-
tification of independent tasks with MTC and dependent tasks with EMTC.
For different values of ε Figure 1 shows the impact of attack ratio q on N . It
should be noted that N decreases fast with increasing values of q. Conversely, it
shows that probabilistic detection is unsuitable for very small q. Next, Figure 2
shows the impact of ε on N for fixed attack ratios q. Note that N only grows
logarithmically in ε. This is very desirable, as it allows for certification with high
degrees of certainty, i.e. very small ε.

10

6 Conclusion

This paper discussed certification of large distributed applications executing
in hostile environments, where tasks or data may be manipulated by attacks.
Unlike previous work based on independent tasks, we considered fault propa-
gation occurring in applications with dependent tasks. In addition we used a
probabilistic approach with no assumptions about fault behavior. Two proba-
bilistic algorithms were introduced that selected a small number of tasks to be
re-executed on a reliable resource, indicating correct execution with a probability
of error based on probabilities associated with task selection. Task re-execution
was based on utilizing inputs available through macro data-flow checkpointing.
By introducing the concept of initiators, the fault-detection problem associated
with fault propagation were overcome. The cost for this were additional verifi-
cations noticeable in Algorithm EMTC. However, in the context of real-world
applications, represented by out-trees, this translated to only minor overhead.

References

1. CERT/CC Statistics 1988-2004, CERT Coordination Center,
http://www.cert.org/stats/cert stats.html

2. Foster, I., Kesselman, C., Nick, J. and Tuecke, S., Grid Services for Distributed
System Integration, IEEE Computer, No. 6, Vol. 35 (2002) 37-46

3. Fujiwara Hideo, Logic Testing and Design for Testability, MIT Press, 1985
4. Gao, L., and Malewicz, G., Internet Computing of Tasks with Dependencies us-

ing Unreliable Workers, 8th International Conference on Principles of Distributed
Systems (OPODIS’04), Dec., 15-17, 2004 (to appear)

5. Germain, C., and Playez, N., Result Checking in Global Computing Systems, Pro-
ceedings of the 17th Annual ACM International Conference on Supercomputing
(ICS 03), San Francisco, California, 23-26 June, (2003) 218-227

6. Jafar S., Varrette S., and Roch J.-L., Using Data-Flow Analysis for Resilence and
Result Checking in Peer to Peer Computations, Proceedings of the 15th Interna-
tional Workshop on Database and Expert Systems Applications (DEXA 2004),
Zaragoza, Espagne, 30th Aug. - 3rd Sep., (2004) 512-516

7. Montagnat, J., Breton, V., and Magnin, I., Partitioning medical image databases
for content-based queries on grid, Methods of Information in Medicine, Special
Issue HealthGrid04, 2004, (to appear)

8. Ragtime: Grille pour le Traitement d’Informations Médicales, Région Rhône-Alpes
http://liris.univ-lyon2.fr/∼miguet/ragtime/

9. Sarmenta, Luis F.G., Sabotage-Tolerance Mechanisms for Volunteer Computing
Systems, Future Generation Computer Systems, Vol. 18, Issue 4 (2002) 561-572

10. Wasserman, H., and M. Blum, Software reliability via run-time result-checking,
Journal of the ACM, Vol. 44, No. 6 (1997) 826-849

11. Von Welch, et.al., Security for Grid Services, 12th Intl. Symposium on High Perfor-
mance Distributed Computing (HPDC-12), 22-24 June, Seattle, WA, (2003) 48–57

