Parallel efficient algorithms and their programming.

Fundation ofATHAPASCAN-1.

Jean-Louis Roch
LMC-IMAG
Projet CNRS-INPG-UJF-INRIA APACHE
BP 53X
100, rue des Mathématiques
38041 Grenoble Cedex 9, France
Email:[Jean- Loui s. Roch] @ mag. fr

October 17, 1997

Ce rapport contient les deux premiers chapitres du tutoriel “Parallel Comflgedora” donné
au colloque annuel de calcul formel ISSAC (Juillet 97, Hawaii) par Jean-Louis &dGilles Vil-
lard. Il décritles bases pour la construction, I'analyse et la programntditigorithmes paralleles
sur des architectures distribuées. Utilisant les techniques a lab#sggorithmique parallele syn-
chrone PRAM, il montre comment elles peuvent étre appliquées a la coimtrdtlgorithmes
paralléles qui conduisent a des programmes performants sur des architecttrieséagis asyn-
chrones. Deux points sont alors critiques: la prise en compte des surcodts de coatiourat
d’ordonnancement.

Le premier chapitre presente les techniques permettant la constructigordtahesefficaces
Difféerents criteres doivent étre minimisés: le nombre d’opéretiqui doit rester proche du nom-
bre optimal d’opérations sur une machine séquentielle, le temps parail@l@ah(i.e. sur un
nombre infini de processeurs) pour permettre que le temps d’exécution diminue lorsaume-le
bre de processeurs augmente (on parle d’extensibilite), le volume de comnamsqaiur limiter
leur surcodt sur une architecture distribuée. Pris séparémerdiffaents criteres conduisent a
des algorithmes fondamentalement différents. Un algorithme efficace dostr&aliser un bon
compromis entre ces criteres, pris deux a deux ou dans leur ensembleolieshtsbasé sur un
couplage entre ces differents algorithmes: on parlpalg-algorithmesou d’algorithmes en cas-
cade
Differents exemples illustrent les techniques de base pour construire deshahgar efficaces
réalisant des compromis interessants. Les algorithmes sont reg€pantlies graphes de flots de
données. Leur programmation est explicitee a partir d’un langage abAirkit(Asynchronous
Tasks Handling).

Le deuxieme chapitre étudie 'ordonnancement de tels algorithmes sur une auochittis-
tribuée asynchrone (modele LogP). Le cas le plus général ou le grapime@nnu (les taches qui
le constituent sont construites en cours d’exécution et sont de durées inconnspEcédsjue-
ment étudié. Un algorithme d’ordonnancement en-ligne qui assure des exécutiorseppour
un algorithme parallele efficace tel ceux etudiés dans le chapitreeipltite. En conclusion,
le langage AHAPASCAN qui permet I'implémentation d’un tel ordonnancement est presenté. Ce
langage (implémenté par une bibliotheque C++) est une réealisation cedcristngage ATH.

Chapter 1

Parallel efficient algorithms

Contents

1.1 PRAM, DFG and cost analysis

1.2

13

1.4

15
1.6

111
112
113
114
1.15
1.16
1.1.7

Increasing granularity

121
1.2.2
1.2.3

Redundancy and cascading divide&conquer

131
1.3.2
1.3.3
134
135

Randomization to decrease time or preserve work.

141
1.4.2
143

Parallel time complexity and NC Classification
Conclusion

Describing PRAM algorithms: ATH language
Time, work and communicationcosts
Efficientalgorithms
Example
Relations between PRAMs

Parallel divideand conquer
Minimizing communicationwork
Conclusion

DFG of the best sequential algorithm

Breaking dependencies

Cascading divide&conquer to minimize time

Applicationsinlinearalgebra
Conclusion

Randomization to suppress dependencies
Randomization to provide efficiency
Conclusion

The PRAMmodel
Execution of a PRAM program and data-flow graphs

e W el VA des § WV Mm%t O Nl ST NS 8T STV

Parallel algorithmic is a successful theory. Several methods, technindgmeadigms, which
are presented in several books and surveys [60, 5, 30, 38, 35, 20, 41, 28, 39, 45] have ékeen dev
oped to build powerful theoretical algorithms. Furthermore, they stand assfbaimplementa-
tion of performant programs on effective parallel architectures. Thoseaeeenniques overflow
computer algebra framework even if arithmetic and algebraic computatiens specific interest.

In this chapter, we introduce the main techniques involved in the building of plaakgjorithms.
They are illustrated on elementary computer algebra problems. The underlyingsfoRAM but
the data-flow graph representation is also introduced. It is used to desceihéions of a parallel
algorithm and to define its cost. Three factors are here preponderant: paxatiatien time,
number of operations and granularity which is related to the required volume of goitetions.
An efficient algorithm realizes a compromise solution between those trocteeda

The organization of the chapter is as follows. Section 1 describes the loé¢dVl PRodel,
the data-flow graph representation and cost analysis. Following sectiostsate, using simple
examples, the main techniques involved in the building of:

e section 2: a coarse granularity algorithm from a fine grain optimal one;
e section 3: a fast optimal algorithm from a very fast but non optimal one;

e section 4: a very fast optimal randomized algorithm from a deterministiotatoptimal
one.

Finally, in the last section, we give an overview of parallel time coxiplefocusing on boolean-
arithmetic circuits which are commonly used in computer algebra.

1.1 PRAM, DFG and cost analysis

The Parallel Random Access Machine (PRAM) [18, 4] is the most common esrcnbdel used
to build and analyze parallel algorithms. Its major feature is to be indepefrdemthe number
of processors used. In this section we focus on the local PRAM model introduced in(88i{
analysis takes into account both arithmetic and communication complexities.

In the following, A denotes an algorithm andl, its restriction for input of sizé)(n).

1.1.1 The PRAM model

A Local Parallel Random Access Machine (PRAM) is set of:

¢ an (infinite) number of processors, ..., Py, ..., each indexed by an integgprocessor
identifieror pi d in short). Each processor is a RAM (Random Access Machine [2]) and
gets its own local memory which contains its own pid.

¢ a global (or shared) memory. Each processor can copy data from the global mematsy into
own local memory: this operation is callgdl obal read orread in short. Conversely,
each processor can copy a data from its own local memory into the global one: ttai@pe
isawr i t e operation.
Initially, the input data are available in global memory. At the end of the cortipatathe
output data are also stored there.

wiztuizs § § W WV &1 %W 7 U V' Wil § §F U W s Wil ~

¢ A program that consists in a finite sequence of RAM elementary instructionsdextdy
the global elementary (i.e. single word location) read and write instructions

e a global clock that ensures a synchronous mode of computation. After initializatisin (fir
top), processors are ready to execute the first instruction of the program.clitaga (or
step, each processor executes the next RAM instruction in the program. Thus itrperfor
either an elementary arithmetic operation within its local memory @caess to the shared
memory (read or write).

The program terminates when processor with pid O executdsathe instruction.

Note that the program may contain branching instructions eventually depending on tlauaid v
Due to branching instructions, at a given top, processors may execute diffesgnttions (Mul-
tiple Instruction Multiple Data — MIMD — type).

Sequencer

@ _-_----ZZ-Z-Z _-_----ZZ-Z-Z
MO @ M1 @ I\/Ip @

Access Completion Signal

Figure 1.1: The local PRAM execution model

Semantics of access in shared memory.Due to the synchronous mode of computation, seman-
tics of global memory access is simple and only depends on the behavior when, at agame t
several processors concurrently accede to a same single location in the stgamory.

At a same top, two processors can't perform both a read and a write in thd®zatien. But
concurrent read (or concurrent write) access may be allowed, depending on thé PRA

e an EREW-PRAM (Exclusive Read Exclusive Write) does not allow concurrecegss to a
single location.

~ W el VA des § WV Mm%t O Nl ST NS 8T STV

¢ a CREW-PRAM (Concurrent Read Exclusive Write) allows only concurrert agaess.

e a CRCW-PRAM (Concurrent Read Concurrent Write) allows concurrent a¢akss the
same mode, either read or write).

When a concurrent write operation is performed into a single location in thedhamory, dif-
ferent semantics are considered depending on the reduction operation perfonpneduce the
final value:

¢ COMMON: all processors have to write the same value. If not, an errooiysed.
¢ ARBITRARY: an arbitrary processor writes its value.
¢ PRIORITY: the processor with the minimum pid writes its value.

e CUMULATIVE: the sum of all the concurrent values is written. The addition ojena
(defined between single location values) is assumed to be associatiiherfmore, it is
assumed to be commutative; this ensures, a semantic independent from the pidsraf the
ing processors likewise concurrent read and common or arbitrary write apeyatirhis
concurrent write mode is also calledmbining[41].

As detailed further, those different variants of the PRAM are relatigkldsed to each others:
each one can simulate the other one with small overheads [14, 41, 28].

Dynamic task creation The above definition presents two drawbacks:
e it assumed that, after initialization, an unbounded number of processors stautier;

e dynamic creation of parallelism has to be described in the program using busyeuvtiis
means that the scheduling of the program is completely described in the program.

In order to address this second point, in the initial definition from [18], only thegssmr with pid
0 starts execution of the program. To generate parallelism, an eleméotak <e> instruction
is defined. When a processérexecutes this instruction, an inactive procesB8obrs reset. The
accumulator off (which may contain an address in the shared memory where some parameters
are stored) is first copied into the one®f. The pid of P’ is then put into the accumulator &f.
This allowsP and P’ to later communicate via the shared memory.

At the next stepP executes the following instruction (the one that followsftloe k) and P’ starts
the execution of the program at the instruction labeled

Usingf or k, dynamic task creation is made possible, scheduling (allocation of inactieegsors)
being ensured by the PRAM machine. However, this modification implies th@RAM program
that uses a polynomial numbe?(!) of processors takes a tinfilog) to be executed, forbidding
the building of constant time algorithms; if an algorithm is involved during thecetion of a
program (e.g. inside the body of a loop), this overhead may easily be avoided. Armdlgots
in this chapter are made under the previous model, thus without taking into accountdaskah
overhead.

wiztuizs § § W WV &1 %W 7 U V' Wil § §F U W s Wil s

Randomized PRAM To support execution of randomized algorithms, the PRAM is extended in
the following way. A new andominstruction is introduced that allows each processor to generate
(in one top) a random bit (or a random number that fits in a single memory location).

Random generations (i.eandominstructions) performed by a processor during the execution
are assumed to be independent realizations of an uniform law. Moreover, gameErformed
in parallel at a given top by different processors are also assumed to Ipemint.

1.1.2 Execution of a PRAM program and data-flow graphs

Being given the input data, the execution of a PRAM program may be representedirasta
acyclic graph. Vertices correspond to instructions that are executed (deg,\@ne instruction)
and edges to precedence relations between instructions.

Basically, due to the synchronicity of the PRAM,uf(resp. w) is the vertex representing an
instruction executéldat step: (resp.: + 1), then there is an edge fromto w. If we forget extra
synchronization due to the machine model, synchronizations required by the algorittirtoitse
ensure correctness of the execution correspond to the ordering of access imtioa lmcnemory.
This ordering can be represented by the (macro) data-flow graph (DFG)Yré&daiee execution.
DFG is direct acyclic and bipartite with node séts- {ji,. .., j.} corresponding to instructiong (
meaningob) and? = {t;,...,t,,} corresponding to single assignment dataéaning transition).
An edge goes from, (resp.y;) to j; (resp.i) if j; is a read (resp. write) instruction of the global
data related toy..

In this DFG, any memory access, either global or local, is represented bydge between
a location (represented by a transition node) and an instruction (a job nodeddbaes the ac-
cess. Except for transitions related to input, immediate ancestors otreasitiont, are write
instructions: only one on an exclusive-write PRAM, eventually more on a conttuméte one.
Conversely, its immediate successors (except for transitions rétapedput) are read instructions:
only one on an exclusive PRAM, eventually more on a concurrent-read one. This thna&nwsen
all immediate successors (job nodes) of a transition have been executestatien related to it
in global memory may be garbaged.

Let us consider the DFG related to a tree computation scheme. As aratiloisfrwe consider
two algorithms that solve thiterated product problem: it consists in computing the product
of n elements. In order to exhibit parallelism, multiplication is assumebeti@ssociative and
commutative. A balanced binary tree scheme gives an algorithm that works€EREW PRAM,;
related DFG is shown in figure 1.2.a. On a CUMULATIVE-ERCW PRAM albgucts may be
performed concurrently and cumulated on a shared location (fig. 1.2.b).

This graph defines a precedence relation, denetetietween instruction nodes ih. Let
Jji,J2 be two nodes in/; j; < j, if there is a path in DFG fronj; to j,. In the following, we
will consider the subgraph F'G,(.J, <) of DF G, where only arithmetic instructions and their
precedence relations are represented.

Remark 1. The data-flow description of the algorithm is roughly equivalent siraight-line
program [32].

Ynstructions corresponding toandw may be executed by different processors.
2also calledterated sunwhen an addition law is considered

~7 W el VA des § WV Mm%t O Nl ST NS 8T STV

.
O,
(a) (b)

Figure 1.2: DFG of two iterated products: (a) EREW (b) cumulative-ERCW

Remark 2. Note that symmetry of input (resp. output) edges to a transition node assumes com-
mutativity of access. This is verified for any concurrent write (respdy@access defined on the
PRAM.

1.1.3 Describing PRAM algorithms: ATH language

PRAM stands as an abstract model virtualizing any parallel architecture@rder to describe
PRAM algorithms, we need an elementary programming language which leadsasyadescrip-
tion of algorithms.

Since the evaluation of a parallel algorithm is directly related to thysisaof DFG, a sequen-
tial description should be sufficient thanks to the implicit appearance of datadEpees: each
read access to a location gets the value put by the last write in a seq@setation. However,
two characteristics, which do not appear in a sequential description, laeetéien into account:

¢ two levels of memory access are distinguished: local and global. Global meanoegs
support CUMULATIVE-CRCW semantics.

¢ the elementary unit of instruction is the block. A block is a sequence of elemeRrdvy
instructions. A block is executed in sequential; it takes benefit of locakacce

In the following, we consider an extension of the basic PRAM basic language introoudss]
based on those two considerations. This abstract language is Adli¢can acronym forAsyn-
chronous Tasks Handling

Blocks of instructions are defined as procedures bodies. The execution of such a bhdlgdis
atask Tasks may be ordered either in sequence using synchronous procedure call or ih paralle
using asynchronous procedure calls (prefixed by k). In this last case, precedence relations
between tasks are defined in a natural way, according to shared-data depentteicappear

wiztuizs § § W WV &1 %W 7 U V' Wil § §F U W s Wil ~

in a sequential execution of the program. Data dependencies concerning localeddi@nanot
considered in the relative DFG.

Figure 1.3 gives two different recursive programs for the iterated product asDg+-like
langauage. Version (a) works on an EREW PRAM and is related to the DFGhpedsa figure
1.2.a. Version (b) works on a CUMULATIVE-ERCW; the corresponding DFG is prteskin
figure 1.2.b.

Product(a : in E
b: inE
c : out E)
begi n
c.Wite(a.Read()*b. Read());
end IterProd(n :in integer,
a[l..n] : in array of shared E,
IterProd(n : in integer, res : out shared E)
a[l..n] : in array of shared E, begi n
res : out shared E) i f(n==1)
begi n res. Cumul <*>(a[1].Read());
i f(n==1) el se
res.Wite(a[l].Read()); fork IterProd(n/2, a[l1l..n/2], res);
el se fork IterProd(n-n/2, a[n/2+1..n], res);
tnpli, tnp2 : shared E; end if
end
fork IterProd(n/2, a[l1..n/2], tnpl);
fork IterProd(n-n/2, a[n/2+1..n], tmp2);
fork Product(tnpl, tnp2, res);
end if
end
@ (b)

Figure 1.3: ATH code of two iterated products: (a) EREW, (b) cumulative-EROM&A in shared
memory are explicitly declared by the prefikar ed. Notationx. f () means that functiof
is called on the data in shared memaryIn program (b), the function cak. Cumul <*>(v

) specifies a cumulative concurrent write on the data in shared mexyahe commutative and
associative binary function implementing the operatioh.is

1.1.4 Time, work and communication costs

Consider a PRAM program. In the following,denotes the size of the input. The arithmetic cost
is characterized by:

e theparallel time7'(n) which corresponds to the number of executed steps;
e thearithmetic worki¥,(n), i.e. the whole number of operations performed.

Those quantities are independent of the number of processors and thus may be defined directly
from the DFG description of the execution.

Definition 1 The parallel timel’(n) is the maximal depth of DFG] for any inputz of sizen:

T(n)= max Depth(DFG,(z)) (1.2)

@,||=(|=n

e W el VA des § WV Mm%t O Nl ST NS 8T STV

The arithmetic workV, (n) is the number of instruction nodes of DEGfor any inputz of size
n:

W,(n) = max #V(DFG,(z)) (1.2)

@,||z(|=n

The arithmetic cost is denoted:
O.(T(n), Wa(n)) (1.3)

Similarly, the communication cost is characterized by two factors:

e the communication del&yC;(n), i.e. the maximal number of global memory access per-
formed by a processor;

e thecommunication workV.(n), i.e. the whole number of global memory access performed.

The PRAM program implements a scheduling of the DFG on an infinite number of processors:
any access to the local memory on each processor is not considered as a catiounious, the
communication cost may vary depending on the number of processors used in the program.

To define communication cost with respect to a parallel algorithm (independemuwhber of
processors, and so more general than the program that implements it), wefevitiorits DFG.

Definition 2 The communication work’,(r) is the maximal number of edges for any input of size
n:

We.(n) = max #E(DFG(z)) (1.4)

@,||l=(|=n

The communication delay,(r) is the maximal length of a path i /GG from an input data to an
output one:
Ci(n) = max Depth(DFG(z)) (1.5)

z,la]|=n

The communication cost is denoted:
O.(Cq(n), We(n)) (1.6)
In order to compare arithmetic and communication costs, the granwétijyis defined.

Definition 3 Thegranularityg(r) is the ratio between the arithmetic and communication works:

Wa(n)
We.(n)

g(n) = (1.7)

Remark. Previous costs are defined at for DFGs with unit time instructions and unitraizg-t
tions. For general non unit size DFGs (denoted as macro data-flow graphs) reostsghted by
the size of each node: either the number of elementary instructions for a job node etioé s
related data for a transition node. Macro data-flow graphs will be spebyfgtablied in chapter 2.

3C(n) is calledcommunication complexiiy [28].

wiztuizs § § W WV &1 %W 7 U V' Wil § §F U W s Wil e wle

1.1.5 Efficient algorithms

Let A be an algorithm with cost'(n), W,(n), Cy(n), W.(n). Let W,(n) be the work of the best
known (sequential) algorithm that solves the same problem.

The building of a parallel algorithm to solve a given problem may be aimed atrelift direc-
tions:

¢ either finding the smallest amount of time required to solve a problem. In thigxtont
the classNC' of problems that may be solved in parallel tiffi¢n) = log®™ n using a
polynomial number of processolg, (n) = n°() plays a central role.

¢ or building anefficientprogram that leads to solve larger problems in a reasonable amount
of time taking benefit of the ability to use several processors, let ug.segre, arithmetic
and communication overheads (il&,(n) and¥.(n)) are to be carefully taken into account
in order to guarantee efficient executions.

A common trade-off [38] consists in building parallel algorithms that:

¢ havepolynomial speed-yp.e.

T(n)=0(Ws(n)") with e < 1. (1.8)
e arework-preservingi.e.
Wa(n) = O(Ws(n)). (1.9)
Theinefficiencyy measures the arithmetic overhead:
B W,(n)

v(n) = W) (1.10)

e requirefew communications.e
We(n) = O(W,(n)") with e < 1. (1.112)

Such an algorithm is also sdiacal or of coarse-granularityor with polynomial granularity
(note thatg(n) = Q(n*) with a > 1).

Definition 4 A is said:

o fastif it achieves poly-logarithmic parallel time with a polynomial number of operatioas, i.
T(n) = log® W n andW,(n) = n°0).

e optimalif it is fast and has constant inefficiency.
¢ efficientif it has a polynomial speed-up and a constant efficiency.

In order to not absolutely reject fast algorithms involving a small overhead im@etic opera-
tions, fast algorithms with poly-logarithmic inefficiency will be consideredféisientalso.

e o W el VA des § WV Mm%t O Nl ST NS 8T STV

In the following, some main techniques that lead to the building of an effiaietiof coarse-
granularity algorithm are overviewed. It turns out that minimizing time withmreserving work
(i.e. building N C algorithm) is of specific interest:

¢ algorithmic techniques involved for both are very close;
e it gives a lower bound on the best parallel time that may be achieved,;

¢ an inefficient but fast algorithm may successfully be coupled to a slowesfticient one to
build a faster program.

1.1.6 Example

We illustrate the previous definitions on the iterated sum algorithm preserfigdre 1.3.a. Scalar
product of two vectors is directly reduced from iterated sum; it may be apmiperform matrix
multiplication in a semi-ring.

[terated sum

For the EREW algorithm presented in figures 1.3.a and 1.2.a (balanced tree coonmgdaéme),
we assume, = 2"

T(n)=logn Ca(n) =logn + 1
Wyn)=n-—1 We.(n)=2n-1
This algorithm is optimal since its cost is — asymptotically — a lower bound.
As a consequence, the scalar product of two vectors is computed on an EREW with cos
O.(logn,n) and O.(logn,n). (1.13)
On a semi-ring;+ is commutative. Thus, on a cumulative-CRCW PRAM, this problem may
be computed with parallel cost (fig. 1.2.a):
O.(1,n) and O.(1,n). (1.14)

However, the description of the computation scheme (cf program in fig. 1.3.b) etpyre
O.(logn,n).

(1.12)

Matrix product

Consider the problem of computing a square matrix produet AB in a semi-ring (i.e. using
only 4+ and x operations).

Let » be the dimension of the matrices: sing;, = >}, A; 1Bz, the problem reduces t&
independent scalar products. Using 1.13, we obtain a parallel algorithm with cost:

O.(logn,n*) and O.(logn,n?). (1.15)

SinceW;(n) = O(r?) [37], this algorithm is efficient.

However,g(rn) = O(1) and it is not coarse-granularity. Besides, it can be seen thatjdfa
field (or ring), the above algorithm is not efficient (polynomial inefficiency) neitheoretically
sinceW, = O(n?%7) [15, 45] nor practically sinc&(»?#!) algorithms are of practical use [3, 40,
17]. We will see in following sections how to overcome those problems.

1.1.7 Relations between PRAMs

We consider the cost of the execution of a parallel algorithm (defined on a CUMMEATRCW

PRAM for instance) on a given PRAM with a fixed number of processors and witwih seman-

tics for access in shared memory. Two cases are distinguished: when therroiiptmeessors is
decreased and when memory access are restricted. We consider heretomigtar costs. The

main consequence is the existence of optimal — within a constant factor — sonslat a CRCW
algorithm that uses an unbounded number of processors on an EREW machine with a fixed number
of processors.

Theorem 1 Fine grain simulation with fewer processors - Brent’s prirtiple [9, 28]. Let A

be an algorithm that can be implemented to run in (arithmetic) parallel timand work W,

on a given PRAM with an unbounded number of processors. If each local access corresponds
to a global one, themd can be scheduled on the same PRAM, but wifirocessors, to run in
(arithmetic) parallel timel’,(n):

It can be noted that this fine grain simulation does not take into account additivdumogd the
computation of the schedule [12, 22].

Remark. In chapter 2, theorem 10 gives a more general simulation result with analoguous
bounds. It consists in a constructive coarse grain simulation for DFGs wh#mmetic nodes
may represent a sequence of elementary instructions.

Theorem 2 Simulation with restricted access in global memory[28, 38]. Let.4 be an algo-
rithm that can be implemented to run in (arithmetic) parallel tifyeon a CUMULATIVE-CRCW
PRAM withp processor. Thend can be implemented on an EREW PRAM witbrocessors to
run in timeO(T), log p).

1.2 Increasing granularity

Efficient parallel algorithms require near-optimal work; obviously, the cheafalysis of the small-
est depth DFG induced by a sequential algorithm among the best is then of prat&oadi.

As a major example, sequential algorithms based on a partitioning of the probleamnatioy —
independent subproblems have intrinsic parallelism if partitioning and mergingg¢over the
global solution) steps are either parallel or of neglected cost. This situgtipeaes frequently
in numerous divide&conquer algorithms (let us gaarallel divide&conquey. As a computer
algebra instance, modular methods based on Chinese remainder computations [2, 10] amount t
this scheme.

Once a fine grain fast parallel algorithm is built, increasing granulagitgguired to obtain an
efficient algorithm with coarse-granularity. In this section, the technigusisting in stopping the
recursive splitting is illustrated on the matrix product problem; we promedimal granularity for
this problem.

- T W el VA des § WV Mm%t O Nl ST NS 8T STV

1.2.1 Parallel divide and conquer

Let us consider the example of matrix multiplication using a standard bi-dio@sddlock algo-
rithm:

l A Agg] l Bi1 B] _ l A B+ A12Bar Ay Big + A1 By (1.17)

Ay Ay By By A Bi1 4+ AyaBay A2 Big + A Bag |

All block matrices products, of dimensiar'2, can be multiplied in parallel. Applying recursively
this splitting scheme leads to a parallel algorithm with cost:

O.(logn,n*) O.(logn,n®) (1.18)

Note that, since coefficient addition is associative, each entry in the ougitik may be computed
as an iterated sum of values. This allows the whole computation to take a tinge: (instead
of log® n if additions where performed naively at each step). This remark appeacslglion the
DFG description for a CUMULATIVE-CRCW PRAM 1.4: all final sums are madeéi(1) time.
But the splitting process, which involves no arithmetic operation but reeuicrks (cf fig. 1.3.b),
requiresO(log n) time using recursive forks Another technique to obtaid, (log n,n*) consists
in pipelining additions [1].

Remark. The same strategy applied to Strassen’s algorithm leads to a pargteitiain with
cost:
O.(logn,n'&7) O.(logn,n'&7) (1.129)
Optimal in work (on a semi-ring), this algorithm has granulagity) = O(1): it is roughly
equivalent to a recursive version of 1.15). In the next section, we detail hionwrease granularity
in order to build an efficient algorithm with coarse-granularity.

1.2.2 Minimizing communication work

Obtaining a coarse-granularity algorithm requires to minimize communicafidns can be done

by stopping the recursive parallel splitting process at a given depth, let weh&aysub-matrices
are of size lesser than(i.e. depthlog 7). Operations — resp. sums and products — on matrices
of dimensionk are then performed sequentially, using an optimal algorithm — resp. inim#
andO(n*) —. The cost is then:

k' k
which gives an algorithm with granularigfn) = k. We thus obtain a parallel efficient algorithm
with arbitrary (polynomial) granularity.

3
O, (K +logn,n*) 0. <k2 +log 2 ”—) (1.20)

Theorem 3 For anyg, log'/®n < ¢ < n, twon x n matrices can be multiplied by an algorithm
of granularity g with parallel cost:

3.3 2 n_3
Oa(g,n) Oc<g + log n, g)'

“Note that the brute force program (fig. 1.4) which perforrestively fork instructions require3, (n3, n3) !

wetboms VWl Vamfd AWl W W WS W W WSl W0 NS TS e

Cunul ProductTerm(a : in E,
b: in E
c: out E)
begi n
c. Cunul <+>(a. Read()*b. Read());
end

MatrixProduct(n : in integer
a: in array[1..n,1..n] of E
b: in array[1l..n,1..n] of E
c : out array[1l..n,1..n] of E)
begi n
i, j, k: local integer;

for i =1..n |oop
for j =1..n |loop
for k = 1..n | oop
fork Cumul Product Tern{ a[i, k], b[k,j], c[i,j])
end | oop
end | oop
end | oop
end

| a2 | | a3] | a2t |

Figure 1.4: DFG of the multiplication of tw® x 3 matrix (cumulative-CRCW)

The previous algorithm 1.20 proves the upper bound.
The following theorem gives lower bounds for communication costs. It shows thateti@us

algorithm achieves an optimal communication delay and an optimal granulavatygialgorithms
that achieve an optimal communication delay.

Theorem 4 Let A be an efficient parallel algorithm that multiplies two matrices of dimension
in timeT" using(+, x) only and performing(r?) operations. Then,
2/3 n’
Co=Q (TP +logn) W.=Q (W) .
d

Since A is efficient,7 = O(n®) with ¢ < 3; by reduction from iterative sum, we thus have
Cq = Qlogn).

i W el VA des § WV Mm%t O Nl ST NS 8T STV

Kerr [37, 1] shows the lower boun@l(rn®) on the arithmetic work. Sincel performs©(n?)
operations, its execution can be scheduled in th(i€) usingp = % processors. Let;, 1 < < p,
be the number of shared memory access performed by procesa@rthen haveV, = >F_, s;
andC,; > max’_, s,. To obtain a lower bound o, andC;, we use the following lemma [1, 25]:
if a processor reads at moselements of input matrices and computes at mqsrtial sums of
their product, then this processor can compute no more iHamultiplicative terms for these
partial sums.

Applying this lemma tg; which reads or writes at mostelements and sinde(r*) multiplicative
terms are to be computed, we have:

Zp:fgﬂ = Q(n?). (1.22)

7
=1

Boundings; by C; and replacing by % leads to:

Ca=Q(T77). (1.22)

Noticing thaty™"_, s>/ < C1/*S°2_, s;, we obtain:

n3
d

which concludes the proadf.

Recursive multiplication algorithms. A similar study can be applied to other recursive matrix
multiplication algorithms (e.g. Strassen). It also lead to efficiemalpel algorithms with both
polynomial speed-up and polynomial granularity that lead to performant implenmrg{ti7].

1.2.3 Conclusion

In this section, we have studied the DFG of a sequential algorithm, based on a&drapier
scheme, that contains inherent parallelism. By halting the recursive grizcesder to minimize
communications, we have exhibited a family of efficient parallel algorithiitis avbitrary coarse-
grain granularity.

Due to its practical interest, this technique has been successfully applkadous problems.
One of significant interest in computer algebra is the discrete Fourier tramsfdie direct analysis
of the FFT algorithm leads to a parallel algorithm with cost:

O.(logn,nlogn) O.(logn,nlogn).

A clustering of elementary instructions (block clustering on the hf@(steps and cyclic clustering
on the Iasll% steps, cf fig. 1.5) leads to an algorithm with parallel cost [41, 39]:

O.(vVnlogn,nlogn) O.(vn,n).

This algorithm has polynomial speed-up, optimal work and achieves also optimal gitytla

wetboms VWl Vamfd AWl W W WS W W WSl W0 NS TS i §

) o o o
X X X X
o o < <
X X X X
o I © ©
x x x X

N o~
o (]
X X X X
< NA - -
X x| X X
0 %) R) r)
X X ; X X
©o © v o o
x X : ; x X

(3] o
~ ~ :
X X 2 2
© ©] I o
X X : X X
)) © ©
x x x X
) o o o
— - - —
< X X X
— ~ < <
— - - —
x x A X x
N N

0 ©
2 2 X X
) I} ~ ~
2 2 x X
< < ~ -
— - - -
X X X X
) 0 0 0
— - - -
x x x X

Figure 1.5: DFG of the EREW),(y/nlogn,nlogn) FFT algorithm of 16 points. There are
2/n arithmetic tasks (represented by square boxes embedding elementary operatidosal
dependencies), each corresponding to a sequential FFT computatign paints. For any task
on the left, shared data dependencies imply a precedence relation with ttasks on the right.

e W el VA des § WV Mm%t O Nl ST NS 8T STV

The resulting algorithm is based on coupling a very fast parallel algorithnmapith time but
requiring many communications, to a sequential one which minimizes commuomic&uch an
algorithm is called “poly-algorithm”; the technique that underlies this couplinglled “cascading
divide&conquer”.

Cascading divide&conquer may be applied in a more general context, by coupling astery fa
parallel algorithm, yet requiring many operations, to a slower one which pesfan optimal
number of operations. This technique makes the building of very fast algorithmdiatraven if
the required number of operations is larger.

1.3 Breaking data-flow dependencies by redundancy and cas-
cading divide&conquer

It may appear that DFGs related to a sequential algorithm contain data-dapmsddat bound
parallelism. Introducing redundant computations may then allow to break depersdencreer
to minimize parallel time. Cascading divide&Conquer may then be used to ddntaoptimal
arithmetic work. In this section we illustrate this technique on the computafithe solution of a
triangular linear system presented in [46]. We focus on communication costs.

Let A be ann x n nonsingular triangular matrix with coefficients in a figkd We assume by
convenience: = 2™. Letb a vector inK". We consider the computation ef= A~1b.

1.3.1 DFG of the best sequential algorithm

The simple forward substitution algorithm has sequential Bagt:) = ©(rn?). Direct analysis of
its DFG (see fig. 1.6) gives its parallel cost:

O.(n,n*) O.(n,n?), (1.24)

which leads to an algorithm with polynomial speed-up but small granulgity = O(1).

If entries of A are in global memory after initialization, we hal®.(n) = Q(n?). In a view
to minimizing the communications involved by the algorithm itself, in theciwlhg we do not
consider the access tbin the communication workV’.(n).

In order to increase granularity, we consider a divide&conquer version of thisithlgd7].
Let A, b andz be divided into blocks:

Ay 0 by T
Ay Ay] l by v [T2] ()
HereA,; is of sizekh x h, z; andz, are of sizeh. We have:
Allllfl = bl and AQQCL’Q = bg - Agllﬂl. (126)

wherez; andz, are computed recursively using the same algoritdm;z; is computed using a
scalar product (see 1.13). Note that the use of a pipeline scheme leads to the prealbeiscpat
1.24.

e TN N A N I A TN VT =R TII =Y i

Update(x : out E,
a: in E

y:inE)

begi n
X. Cunul <+>(-a. Read()*y. Read());
end

FinalDivision(x : in and out E,
a: in E)

begi n
x.Wite(x.Read() / a.Read()); a2l R
end

TriangularSolve (n : in integer, e a22
a: in array[1..n, 1..n] of E
b : in array[1l..n] of E
x : out array[1..n] of E)
begi n
i,j : local integer;

for i = 1..n loop
x[i].Cumul <+>(b[i].Read()); a32
fork FinalDivision(x[i], a[i,i]);
for j = (i+1l)..n | oop

fork Update(x[j], a[j,i], x[i]);

end | oop

end | oop

end

a33

Figure 1.6: DFG for the solving of & x 3 nonsingular triangular matrix

We may then stop the recursive splitting when matrices are ofisizé:, and use sequential
algorithms (triangular system inversion and matrix-vector product) on ceatof size lesser than
k. The resulting parallel cost is:

2

O,(nk,n?) O, (nk %) (1.27)

which leads to an algorithm with granularigyn) = O(k).

Theorem 5 For anye < 1, a triangular nonsingular linear system can be solved by an efficient
parallel algorithm of coarse granularity* in timeO(r'*<).

Choosingk = n® = o(n) in 1.27 proves the upper bound.

1.3.2 Breaking dependencies

The linear time lower bound on previous algorithm time comes from the dependency mldorm
1.26 between computations of andz,. This dependency may be broken by directly computing
the inverses of the triangular nonsingular matridesand A,,.

= T W el VA des § WV Mm%t O Nl ST NS 8T STV

Consider the matrixd split in four blocks of dimensiom /2 (1.25 withh = n/2). Then we

have:)
AT 0
Al = b _ 1.28
l A An AT A3] (1.28)

From theorem 3, the product of two matrices of dimensiors computed with parallel cost
O.(logn,n*). In the following, we will refer to this cost.

To compute the inverse of from 1.28, we first compute recursively and in paraligi' and
A3, Then we compute the last block af! by performing sequentially two parallel matrix
products. The parallel cost for invertingis then:

3

O4(log’n,n®) O, (loan, ?7/3) (1.29)
log"" n

OnceA~! is computedz = A~'b can be computed with the same cost. However, even if polylog-

arithmic in time, this algorithm has polynomial inefficiency. In the next pafgaigrave use it on

A111n 1.26 in order to decrease parallel time.

Remark. The above algorithm is efficient for computing the inverse of a nonsingular triangular
matrix. Note that by using fast matrix multiplication, the parallel coseduced ta, (log” n, n*)

with w < 2.38 [46]. Besides, if computations are performed sequentially when the dimensions of
the matrices are lesser thar> »*, (¢ < 1), the obtained algorithm is efficient and has polynomial
speed-up and polynomial granularity.

1.3.3 Cascading divide&conquer to minimize time

The previous algorithm is not efficient but may be combined to the recursive sedjadgighm
(formula 1.26). The trick is to use it on small dimension matrices (letys sahen the overhead
O(h®) due to the fast inversion of such a matrix becomes neglectible comparedffizients
updates (roughlyr). This leads to the following algorithm of Pan&Preparata [46].

Theorem 6 The solution of a nonsingular triangular system can be computed in
O4(n'/*1logn,n?)

using a standara:® matrix multiplication algorithm.
If a fastn® multiplication is used then the parallel cost is:

O, (n“=2/ @D og% n_n?).

The following 1.27, letA be split inn?/1? blocks of sizei x h. Though, note that a direct com-
putation (see theorem 1.27) leads to a parallel tinie'/? log” n). To avoid thelog n overhead
factor in the parallel time, we proceed by gathering computatiolegi. blocks.

Letk = hlog h; the matrixA may be seen as split (n/k)? blocks, each block consisting ieg” A
sub-blocks of dimensioh (cf fig. 1.7).

We use the sequential iterative algorithm on th¢k) x (n/k) coarse grain matrix. At stefp we

e TN N A N I A TN VT =R TII =Y e i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ffffffffffffffffffffffffffffff
n/h.log(h) blocks
of size h.log(h) * h.log(h)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

log(h) blocks
of sizeh*h

Figure 1.7: Splitting used for = 8, hlog h = 24, n = 96

have to invert the triangular system corresponding to the diagonal block For this compu-
tation, we first invert concurrently thieg 2 diagonal sub-blocks of this block. Then, we update
others sub-blocks of;. At the end of the step, blocks, for j > ¢, are updated.

The algorithm is the following:

Initialization.
Let A be split intor/k blocks; ; of dimensionk (k = hlogh). Forl < j < <n/k, let
M; ; be splitintolog i x log h block m" of dimension.
Let = be initialized tob and split according tat.

fori=1..n/k do

1. forj =1..log h do
N —1 ..
fork (m) = invert(mi?).
Using fast inversion and Brent's principle, the costiglog® A, k% log h).

2. forj =1..logh do
updater! in parallel
ol = (mi) ™" (o] = Sl mia)
Scalar product are performed in parallel: thyugs computed with a cogd, (log® h, k2 log h).

3. forj =i+ 1..n/k fork updater; in parallel
Tj=T; — Mj,z-xi
Performing scalar product in parallel, the cosbiglog k., nhlog h).

The final cost is 0, (n log® h/k,n/k max(h®log h, nhlog h)). Sincek = hlog h, it reduces to:
O.(nlog h/h, max(nh* n?)),

and the optimal value fok is the larger one that leads to a wd#k (rn) = O(r?). Thus, we choose
h = n'/? and we obtain the upper bound.

e b W el VA des § WV Mm%t O Nl ST NS 8T STV

The same technique is applied to obtain the upper bound when a fast matrix mulopliaigo-
rithmis usedd

1.3.4 Applications in linear algebra

Many linear algebra algorithms are based on a Gaussian elimination sdireaesystem solving,
normal forms (Hessenberg, Smith, Frobenius, symbolic Jordan). Such a schemespavaike|
algorithms with polynomial speed-up: at each step, a transformation is compatezhh then be
applied in parallel to each coefficient of the matrix. For instance, solvingrasingular linear
system using standard Gaussian elimination leads to a parallel algorithroost:

O.(n,n%) O(n,n?) (1.30)

Moreover, very fast deterministic algorithms (polylogarithmic pardllake) are known for most
problems [45, 24, 58, 57] but they are often inefficielt,(n) = n®MW,(n)). For instance,
solving a non-singular linear system can be computed in parallel with cost:

O, (log*n,n+*) (1.31)

with o = 1/2 in characteristic zero [16, 50] arnd= 1 in the general case [11]. Applying the same
cascading divide and conquer strategy leads to sub-linear parallel algorittimsptimaP work
[46]:

O, (n'/*log? n, n?). (1.32)

Remark. The same technique applied on Strassen formulation [56] (which may take benefit of
fastO(n*2™) matrix multiplication algorithms), does not succeed in the building of a sulaine
algorithm with parallel time:?, 3 < 1.

1.3.5 Conclusion

In this paragraph, we have used bi-dimensional block matrix partitioning in ayder t

e increase the granularity to build polynomial speed-up algorithms with polynomializna
ity; the technique used is cascading divide and conquer with a sequential algorithtkein or
to decrease communication costs.

e decrease parallel time while preserving the work; the technique used isltegsdavide and
conquer with a very fast but inefficient algorithm in order to make the computtster.

In [46], the same technique, callerk-preserving speed-ups applied to several linear algebra
algorithms: LU factorization, inversion, quasi-inversion, solution of lrrsteuctured systems.

Srelatively to the standar@(n?) sequential algorithm

whea Ts F W WS WFIVIiNGans V8 § WiV § W bl Vel ol § 01V s WiV § § Vel AV e WV Wi AN, handd

1.4 Randomization to decrease time or preserve work.

When an algorithm has a bounded degree of parallelism or a polynomial efficiency, raatiomi
may help in order to either decrease time or preserve work, eventually doghséction illustrates
both aspects on the computation of the rank of a matrix.
In computer algebra, randomization is most often introduced via the verificatti@mpolyno-
mial identity by evaluation on a random value. Testing whether a polynomial iScdéntzero
can deterministically be solved by evaluating the polynomial, represestadstraight-line pro-
gram, at a sufficient number of points. However, depending on the degree and on the number of
indeterminates, such a deterministic test can require a huge number of evelugbllowing the-
orem, due to Schwartz [54], uses randomization in order to reduce this number whilergptiedi
probability of failure.

Theorem 7 [54, 28] Let P(z4,...,z,) be a polynomial in the variableg:;), 1 < ¢ < n, over
afield K. Let[be a finite subset ok” with cardinalc. Let(aq,...,«,) be a vector selected at
random inK™. If P is not identically zero then
deg P
Prob(P(ay,...,a,)) =0) < g)

[

Once a problem is reduced to the verification of a polynomial identity, this theahems
to build a Monte-Carlo algorithm to solve it (for an introduction on Monte-Carid Las Vegas
algorithms, see [36]). It is sufficient to build a parallel algorithm thatleates the polynomial at
a given input point. By choosing this point at random in a large enough finite Swbsatbtain a
Monte-Carlo algorithm whose probability of error is at mog2. This technique may be applied
in a very large framework [36, 28] and is commonly used in computer algebra [4&]ilch fast
algorithms with optimal work. We illustrate it on the problem of computing the rarkrogtrix.

In the following, A denotes a matrix of dimensionx »n with coefficients in a fieldx'. For the
sake of simplicity,A” is assumed infinite.

1.4.1 Randomization to suppress dependencies

The rank of a matrix can be computed using a standard pivoting Gaussian almir@itmilarly
to 1.24, this results in an algorithm with parallel cost:

O.(n,n*) O(n,n?) (1.33)

On the contrary to triangular system solving, the computation scheme (DFGpiwvely un-
known: coefficients to modify are determined at each step only once the pivo¢idias been
chosen.

In [8], randomization is used in order to reduce the whole problem to a fixed DR@harm
parallelization techniques can be applied. The algorithm is based on the fulloharacterization
of the rank: rankA) = r iff there exist two non-singular matricésandC' such that the principal
minor of dimension- in LAC' is non zero while principal minors of dimension larger thaawre

SNote that, ifX is not large enough, this may require to work in an extensfoli §24].

LR W el VA des § WV Mm%t O Nl ST NS 8T STV

zero. Moreover/. andC can be taken at random with a high probability of success: the use of
theorem 7 to evaluate this probability requires to express the problem as a pollyilemiiy.

Let d;(L, C) denote the principal minor of dimensiomf L AC. Due to multi-linearity of the
determinanty; is a polynomial of degreen with indeterminated.; ; andC;; (1 < 1,57 < n).
Previous rank characterization leads to the following polynomial identities:

This suggests the following Monte-Carlo algorithm to compute

1. Choose two random non-singular matridesnd C' with coefficients in a finite subset of
cardinalc of K;

2. ComputeM = LAC
3. Forl < < n, computed; = def M;) and letd, = 1;

4. Returns = Max—o....{k/dip # 0}.
(Note that step 3 and 4 may be replaced by a logarithmic search to cog)pute

In any cases < r. The probability of error, which occurs when< r, corresponds to executions
where the evaluatiod,. of polynomials, is zero althoughi,., of degreen, is not identically zero.
From theorem 7, this probability is bounded By. Choosingc = 4n results in a Monte-Carlo
algorithm with probability of error lesser thdn
Arithmetic cost is dominated by the computation of theeterminants. If Chistov’s method
[11] is used, this cost is:
O,(log*n,n*th) (1.35)

In order to improve efficiency, determination ©may be computed using a logarithmic scheme
instead of the previous brute force method. Using an efficient randomized algasittampute the
determinant (for instance the randomized one of Kaltofen and Pan [33], thegpacsil becomes

O.(log’n,n* logn), (1.36)

From Monte-Carlo to Las Vegas. The building of a Las Vegas algorithm from a Monte-Carlo
one mainly consists in verifying that the output is a correct solution to thelipriddlem. Such a
verification is easy from the previous algorithm; it suffices to verify #iatolumns (resp. rows)
of the matrixM = LAC are linear combinations afindependent columns (resp. rows)i, s
being the output of the algorithm.

Consider the following splitting fod, the first blockM;; being of sizes x s:

(1.37)

M:lMH M12]‘

M21 M22

My, is a non-singular matrix. LeX = M, M' andY = M;;' M;,; note thatX andY” are of
size(n — s) x s. SinceL andC' are non-singularA is of ranks iff the last (n — s) rows and

whea Ts F W WS WFIVIiNGans V8 § WiV § W bl Vel ol § 01V s WiV § § Vel AV e WV Wi AN, o= NS

columns ofM are respectively linear combinations of thérst ones. This relies on the following
identities:
[M21 M22] = X[Mu Mm]
{ [My] _ [M,] v (1.38)

M22 M12

Assuming a Las Vegas algorithm to computg," with parallel costO, (log” n, n“ log n) ([33],
those identities can be verified with a parallel cost:

O.(log? n,n" logn). (1.39)

This results in an optimal randomized Las Vegas algorithm to compute the rank.

In the above algorithm, randomization is strongly used for preconditionning the inpup{com
tation on AC instead ofA) in order to suppress data dependencies that bounds parallelism. A
natural question is then the existence of a fast deterministic algorithrmitrefew dependencies.

In [44], Mulmuley provided such a deterministic algorithm for computing the rahkchieves
parallel timeO(log”) but polynomial inefficiency. Then, randomization is required to provide
efficiency.

1.4.2 Randomization to provide efficiency

Based on a generalization of a method developed in [27] for arbitrary fieldsndey algorithm
[44] reduces the problem of computing the rank to the computation of a characteoisthromial
in an extension of the ground field.

In the following, A is assumed symmetric; this is done without loss of generality since

)

Theorem 8 [44] Let A be a square symmetric matrix over a fiehd and letm be the highest
integer such that™ divides the characteristic polynomiah, (z) = 7, a;(z)z* of the matrix
Az overK(z):

rank A) = %rank(

Then rankA) = n — m.

Deterministic parallel algorithms for computing the characteristic polyabimiparallel time
O(log® n) are known [16, 11] but they have wotk(n~*!). Even if we assume an optimal algo-
rithm for computing the characteristic polynomial with arithmetic worle), due to polynomial
arithmetic, the cost of the above algorithm would be:

O.(log” n, n“’nlogo(l)n) (1.40)

Sincea;(z) are polynomials of degre@(n), a way to obtain efficiency is to get rid off polynomial
arithmetic onk™ using evaluation at a random value.

= NS W el VA des § WV Mm%t O Nl ST NS 8T STV

Moreover, efficien, (log*n,n* log n) randomized algorithm are known for computing the min-
imal polynomial. Multiplying Az by a random non-singular matrix ové¥ results, with high
probability, in a matrix with distinct eigenvalues; then, minimal and abearistic polynomial are
equal.

Those two steps of randomization result in the following efficient MonteeaCaldorithm for com-
puting the rank:

1. Choose a random non-singular matfix

2. Choose arandom valuan K (or in an extension ify is too small);

3. Compute the minimal polynomiép 4. (z) of the matrixP A.;

4. Returmn — m wherem is the highest integer such theit dividesépa, ().

The parallel cost is then:
O.(log® n,n* logn) (1.42)

which results also in an efficient Monte-Carlo algorithm.

Remark. The above algorithm is very close to the one presented in 1.4.1; Mulmuley algorithm
can effectively be considered as an inefficient deterministic versdfidrd.1. This is not surprising
since both randomized algorithms solve efficiently the same problem. Howewérave pointed

out two different motivations for the use of randomization.

1.4.3 Conclusion

In the above examples, randomization is used to provide work-optimal computabongither

slow or fast but not efficient deterministic algorithms. Due to the factahst randomized algo-
rithms are known for computing efficiently the inverse of a matrix in polyldgaric time [33],

randomization is an important tool in parallel computer algebra.

1.5 Parallel time complexity and NC Classification

An efficient parallel algorithm achieves polynomial speed-up within an optjoralear optimal)
number of operations. Obtaining bounds on the parallel time required to solve a giveaenprobl
within a reasonable number of operations is then of fundamental interest. Mqrasdetailed in
previous sections, very fast parallel but inefficient algorithms may be ofipaamterest if they
can be coupled to an efficient but slow algorithm.

In the framework of parallel complexityy C' class [13] which includes polynomial sequential
time problems that have a polylogarithmic parallel time plays an important36le The parallel
model used in the formal definition &f C' is log-uniform family of boolean circuits [53]VC* is
the class of problems that can be solved by such a family with de@tg* ») andn°") boolean
gate$. For instance, integer arithmeti¢ (—, x and Euclidean division) lies ivC. Introduction

’Gates compute bounded fan-in boolean operations(dandnot) and have unbounded fan-out [26]. Extensions
to unbounded fan-in gates leads to class [29].

e W W WS VW e W WS SN L

of gates that deliver in output a random bit allows to define corresponding randomasse |
RNC for Monte-Carlo circuits and NC for Las Vegas ones. Problem'scomplete [28, 49, 35]
are inNC only iff NC' = P; among them, thenonotone circuit value probleCVP) consists
in the evaluation of a boolean circuit, roughly equivalent to a DFG with boolean rasdésfined
in this chapter. The integer greatest common divisor remains an open questionuloiyesr
O(155) algorithms are known [34, 35].

The algebraic extension [61] of this primitive model allows to build cicuhich gates com-
pute arithmetic operations in an algebraic domain. A gate testing nullity () is introduced
in order to mix boolean and arithmetic operations. For instaW¢g. (F stands foffield) is the
class of problems that can be solved by log-uniform family of circuits whose gatésrm arith-
metic operations in any field, i.ef, —, x, / and? = 0. Complexity of basic computer algebra
problems has been extensively studied [8, 13, 59, 60, 35, 45]. Polynomial ariti{metig x
and Euclidean division) lies itvC'\- [45]. An important class i$) ETr which contains problems
NC'-reducible to the determinant of a matrix; matrix powering is completeXatl>. DETy
is included inNC%. Most of linear algebra problems lie iINC?%: rank, null-space, minimal and
characteristic polynomial, gcd of many polynomials [8, 44], Hermite normal forpobfnomial
matrices [31], Smith and symbolic Jordan forms [52, 58, 57, 21]. Note that those psoatemit
an optimalO..(log” n, W,(n)) parallel algorithm by using randomization [33, 23, 24, 45]. Though,
in certain cases, some general techniques are known to remove randonthessiwcreasing the
work [42], no work optimal deterministic algorithms with poly-logarithmic time known for
those problems.

As it appears for most computer algebra problems studied in this chapter, paigolghms
often appear as a restructuration of sequential ones, taking into account agebperties of the
arithmetic operations involved. Although evaluation of a boolean circuit-tomplete, several
algorithms have been developed to evaluate arithmetic DFGs (alsd saideght-line programs)
taking benefit of the underlying structure. In a semi-ring, DFG that are treebecavaluated in
O(log n) time without increasing the number of operations performed [9]. Any DFG perfgrmi
n operations in a semi-ring and whose outputs are of arithmetic dedrean be evaluated in
O,(lognlog(nd),n®) [32]. This result has been extended to DFGs performing operations in a
lattice [51]. A more general simulation of a RAM machine on a PRAM one [43] shbafsany
DFG can be evaluate in parallel on an unbounded number of processors with polynondalippee

1.6 Conclusion

This chapter overviews the PRAM framework (execution model and main #igud techniques)

in which parallel algorithms are built and analyzed. The macro data-flophglaFG) related to

the execution plays a central role: it describes data-dependencies betwdedbliostructions.
Abstract measures used to analyze algorithmsilapghandwork; arithmeticandcommuni-

cationcosts are distinguished. The one corresponds to operations performed (macroiamstruct

nodes) while the other to access in the shared memory (data dependencies nodhs)etidr

work and depth have been used for many years to analyze performances of pégalighms

8In such a DFG, any output may be equivalently seen as a poligh@rnose indeterminates are the inputs. The
arithmetic degree is then the maximal degree of polynonsi@isesponding to the outputs.

= T W el VA des § WV Mm%t O Nl ST NS 8T STV

[9, 55, 35, 28, 6]. Due to experimental constraints, the relevance of communicatgisgice. to-
tal communication traffic — work - and total communications delay) has been pautéd obtain
practical performant programs [5, 19]. Since minimizing communications ovedrehminimiz-
ing parallel time are antagonist, good trade-offs have been studied forlssweraon algorithms
[47, 1, 48]. The granularity, defined as the arithmetic-to-communication watks appears as a
good parameter.

Bibliography

[1] A. Aggarwal, A. Chandra, and M. Snir. Communication complexity of PRAMBeoretical
Computer Sciencg1:3-28, 1990.

[2] A. Aho, J. Hopcroft, and J. Ullman.The design and analysis of computer algorithms
Addison-Wesley, 1974.

[3] D. Bailey. Extra high-speed matrix multiplication on the crayS2AM J. Sci. Sta. Compuit.
9:603-607, 1988.

[4] J. L. Balcazar, J. Diaz, and J. Gabari$tructural Complexity LI Springer-Verlag, Berlin,
1990.

[5] D. Bertsekas and J. TsitsiklisParallel and distributed computationPrentice-Hall, New
York, 1989.

[6] G. E. Blelloch. Programming Parallel Algorithm&ommunications of the ACN89(3):85—
97, 1996.

[7] A. Borodin and I. Munro. The Computational Complexity of Algebraic and Numeric Prob-
lems. Elsevier, New-York, 1975.

[8] A. Borodin, J. von zur Gathen, and J. Hopcroft. Fast parallel matrix and gegbuatations.
Information and Contrqgl52:241-256, 1982.

[9] R. Brent. The parallel evaluation of general arithmetic expressidosirnal of the ACM
21:201-206, 1974.

[10] T. Bubeck, M. Hiller, W. Kiichlin, and W. Rosentiel. Distributed symbaomputation with
DTS. InProc. of IRREGULAR’95, Lyon, Franc@ages 231-248. Springer-Verlag LNCS
980, Sep. 1995.

[11] A. L. Chistov. Fast parallel calculation of the rank of matricesr@/geld of arbitrary charac-
teristic. InProceedings of Fundamentals of Computation Theory8ges 63—68. Springer-
Verlag LNCS 199, 1995.

[12] R. Cole and U. Vishkin. Approximate Parallel Scheduling. Part | : The Basahilique
with Applications to Optimal Parallel List Ranking in Logarithmic Tim8IAM Journal on
Computing 17(1), 1988.

29

i ot § bt b § Nt N § N4 G ¥ ¥ §

[13] S. Cook. A taxonomy of problems with fast parallel algorithnsformation and Contral
64.2—-22, 1985.

[14] S. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel random
access machines with simultaneous writegAM Journal on Computind.5:87-97, 1986.

[15] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pesgronsJournal
of Symbolic Computatiq®9:251-280, 1990.

[16] L. Csanky. Fast parallel matrix inversion algorithn®&AM Journal on Computing:618—
623, 1976.

[17] B. Dumitrescu, J.-L. Roch, and D. Trystram. Fast matrix multipiczes algorithms on mimd
architecturesParallel Algorithms and Applicationgl(2), 1994.

[18] S. Fortune and J. Wyllie. Parallelism in random access machine®robeedings of the
10th ACM Symposium on Theory of Computpages 114-118, San Diego, CA, 1978. ACM
Press.

[19] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Soft-
ware EngineeringAddison-Wesley, Reading, MA, 1995. http://www.mcs.anl.gov/dbpp.

[20] K. A. Gallivan, R. Plemmons, and A. H. Sameh. Parallel AlgorithmsDense Linear
Algebra ComputationsSIAM Review32(1), 1990.

[21] T. Gautier and J.-L. Roch.N(C? computation of a gcd-free basis and application to paral-
lel algebraic number computations. In E. Kaltofen, ediRarallel Symbolic Computation
(PASCO’97) 1997.

[22] T. Gautier, J.-L. Roch, and G. Villard. Regular versus irregular problend algorithms. In
Proc. of IRREGULAR’95, Lyon, Francpages 1-26. Springer-Verlag LNCS 980, Sep. 1995.

[23] M. Giesbrecht. Fast algorithms for matrix normal forms.3Brd IEEE Symposium FOCS,
Pittsburgh pages 121-130, 1992.

[24] M. GiesbrechtNearly optimal algorithms for canonical matrix formBhD thesis, University
of Toronto, Department of Computer Science, Canada, 1993.

[25] J. W. Hong and H. T. Kung. I/O complexity: the red-blue pebble gamérdc. 13th ACM
Annual Symposium on Theory of Computipgges 133-139, 1981.

[26] H. Hoover, M. Klawe, and N. Pippenger. Bounding fan-out in logical netwotksACM
31:13-18, 1984.

[27] O. Ibarra, S. Moran, and L. E. Rosier. A note on the parallel complexity ofptibimg the
rank of ordem matrices.Information Processing Letterd1:162, 1980.

[28] J. J4ja.An Introduction to Parallel Algorithms Addison-Wesley, Reading, Massachussets,
1992.

ot § bt b § Nt N § N4 G ¥ ¥ § i

[29] D. Johnson. A Catalog of Complexity Classes. In J. van Leuwen, editgorithms and
Complexity pages 67—161. Elsevier, 1990.

[30] E. Kaltofen. Parallel algebraic algorithm design. Technical report, $&asr Polytechnic
Institute, 1989. Lecture notes for a tutorial, ISSAC’89.

[31] E. Kaltofen, M.-S. Krishnamoorthy, and B. Saunders. Parallel algoritomsatrix normal
forms. Linear Algebra and its Applicationd436:189-208, 1990.

[32] E. Kaltofen, G. Miller, and V. Ramachandran. Efficient parallel eatibn of straight-line
code and arithmetic circuitSIAM Journal on Computind.7:687-695, 1988.

[33] E. Kaltofen and V. Pan. Processor efficient parallel solutions of linesiess over an abstract
field. In Proc. Third Annual ACM Symposium on Parallel Algorithms and Architectures
pages 180-191, Hilton Head, SC, 1991. ACM Press.

[34] R. Kannan, G. Miller, and L. Rudolph. Sublinear parallel algorithm for compuliagteatest
common divisor of two integersSIAM Journal on Computind.6-1:7-16, January 1987.

[35] R. Karp and V. Ramachandran. Parallel algorithms for shared-memoiyimeac In J. van
Leuwen, editorAlgorithms and Complexitypages 869-932. Elsevier, 1990.

[36] R. M. Karp. An introduction to randomized algorithm®isc. Appl. Math, 34:164-201,
1991.

[37] L. R. Kerr. The effect of algebraic structure on the computational complexity of matrix mul-
tiplications PhD thesis, Cornell University, New-York, 1970.

[38] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient palallgorithms.
Theoretical Computer Sciencél:95-132, 1990.

[39] V. Kumar, A. Grama, A. Gupta, and G. Karypisitroduction to Parallel Computing:Design
and Analysis of Algorithms$Benjamin Cummings, Redwood City, 1994.

[40] J. Ladreman, V. Pan, and X.-H. Sha. On practical acceleration aixmaultiplication.
Linear Algebra and its Applicationd992.

[41] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays — Trees —
Hypercubes Morgan Kaufmann, New-York, 1992.

[42] M. Luby. Removing Randomness in Parallel Computation without a ProcessdtyPeha
Computer and System Sciencés.250-286, 1993.

[43] L. Mak. Parallelism always helBIAM Journal on Computin@6(1):153-172, 1997.

[44] K. Mulmuley. A fast parallel algorithm to compute the rank of a matrixroae arbitrary
field. Combinatorica7(1):101-104, 1987.

[45] V. Y. Pan and D. Bini.Polynomial and Matrix Computations Birkhauser, Boston, 1994.

[46] V. Y. Pan and F. P. Preparata. Work-preserving speed-up of parallekrmaimputations.
SIAM Journal on Computin@4(4), 1995.

[47] C. H. Papadimitriou and J. D. Ullmann. A communication-time tradeSfAM Journal on
Computing 16:639-646, 1987.

[48] C. H. Papadimitriou and M. Yannakakis. Towards an architecture-indepeadalysis of
parallel algorithmsSIAM Journal on Computind.9(2):322-328, 1990.

[49] |. Parberry.Parallel Complexity TheoryPitman, London, 1987.

[50] F. P. Preparata and D. V. Sarwate. An improved parallel processor bouadt matrix
inversion.Information Processing Letterg:148-150, 1978.

[51] N. Revol and J.-L. Roch. Parallel evaluation of arithmetic circuitbeoretical Computer
Science162:133-150, 1996.

[52] J.-L. Roch and G. Villard. Fast parallel computation of the Jordan noronad 6f matrices.
Parallel Processing Letter$(2):203-212, 1996.

[53] W. Ruzzo. On uniform circuit complexityl. Computer and System Scien@ 3:365-383,
1981.

[54] J. Schwartz. Fast Probabilistic Algorithms for Verification of Polyndndantities.J. ACM
27(4):701-717, 80 1980.

[55] Y. Shiloach and U. Vishkin. ArD(r? logr) parallel Max-Flow algorithmJournal of Algo-
rithms 3:128-146, 1982.

[56] V. Strassen. Gaussian elimination is not optinNdimerische Mathpages 354—356, 1969.

[57] G. Villard. Fast parallel algorithms for matrix reduction to normahfist Appli. Alg. Eng.,
Comm. Comp., to appear.

[58] G. Villard. Fast parallel computation of the Smith normal form of polynomiatnges. In
International Symposium on Symbolic and Algebraic Computation, Oxfordpaides 312 —
317. ACM Press, July 1994.

[59] J. von zur Gathen. Parallel algorithms for algebraic probleésh&M Journal on Computing
13:802-824, 1984.

[60] J.von zur Gathen. Parallel arithmetic computations : a surverda. 12th Int. Symp. Math.
Found. Comput. Sci., Bratislaypages 93-112. LNCS 233, Springer-Verlag, 1986.

[61] J. von zur Gathen. Algebraic complexity theoAnn. Rev. Comput. ScB:317-347, 1988.

Chapter 2

Programming models and scheduling

Contents

2.1 Asynchronous distributed architectures 35
2.1.1 Realistic models of distributed architectures 35
2.1.2 Basicprogrammingtools 37
2.1.3 Sharedvirtualmemory 38

2.2 HowtoscheduleaDFG 93
2.2.1 SchedulingcostofaDFG 9 3
2.2.2 Off-lineand on-linescheduling 41
2.2.3 Which scheduling algorithms in computer algebra? 42

2.3 On-line scheduling algorithms 43
2.3.1 Foundationsof on-linescheduling 43
2.3.2 Lower bounds for competitiveratio 44
2.3.3 Communications and schedulingoverheads 45
2.3.4 Athapascan: a simulation of the ATH PRAM language 49
2.3.5 The AHAPASCAN programmingmodel 49
2.3.6 Executionmodel of FHAPASCAN o 49
2.3.7 Anexample of AHAPASCAN program 50

24 Conclusion 05

33

Ll Y 7§ iV L § AW WS W WEVIIVINI N W TV W o et § 3 Gt Nl Wl f § e Naf bl § € ot

In order to analyze performance of algorithms, a formal model is needed to tagestisanto
account. The success of the PRAM model is mainly due to the fact that it does moptatte
represent any parallel architecture but can be mapped onto various onesvédptie® simulation
on a realistic machine can be made efficient (up to a constant relateddcatngarity), provided
many processors of the PRAM are mapped onto a single processor of a host machisacdéss
is brought to evidence by the fact that most of the tricks used to optimize prgatidakmances
when programming on a given architecture are relevant to algorithmic tecisrtivpteare theoret-
ically justified on the PRAM model.

Given an algorithm (let us say a macro data-flow graph — DFG — as presemteapter 1) and
a particular multiprocessor architecture, the problem then is reduced to:

¢ find a good (the best) schedule of the DFG;
¢ implement the resulting algorithm in a programming language.

Only now, the performance of the program, i.e. the completion time of an executiayn be
determined. Assuming fixed the initial algorithm, the machine and the input, thsrmance
depends directly on the scheduling strategy. Tuning the program ammounts to improving the
schedule it implements.

This chapter presents the main techniques used to schedule data-dependencid3FEph (
on a given architecture. As presented in chapter 1, a DFG is the abstpaesertation of the
execution of a particular program on a specific input daté fine grain description (elementary
instruction, elementary data dependency) is unrealistic for executions regumimg of compu-
tation time. We will thus assume that arithmetic nodes of the DFG corresposefjteence of
instructions: each arithmetic node is then weighted by the number of elememsémyctions it
performs.

Arithmetic depth’’(x) and workWW,(z) are evaluated taking into account nodes weigkits:)
is a lower bound of the minimal time required by any schedule ignoring communicaitoes. t
W, (z) is the exact number of operations required by a sequential execution of the algorittics. S
the best schedule may replicate some arithmetic nodes in order to minimipéetimm time, note
that\W,(z) is also a lower bound on the number of operations performed by any schedule.

Similarly, transition nodes may correspond to a complex data structure (mogle s/ord);
each transition node is weighted by the size of the data it corresponds to. Commnomnieday
C4(z) and workiW,(z) are also evaluated accordingly. Ignoring arithmetic timg) is an upper
bound on the minimal communication time required by the best schedule for an infinite noimbe
processorsiV.(z) is an upper bound on the number of remote access (communications) performed
by any schedule.

As straightened in the previous chapter, the initial parallel algorithm isasg efficient, i.e.
W,(n) = O(Ws(n) whereW;(n) is the time of the best known (uniform) sequential algorithm,
being the size of the input. Moreover, in order to make performance evaluatiom wiinput, we
assume that there exists a constAnsuch that:

Va,|z| >no: Wilz) < KWy(x) (2.1)

Note that, for a given input, DFG, may be known only after completion: instructions or
transitions nodes and edges are dynamically built. In the language ATH introducealptec,

fmtuizs J7 1% § P VW 00 VWA VW W d Bl %W §F VNl § emiad 7 W VAR 00T e d § W0 N Nl e

those nodes are created either by executionfobik instruction or by access to a shared data.
Similarly, the cost of any instruction node (resp. size of data relatedytdransition) is known

only after completion of the instruction (resp. communication). In such a gecamntdxt, DFG

has to be scheduled using an on-line algorithm. Related to a functional programmoded, m
most of computer algebra algorithms present such a dynamic behavior; we thus focus on on-line
scheduling algorithms.

Organization of the chapter is as follows. In the first section, specifiactexstics of asyn-
chronous distributed architectures are recalled. Costs of basic operagansa@eled by theogP
model introduced in [15]. Basic mechanisms allow parallel and distribotegramming: com-
munications, threads, remote memory access and synchronizations tools. Indhé section,
the scheduling of a PRAM algorithm on such a machine is discussed. Approaches maynbe dis
guished in two classes. The first one [54, 28] is based on the simulation of a PR&kine on a
given architecture: the execution of the parallel algorithm is managed veirthdation. Global
synchronization and emulation of the shared memory, which are at the basis 6tAiM fodel,
are key points. The second one [26, 51, 38, 50, 5, 19] is based on the direct scheduling of the
DFG. The execution of the algorithm is handled by a scheduling algorithm. Both appscaehe
motivated by the availability of provably good approximation algorithms to sthieeunderlying
theoretical problems (permutation routing [48, 42, 55, 40] or DAG off-line and on-linedsding
[29, 49, 13, 36, 47, 14, 8, 6, 30]).

The last section focuses on on-line scheduling algorithms which are of maiashiercomputer
algebra. We firstly recall upper and lower bounds on the competitive-ratmutitaking into ac-
count scheduling and communication overheads. As a corollary, we then exhilisehexluling
algorithm which achieves optimal simulation of any efficient PRAM algorittaking into account
those overheads. Finally, we overview some programming languages or lilvasied on those
approaches, focusing on the one suited to computer algebra algorithms. We desefileetaue
implementation of the theoretical language ATH introduced in chaptemr@APASCAN, which
achieves provably performances.

2.1 Asynchronous distributed architectures

2.1.1 Realistic models of distributed architectures

There is an apparent convergence in the field of distributed architectinieb are similar to a
network of workstations. A parallel machine consists in a set of independent pyos;esach with
considerable local memory, linked by an interconnection network. Fundamentaéddés with
the PRAM model are the following (compare 2.1t0 1.1 in 1):

e asynchrony. each processor works independently with its own local memory; there are no
global synchronization.

e contention: the network is a resource with bounded access.

Like the local PRAM introduced in chapter 1, two levels of access may thersbegliished: local
and remote access (parallel machines are often called NUMA for non-unif@mory access.

INote that this non-uniformity appears also at the procdsset between cache and RAM access.

Y 7§ iV L § AW WS W WEVIIVINI N W TV W o et § 3 Gt Nl Wl f § e Naf bl § € ot

Interconnection Network

Figure 2.1: General structure of a distributed architectiiéerences with the PRAM presented
in chapter 1 are the absence of a global sequencer and contention for access to the network.

fmtuizs J7 1% § P VW 00 VWA VW W d Bl %W §F VNl § emiad 7 W VAR 00T e d § W0 N Nl i

Costs of remote access are mainly characterized by two factors:
e bandwidth: the rate at which each processor can access memory;

¢ latency: the time between making a remote access request and receiving the @gplycy
accounts for resource allocation (solving contention on network) and duration of communi-
cation (related to physical distance).

The network bandwidth that is available on recent parallel computers GB/s on SGI Power
Challenge, Cray T3E, SUN HPC) and even on local networks (typically 1 Ghig Wirynet
connection or DEC Memory Channel) is becoming large enough compared to the bandwidth to
local memory; thus it appears less and less as a bottleneck. Howevery lstenmore serious
problem since it is bounded by physical limits.

Several variations of the PRAM model have been proposed in order to take iotanaticose
practical constraints [15]: memory contention [40, 54, 42, 45], asynchrony [27], nydmigparchy
[3, 34], latency and bandwidth [47, 1]. Considering that point-to-point communicatiobasia
primitive, the modeLogPproposed in [16] characterizes a distributed architecture by the following
parameters (fig. 2.2):

L : latency an upper bound on the delay incurred in communicating an unit size data (i.e.la smal
number of words) from its source to its destination; an extension to longer messag@so
been developed [2].

o : overheadthe time a processor is engaged in the transmission or reception of a message;

g . gap minimum time interval between consecutive message transmissioneptioers.
The reciprocal of; corresponds to the available communication bandwidth per processor; it
is denotedr in [47].

P : the number oprocessors

This model has been successfully used on different architectures to phedetdcution time
of some parallel algorithms [16, 20]. As a consequence, classical balaneest@mes used on
the PRAM to perform iterated sum or broadcast appear as non optimal [41].

As a conclusion, the portability of a parallel program cannot be achieved if thectbiastics
of the target architecture are not taken into account. Notingly, the communigatiameters, that
are partly modeled blyogP, have significant influence on the performances.

2.1.2 Basic programming tools

Reliable message-passing communication is the lowest-level feamueed for programming a
distributed architecture. It allows both to exchange data between progé$sobasic functionality
of the PRAM shared-memory) and to express synchronization (the functionality drisutae
sequencer of the PRAM).

Since 10 years, several message basic interfaces have been built onhepaf tevel ones
provided on any specific architectures in order to allow portable programmingst Mmous
ones are PVM [24] and MPI [53]. MPI has been standardized [18] and is nowadaiabbea

i Y 7§ iV L § AW WS W WEVIIVINI N W TV W o et § 3 Gt Nl Wl f § e Naf bl § € ot

ARy T T L]

f overhead (0) overhead (0) é
Comm Comm Comm
Buffer Buffer Buffer

gap (0) gap (9) ™
Iﬁ e A <4 [e]0] [@)
I]
1
Latency (L) @
L %

Interconnection Network

Figure 2.2: Communication cost parameters in the LogP model.

on any distributed architecture or network of workstations. Basic featfr&4| are point-to-
point and (blocking) collective communications, communication contexisi(nunicatorgs user-
defined data-types. Other extensions concern remote memory access, pgrati@ind output
(MPI-F), active messages and dynamic process control.

In order to hide the communication latency by arithmetic computations, two toajsha

used: asynchronous communications and threads. Threads are lightweight processes-which
quire a small overhead for context switching. They are handled directly inotlvees program:
a standard interface, POSIX, has been defined [10]. Threads have firstlydbfeed for con-
current programming and efficient use of SMPs (Shared Memory Processor) ngle rsode.
Since threads access concurrently the same memory space, synchronizatiaretpotsided for
atomicity, such as locks and semaphores (sometimes monitors).

Threads are well suited to hide latency on a distributed architecturen a/ileread waits for
the result of a communication, it may be preempted and a ready one scheduled. Thte, sev
portable programming interfaces have been built to couple a message-pdssing(lisually not
thread-safe) and a thread library (available on a single node), providingpmves to the user for
lightweight remote procedure calls or active messages [21, 46, 9].

2.1.3 Shared virtual memory

On many distributed architectures, remote memory access are podsiejeprovide a virtual
shared memory analogous to the one of the PRAM. On such machines, specific haithvese
to load transparently a local or remote data in the cache of a processor. Inhmhitde the latency
of remote access, prefetching and multi-threading is used.

The simulations of the PRAM shared memory on a distributed architecture siséuractions
(randomly chosen from a universal class) to map shared memory cells onbo¢leof the ar-

bmstboms § IS WY § W Wl Vombad of b § 3 =l § Nt A

chitecture (i.e. memory modules) [48, 42]. The delay of a simulation is therepared for a
single access. It is related to the evaluation of the hash function, the memention (when
several access to a same module occur), and the routing time if the netwarkaemplete. In
[48], a simulation with delay(log p) of an EREW PRAM on a butterfly network is given. In
[40], randomized simulations of EREW and CRCW PRAMSs on a distributed aatbite with a
complete interconnection network (contention is not taken into account) are @esdatit delay
O(log log plog™ p). Note that, concerning the CRCW PRAM, this simulation is at a faeigrp
from optimal.

In order to obtain optimal simulations, such delays are to be hidden by arithoostiputa-
tions. The key idea is parallel slackness [42, 55, 40]: it consists in simulatfgAM with »
processors on a distributed architecture with fewer procegsers:. The simulation is optimal
(time-processor optimaif the delay for an access is proportionatitp. For instance, the previous
mentioned simulation [40] leads to time-processor optimal simulation ofREEVE PRAM with
n = plog log plog™ p processors on a distributed architecture with less thanocessors. Note that
parallel slackness is also involved when using asynchronous communicationseauktto hide
latency.

On the contrary of communications, remote access to shared memory do nollyoalma to
synchronize computations. In the PRAM, such a synchronization mechanism is provitiesl by
global sequencer. On distributed architectures, intrinsically asynchronmerenization tools
classically used are communications, locks and semaphores.

2.2 How to schedule a DFG

Being given an algorithm, the problem considered here is to schedule the DR&dr&dathe
execution on input data on a distributed architecture. The goal is to obtain amabgtthedule
related to the DFG.

2.2.1 Scheduling cost of a DFG

Computing such an optimal schedule is a difficult problem. Even if communicatids aos
ignored and the DFG fixed (i.e. no dynamic task creation) with tasks of knownaurebmputing
an optimal schedule & P-complete and deciding whether the length of the optimal schedule is a
given integer is co-NV P-complete [23]. However, on machines wihdentical processors, there
are several polynomial algorithms with bounded competitive ratio, the most faoneuseing list-
scheduling [29]. Moreover, even on non-uniform machines, approximation algoritienksiawn
[52, 30].

Computing a schedule implies an overhead in the execution time; this scheduértyead
is governed by the time required to compute the schedule itself (i.e. the ctis# etheduling
algorithm) and to realize this schedule (i.e. the mapping of tasks, preempiigration). The
scheduling overhead is included in the execution tifpe:) of the algorithm with input: on the
target machine.

Definition 5 (Notation) Being given a scheduling algorithsmthe execution time of an algorithm
with inputz on a machine withp identical processors using the schedule delivered isydenoted

- TNs Y 7§ iV L § AW WS W WEVIIVINI N W TV W o et § 3 Gt Nl Wl f § e Naf bl § € ot

T(S)(:n).

P
The minimum execution time over all scheduling algorithrissdenoted/ ()

When there is no confusion aboyt?'(*)(z) is denoted byl ,(x).

The cost of computing a schedule is directly related to the size of the DEGheenumber
of tasks and dependencies it contains. Note that those costs are different framthimetzc and
communication works considered in the previous chapter which take into account the number
of operations performed in each task and the number of communications relatedntalaga
dependency (transition).

Definition 6 Let DFG(z) be the macro data-flow graph corresponding to the execution of a par-
allel algorithm on an unbounded number of processors. We define the following measures:

e N,(z) is the number of task nodes in DEG);
e N,(z) is the number of transition nodes in DHG);

e N,(z) is the maximal degree of a task node/i¥'(z); the degree is the number of input
and output edges on a task node (to or from a transition node).

The scheduling cost, of DFG(z) is:
S(x) = (Na(z), Na(x) + Ne(z))

Note that other measures may be considered in the analysis of a scheduling algeoitimstance,

other parameters considered in [7] are the maximum number of edges betweenrafynpdes

and the width ofD F'G,(z), i.e. the maximum number of tasks that may be executed concurrently.
The finer the DFG, the larger its scheduling cost is and thus the more expensive theaoon

of its schedule will be. Similarly to granularity, the regularjtyis defined as the ratio of the

arithmetic work to the size of the DFG.

Definition 7 The regularityp(z) is defined by:

W, (x)
)= N+ NGy

A PRAM algorithm (or equivalently its related DFGS) if saidomlynomial regularityff:

p(x) = |z|'"* with € > 0.

Notation. In the following, we will consider the execution of a given algorithm on a giyen
processors machine with an arbitrary inpudf sizern. Thus, all notations are implicitly related
to = andn. For instance/N, will denote N, (z), the number of task nodes in the macro data-flow
graph related to the execution on an unbounded number of processorsiwitiput.

bmstboms § IS WY § W Wl Vombad of b § 3 =l § Nt S Vel

2.2.2 Off-line and on-line scheduling

The DFG corresponding to the execution may be partially determined at compeléy data flow
analysis of the code of the algorithm, or may be discovered during the execution (dependhne
value of computed data) and completely known only after the end of the executiomdegpen
this knowledge of the DFG, the scheduling can be then computed off-line or on-line.

Static allocation of tasks to processors.

When the DFG corresponding to the execution can be analyzed at compile-tismpo#sible to

find a good schedule by hand, may be using static scheduling tools. The result of the scheduling
is to assign each task of the DFG to one processor (or more if replicati@yusred). On a

given processor, tasks are sequentially ordeiredrder to respect precedences; data dependencies
between them are emulated by access to shared data in the local menhery.tA8ks are placed

on different processors, data-dependencies (i.e. access to data and preceldions) may be
emulated in two different ways:

e By communication. The data corresponding to a write-read dependency has then to be ex-
plicitly sent from the writing task to the reading one. This operation corresporalphys-
ical global copy of the data; locally unreferenced data have to be deleted ladzge-
collection).
An important point is that the completion of receiving instructions implicitlpiements the
precedence relation (synchronization).

e By shared-memory access. Communications that implement remote acctssamplicit.
However, the precedence relation between non local tasks has to be dessiigedlobal
synchronization tools.

As a result, before execution, each processor gets its own program. Usualigrogram is the
same for all the processors but is parameterized by the pid of the executirgggoom order to
implement different behaviors. PYRROS uses this approach and a specific sehedgtrithm
which performs a clustering of tasks [26, 25].

Dynamic allocation of tasks to processors.

In computer algebra, elementary tasks are often of unknown cost. For instastseotarithmetic
operations (on rationals, polynomials or matrices) are usually unknown at compelsihce their
are related to characteristics of the values computed at executier(sine of the data, degree of
a polynomial, sparsity of a matrix). Depending on such values, parallelisnt(eation of a task)
may be generated during the execution. In such a case, an on-line schedulinh@gotised.

Most of on-line scheduling algorithms are based on the following greedy scherad lcsH
scheduling4, 11]:

e When a processor creates a new tastir(k instruction of the PRAM language ATH), it
stores itin a list of tasks.

2Multi-threading may be used to describe a partial executicier.

-V Y 7§ iV L § AW WS W WEVIIVINI N W TV W o et § 3 Gt Nl Wl f § e Naf bl § € ot

Note that, there may exiseadytasks, i.e. whose precedence relations are satisfied, and
non-ready tasks, i.e. whose one of the precedent tasks is not completed.

e When a processor becomielte (i.e it has no ready task to execute), it gets a ready task in
the list if any.

Algorithms vary depending on the way the list is managed and processors put andkget tas

The program that implements the algorithm expresdaactional parallelismtasks generally
correspond to procedure or function calls. Non-completed tasks or data arefaalled An im-
portant point concerns the management of data, parameters of the task: they caarhatgyaty
copied in a stack corresponding to the function call or passed by a referende ta tee shared
memory. Precedence relations between tasks may correspond either tomatdeteies or to
task precedences.

Scheduling operations

The previous section does not specify which instructions a scheduling can perfoept, eassical
computations and the possibility of executing a basic task — an elementary nib@eDFG — on
a processor. Migration instructions allow to suspend a task during its esac¢ntorder to map it,
maybe later, on another processor [52, 4]:

e migration restricted to restart:when a task is moved to another processor, its execution
restarts from its beginning;

e migration: when a task is migrated to another processor, its execution restartst$riast
instruction performed.

A scheduling algorithm witmo-preemptiormakes no use of those operations: it has no control
on a task once it has assigned it to a processor, just getting information whiaskhe finished.
Migration restricted to restart, denoted in [S2jaspreemption with restartss useful on machines
whose processors are not identical.

2.2.3 Which scheduling algorithms in computer algebra ?

An important point is that on-line and off-line scheduling algorithms have theoré&igadations
[29, 22, 35, 11, 30]. There exist provably good approximation algorithms for both with bounded
competitive ratio. For both, specific algorithms are developed to increaerpances for certain
classes of graphs (for instance trees or SP11 graphs — fork-join —).

Of course, performances of off-line algorithms are better when the DFG is kaodrthe
machine fixed. However, since on-line algorithms make no hypothesis on the exdoufion for
the determination of tasks precedences), they can be used for any classa@dtapiand thus are
of general interest.

Thus, both techniques are used in computer algebra. For instance, block-scattating
mapping, which can be considered as an hand-made off-line algorithm, leads tuptiesal per-
formances for linear algebra problems like dense matrix multiplication ersmn (cf chapter 1)
over a small finite field (e.g. GF(2)) on a distributed architecturé wdéntical processors.

mtwls Wl Bl Vi Nl el ol b €t 7 VN Naf 8 W8 00 S0VINS - TNS

However, due to their generality and their close relation with functionadligism [31, 51],
on-line scheduling algorithms are of specific interest for a parallel compuggebia system. In the
following we thus focus of those algorithms.

2.3 On-line scheduling algorithms

2.3.1 Foundations of on-line scheduling

Theoretical foundation of on-line scheduling algorithms is due to Graham [29]. Trewvfob
theorem appears has an arbitrary grain version of Brent's principle prdsentdapter 1. We
recall its proof which is the basis of most of further results.

Theorem 9 [29] If scheduling overhead (i.e. the cost of computing the schedule and managing
the list of tasks) and communication costs are not considered, any list-schedulingalgbats

competitive ratio(2 — 1), i.e.
1
T, < (2 _ _) T
p

p
A list-scheduling algorithm is such that, at any time, at least one procisssgecuting a task.
Then, if at a given time a processor is idle then there exists at least onsgoowdiich executes a
task. Lett;, be one of the tasks completed at d&teand letd;, be the date when execution Of
has been started. Two cases arise:

1. either no processor was idle befae.

2. either there was at least one processor idle at a certain date befotest § be the latest
date beforel;, when a processor was idle. At¢; was not ready (else it would have been
started on an idle processor). Thus, there exists ataskich that ;, was being executed at
6 andt;, < t;,. Letd;, be the date when execution®f has been started.

Recursively applying this scheme until case 1 occurs, we build a sequencé&f;tas ... <
t;, < t; such that, at any time where a processor is idle, there exist < k such that;, is being
executed on one processor.

Similarly to chapter 1, lef’ be the minimal arithmetic time on an unbounded number of pro-
cessors antV/, be the total number of operations. The total idle time is define# by= p7,, —W,,.
Forl < i < k, let/; be the duration of task.. We have:#1 < (p — 1) X%, I; which leads to:

k
P, <W.+(p—1)> L.

=1

Besides, since tasks, 1 <: < k are on a critical pathzfz1 [; < T. This leads to:

, 1
Tpgw +(1——)T (2.2)
p P

LA Y 7§ iV L § AW WS W WEVIIVINI N W TV W o et § 3 Gt Nl Wl f § e Naf bl § € ot

We also have” < 7. Moreover, sincéV/, operations are to be executed in any schediile <
pT. Replacing in 2.2, we obtairf;, < (2 — %) Ty O

As a corollary, we obtain the following constructive version of the simafatif a PRAM with
an unbounded number of processors on one wittNote that tasks is the DFG are of arbitrary
durations; the only restriction which is respected in the DFG represaemtatithat once a task is
ready, it can be executed sequentially with no interruption due to synchramzati

Theorem 10 Let.A be an ATH PRAM program that run in (arithmetic) parallel tirheand work
W, on a given PRAM with an unbounded number of processors. Jhesn be executed by an
on-line list scheduling to run in (arithmetic) parallel tin7e:

Max{ WV} ,T} <T,< {Wa + (1 — 3) T} (2.3)
p p P

The proof is direct from 2.2. O
Theorem 9 is stated in a restricted version [4]. In fact the bounds 2.2 haddsifethe prece-
dence relation considered by the list scheduling algorithm is weaker than the<diensidered
for defining the optimal schedule. The proof is direct since we will also have' ... <" ¢;, <’
t;,. Clearly, the same remark holds if duration of tasks is increased.
This implies that neither adding precedence constraints such as synchronizatiers baobtain
a well structured DFG nor inserting artificially null operations in order teetell tasks of the same
length help any on-line algorithm.

Remark. This theorem generalizes Brent’s principle (theorem 1 in chapter 1) toambiDFGs,
i.e. any ATH program where tasks are generated dynamically with agpbgrered-data depen-
dencies and are of unknown durations.

2.3.2 Lower bounds for competitive ratio

A natural question is then to determine if it is possible to have a better caivpeatio than
(2 — le) either on the same model or by considering larger classes of scheduling algorithms
This problem has been studied in [52], in which the following proposition is proved.

Theorem 11 [52] On the p-PRAM, the competitive ratio is lower bounded @y— Il)) for any
scheduling algorithm of the following classes:

1. Deterministic with no preemption,
2. Deterministic with migration;

and is lower bounded b@ - ﬁ) for any randomized scheduling with no preemption.

We only sketch the proof for the first case. The complete proof for this theorem 1sigi{&2].

The adversary builds the following DFG instartéelue to Graham [29] containsl +p(p—1)
independent tasks. One taskis of lengthp, while other taskg, 1 < k < p(p — 1) are of length
1.

mtwls Wl Bl Vi Nl el ol b €t 7 VN Naf 8 W8 00 S0VINS TS

The optimal schedule is of lengih It executes the task; on a given processor, and the
p(p — 1) unit tasks3, on thep — 1 remaining processors.

The length of any schedule ¢f is equal top + ¢, wheret is the time when the task; starts
its execution. Since the tasks durations are unknown for the scheduling algorithrdyéreaay
strategy will thus consist in makingas large as possible.

The tasks that are processed first are thepthe- 1) unit time tasks3;, that are executed in— 1
time units with no idle time. Then, at time= p — 1, the tasky; starts its execution. The length of
the obtained schedule is them — 1, which provides the desired lower bound. O.

As a consequence, neither preemption nor randomization can improve consequently perf
mances compared to list-scheduling.

In order to increase the competitive ratio, it is then required to use additinformations on
the DFG such as its shape or duration of its tasks.

For instance, we consider the case where all tasks are independent and santéitigto their
durations; note that only the ordering is known but not durations. In this case, the duiRfirist-
scheduling algorithm that assigns the task of maximal duration when a processoelsedizhas

competitive-ratio [29][12]:
. 4 1 1 p—1
Min { (g - 5) | (1 o T)} (2.4

Note that if no information is given on the durations tasks, then the fact thattkapdependent
is of no help to decrease the competitive ra(ﬂm Ylj) (cf the adversary considered in the proof of
theorem 11).

Remark. List scheduling algorithms are involved as a basic level in on-line approximalgo-
rithms used for other kind of machines such as [52, 30]:

¢ uniform machines: processors speeds are constant and differ each one from a eonstant
known factor;

¢ non-uniform machines: there are no relation between processors speeds; trendirati
task varies depending on the processor which executes it.

In this case, at least migration restricted to restart is requir@idder to guarantee a competitive
ratio [52].

2.3.3 Communications and scheduling overheads

Previous theorems do not take into account neither the cost of tasks allocatioscfigduling
overhead) neither communications required for access in shared memory.

Several authors have considered the theoretical influence of those overheatisarekluling
algorithms in order to provide provably optimal on-line scheduling algorithms. 1) (1de and
Vishkin give an algorithm to scheduteindependent tasks optimally on a PRAM wjfgrg'Z proces-
sors; this algorithm is used to implement the first optimal algorithm foréisking [37, 39]. In [6],
Blelloch, Gibbons and Matias study the scheduling of nested fine grain computatipfesniemted
in the language HsL [5]. Blumofe and Leiserson give an optimal list-scheduling algorithm for

TN Y 7§ iV L § AW WS W WEVIIVINI N W TV W o et § 3 Gt Nl Wl f § e Naf bl § € ot

strict multi-threaded computatichf8, 7], based on randomized work-stealing; this algorithm is
in the kernel of the Cilk language [38]. Any of those scheduling algorithms restda shape of
DFG and do not take into account contention problems.

In this section, we give a near optimal scheduling algorithm for any DFG shapethuestric-
tions on the arithmetic and communication costs. We prove that, if input daeysenough, effi-
cient and coarse-granularity PRAM algoritithean near-optimally be scheduled on a distributed
architecture.

We assume that the target machine is a distributed architecture wdémtical processors. In
order to take into account communication costs and contention, we refer to the LogP(ofode
section 2.1.1). The duration between the sending and the reception of a smageéss. one
word) is bounded by = 2¢g + 20 + L.

Furthermore, we assume that a shared memory is simulated on the awchiteth the help
of hashing functions (see section 2.1.3); the delay occurring for any accesssimatteel memory
is bounded by:. Note thath is related to the number of processors if no slackness is used.

Like in chapter 1, let’; andW. denote respectively the communication delay and work in-
volved by the algorithm.

Theorem 12 Let.4 be an ATH PRAM program that has parallel arithmetic cgsti¥,), commu-
nication cost(Cy, W.) and scheduling costV,, N,). ThenA can be executed to run in parallel
time7), (including scheduling and communication overheads):

T, <

p—1

Wa + hW.
7+(
p_

1
1— —1) (T + Cd) + 40‘NdNa (25)

The proof is based on an adaptation of the scheme used in theorem 9.
We consider here an implementation of a list scheduling enl processors, indexed, . .. p,_;.
The last processopy, handles the list of tasks and assigns tasks to other processors.

For the sake of simplicity, we restrict the proof to the case where anydkargble is written
only once and then read only once; once read access have been completed, thdadpdde the
shared data is garbaged. This corresponds to the case of an EREW program withssiggienent
variables.

When a processaqr; completes the execution of a task, it sends a messageaid waits for
receiving a new ready task to perform fron
When a processgr; creates a new task ¢r k instruction) it asynchronously sendsipa message
of size bounded bw, that defines all data dependencies of the new task (i.e. the shared data that
it will read before its execution or write after its completion).

Processop, manages a lisp) of ready tasks and a ligtof idle processors. For this purpose,
it uses two arrays: oned, stores the task nodes created and not completed; the éthéne
descriptors of the allocated shared variables. Any descriptfr points to the task that requires
the corresponding shared data in reading. Pointers f8oim A are updated at task creation and
task completion. When a task ihis no more pointed to by any elementi it is putin@. The
cost of this arithmetic computation @pg is proportional toV; but independent from ando: we
neglect it compared t — 1)o N, N,.

3There is always a dependency between a thread and one aféstanand access to shared data are not considered.
4i.e. with polynomial speed-up, constant inefficiency &idn) = W¢(n) with € < 1 (cf chapter 1).

mtwls Wl Bl Vi Nl el ol b €t 7 VN Naf 8 W8 00 S0VINS LS

Whenp, receives a message of task completion, it first upddtesd B, putting new ready
tasks if any in@. It puts the processor ih. Then, while there are ready tasks@hand idle
processors i, it gets a task fronf) and a processor from, removes them from the lists and
asynchronously sends a message assigning the task to the processor; the length sédlge me
at most/V;. For the whole execution, the computation timepgmeeded for the management of
those lists is proportional t&/, and independent from N, ando: we also neglect it compared to
(p—1)oN,Ny.

Note that due to contention, a processor which is idle may wait at fpest)o N, afterp, has
assigned a new task to it and before it receives it. Conversely, whestagsor completes a task,
processorr, receives the corresponding message at ifyost1)o N, tops after.

Moreover, let/; be the length of the task, 1 < : < N,; let ¢; be the number of — unit
size — shared data handled hy(i.e. read or written during its execution). From the point of
view of py, a processop; is saididle when it is in the list/. Thus, the processor executings
considered as active (i.@ot idle) when it is not in the list/, i.e. from the momeng, has sent;
to it and untilp, receives the corresponding task completion message: this duration is bounded by
li + hci + 2Nd(p — 1)0‘

Let #17 be the total idle time seen from on processorg,, ..., p,—1. LetT, be the length of the
schedule; we have:

Nq
(p— DT, <H#1+ Y (i + hei + 2Na(p — 1)0) (2.6)
=1
We now follow the scheme of theorem 9. Liet be the last task completion message received by
po at datel’, and letd;, be the date whep, has assignetl,. Two cases arise:

1. either no processor was idle fay befored;, .

2. or there was at least one processor idlepfoait a certain date beforg, . Let § be the latest
date beforel;, when a processor was idle. At¢; was not ready (else it would have been
assigned on an idle processor). Thus, there exists @ task — ¢;,, such that;, has been
assigned by, befored and whose completion message has been receiveglddyerd. Let
d;, be the date whep, has assigned, .

Recursively applying this scheme until case 1 occurs, we build a sequencé&f;tas ... <

t;, < t; such that, at any time when a processor is idle, there ekists < £ such thafp, has
assigned;, to a processor and has not received the corresponding completion message yet. We
thus have#1 < (p — 2) S5, (L, + he;, + 2N4(p — 1)0). Besides, since tasks, 1 < i < k are

on a critical pathy>"_, 1;, < T'andy>%_, ¢;, < C, which leads to:

#1 < (p—2)(T + hCy+ 2N, Na(p— 1)o) (2.7)

whereT denotes the minimal arithmetic time on an unbounded number of processors.
Let W, = YN« I; be the arithmetic work andl, = Y~ ¢; be the communication work.
Replacing 2.7 in 2.6 leads to:

(p—1T, < (p—=2)(T+hCy)+ W, +hW.+4N,Ny(p—1)o

which concludes the proof. O

TS Y 7§ iV L § AW WS W WEVIIVINI N W TV W o et § 3 Gt Nl Wl f § e Naf bl § € ot

As a corollary we consider a coarse-granularity efficient PRAM algorithth polynomial
regularity and bounded degree. For the corresponding DFG, this implies that for an:input
large enough size:

¢ polynomial speed-um7' (note that is fixed) is neglected compared i, ;

¢ polynomial granularity: since andk are assumed constant, taking a sufficient large size
instance leads to negleetC; andhW,. compared tdV/,;

e polynomial regularity4 N, N,o (note thatr and V; are bounded) is also neglected..

This leads to the following result.

Theorem 13 Let A be an efficient ATH PRAM program that has polynomial granularity, polyno-
mial regularity and and bounded degre& (= O(1)).
Then, for any > 0, execution time ol on a distributed architecture with processors is asymp-

totically bounded by:

To(z) < (1+¢) I/Za.

This time includes communication and scheduling overheads.

To obtain an near-optimal scheduling algorithm, we use slackness; we considethgion of
the previous scheduling algorithm on a machine witldentical processors, > p. Taking into
account the above remarks, execution time including communication and sched@rhgads is
bounded by:

W,
q—1
We can now emulate this machine on the one wigitocessors; corresponding execution time is

T(x) < (140

ne) < (4ne < a+a(1-1) L

Choosing; enough larger thamand considering large size enough input data concludes the proof.
O

Another way to obtain near-optimal simulation consists in using a distrildigiescheduling
strategy. A classical example randomized work-stealingwhen a processor becomes idle, it
selects uniformly at random a processor to steal a task. When a processes erézsk, it keeps
it locally. Such a strategy is theoretically studied in [7]. Asymptdteunds are given in the
framework of strict multi-threaded computations. Other variants expdts taben exceeding a
certain number of task creations.
Such list scheduling strategies are very popular in parallel functional langsagh as Multilisp
[32] or Prolog [17].

In the last section, we turn to an effective implementation of the ATigjlege which allows
the building of the DFG and thus the effective use of the above provably optimai@sdneduling
algorithm.

mtwls Wl Bl Vi Nl el ol b €t 7 VN Naf 8 W8 00 S0VINS TN

2.3.4 Athapascan: a simulation of the ATH PRAM language

ATHAPASCAN [43] is a parallel procedural language, inspired by Jade [50], that allows the con-
struction of the DFG of an application during the execution. It thus makes possibles¢hef
provably optimal on-line scheduling algorithms. We give in this section arv@erof the main
features of the language.

Similar to the ATH language introduced in chapter THAPASCAN supports CUMULATIVE-
CRCW PRAM algorithms. The building of the DFG is implicit; thier k operation (called
newt ask in ATHAPASCAN) may take in argument an optional scheduling strategy, default
being a distributed list-scheduling algorithm. Taking benefit of some knowledge ogrdpé,
this allows to choose a well-suited scheduling algorithm such as block+segtter dense matrix
computations or DSC for DAG with known durations [25].

2.3.5 The AAHAPASCAN programming model

The ATHAPASCAN language is strict and para-functionnal. It is implemented by a C++ library; it
uses inheritance and templates to provide a friendly and easy-to-use iaeterfac

In ATHAPASCAN, parallelism is expressed by asynchronous procedure calls, which correspond
to the building oftasks A task describes the execution of a specific procedure (which is defined by
formal parameters and a block of instructions) with effective parasiel@vo parameter-passing
modes are possible: the by value mode copies the effective parameter intcahraéocory of the
task and the by reference mode shares the data among different tasks.

References to shared data are typed according to their access modes. Faiaraatifined
to access shared datead(al_shar ed_r),write (al_shar ed_w), read/write
(al_shared_r _w) andaccumulation(lal shar ed_cw). The three first modes are standard
and are used in other parallel languages [38, 50]. Accumulation is realizedHeomitial value
of the object by incrementation; this incrementation is defined by a binary furfct{default is
the C++ operato#=) which is assumed to kessociativeandcommutative
Thus, AAHAPASCAN allows the implementation of CUMULATIVE-CRCW PRAM algorithms.

The semantics of AHAPASCAN ° is such that each reading of a shared datum gets the value of
the last update (writing) in the sequential order of task executions (depth-tiesirog). To make
such an order easy to computelHRPASCAN does not allow side effects on shared variables. In
the current implementation ofiINAPASCAN, this semantics is implemented in the following way:

a task becomesxecutablevhen all the effective parameters that it requires in read (or reddjwr
mode have been updated by the predecessor tasks (relative to the sequentialtasttereations).

2.3.6 Execution model of AHAPASCAN

The control of the execution is based on the building of a macro data flow graph. TRSDF
represented by a direct acyclic hyper-graph, which is distributed among thespooge Vertices
correspond to tasks and edges to data dependencies related to shared objectsddegare
used to describe concurrent writings and concurrent readings on shared objectgraphisan

SATHAPASCAN [43] allows other access to shared objects: postponedxsftaccess allow the expression of a
larger degree of parallelism and arrays of shared objects.

e Y 7§ iV L § AW WS W WEVIIVINI N W TV W o et § 3 Gt Nl Wl f § e Naf bl § € ot

be labeled with information attributearfthmetic cost for tasks andlata sizefor shared object
dependencies). This graph is used to implement both the semantics and the schddabikg.
Different scheduling algorithms (denotedsthedulersare available and user-specific ones may
be added. The role of the scheduler is restricted to informing the system whewbandasks have
to be executed, taking into account some information available from the graphfumbtgnality
makes possible the implementation of different classical provably good sahgdidiorithms (list
scheduling, ETF [11], DSC [26], work-stealing [38] for example).

The following rules define the way an execution is handled:

e The first executable task is tlad. _nmai n() function.
¢ During the execution of a task:

— when a task is created (call to th@ _new_t ask directive), the new task is inserted
into the graph;

— when a task terminates, shared data that it accessed in write owrigadhode are
updated. The task is then removed from the graph and the scheduler is informed of new
ready tasks (i.e. all shared objects accessed in read or read/wdteare available).

e The scheduler analyzes the graph to make task mapping and starting decisiongsté&ie s
performs the scheduling decision. When all shared data required by a taséd/ireagawrite
mode have been received at the affected node, the task is started on tles@radeas been
assigned.

2.3.7 An example of AHAPASCAN program

The figure 2.3 presents armAAPASCAN source code for the triangular resolution X = B;
the algorithm is presented in the abstract language ATH in chapter 1 (fig. 1.@thiNotin ATHA-
PASCAN, all acess modes (read, write or read/write) are explicitly given deoto ensure that
the sequential order of execution can be determined directly from taskorréafl_new.t ask
instruction).

2.4 Conclusion

In this chapter, the on-line scheduling of a parallel PRAM program on a distrilautdukecture
with a bounded number of processors has been analyzed. List-scheduling strateqissntfy
arising in parallel language implementations, have theoretical foundationgptAnal simulation
of a PRAM program with polynomial speed-up, polynomial regularity and coarse-gragugari
given; costs of communications are considered under the model LogP and a shared-nsemory i
emulated using hash functions.

Due to its experimental good performances [57, 56], most of languages implementingcdynam
parallelism use heuristics based on list-scheduling. They essentiddlyatifthe shape of the DFG,
depending on the programming model they implement. Thus, the performance of list scgeduli

N Nl § W N o S St B Nt B W

Al

struct Update @ public al_task_elem{
Update(int size) {
set _cost(size*size*size);

}

/1 Performs X += -1/ A*Y

voi d operator() (al_shared_cwnmatrix<float> > X
al_shared_r<matrix<float> > A
al _shared_r<matrix<float> > Y) {

X.cumul (- A-read().inverse() * Y.read());
}
}

struct FinalDivision : public al_task_elem{

Final Division(int size) {
set _cost(size*size*size);

}

Il Performs X = 1/ A*X

voi d operator() (al_shared_rwnmatrix<float> > X

al _shared_r<matrix<float> > A) {

X.wite(Aread().inverse() * Xread());

}
}

struct Triangul arSolve : public al_task {
Triangul ar Sol ve(int nb_elem) {
set _cost(nb_el enfnb_el enl 2);

}
/1 Performs triangular resolution A*X=B
/1 Ais coded such that Aln*i+j] ::= Ali][]j]

voi d operator() (int n,
al_array_of _shared_rp<matrix<float> > A
al_array_of _shared_cw<matri x<fl oat> > X
al _array_of _shared_rp<matrix<float> > B) {
for(int i=0; i<n; i++) {
X[(i].cumul (B[i].read());
al new task(FinalDivision(), Xi], Aln*i+i]);
for(int j=i+1; j<n; j++)
al new task(Update(), Xj], Aln*i+], B[jl]);

Figure 2.3: Triangular resolution of X = B

Y 7§ iV L § AW WS W WEVIIVINI N W TV W o et § 3 Gt Nl Wl f § e Naf bl § € ot

may vary depending on this model. For instance, if synchronizations are authorittesllan-
guage (waiting for some future value for instance), the scheduling has to useiomgifatot, no
guarantee can be given on the competitive ratio.

We focus in this conclusion on languages that use a provably efficient on-line schezigbrg
rithm. HPF 2 introduced groups of independent tasks of unknown durations via function calls. A
BSP [54] program execution consists in a sequence of super-steps, each sependee tasks.
All shared memory access performed at a step are effective at themexDynamic load balanc-
ing is possible [54] but requires task migration in the considered implennem{asj.

Functional languages have been using list-scheduling for a long time. For a surveyon pa
allelism in functional languages, see [33], we just mention here some ch&@ctanguages.
Sisal[44] is a data-flow based language which defines a fine grain DFG; hoywevgramming
macro-tasks in order to obtain a coarse-granularity algorithm is not dirpotigible. NESL [5]
provides a nested parallel model: graphs correspond to recursive sets of independent tasks
with no data-dependencies but synchronization at the join point. Access areegharia virtual
shared memory. Cilk [7, 38] is inspired from Multilisp and implements a motigtrict functional
computation in a C-like language. Tasks are mapped on the functions; all datz@seeatin the
stack. Functions can be migrated at a synchronization point, explicitly definéa iprogram.
Migrations are reduced to a copy of the stackHAPASCAN [19, 43] is inspired from Jade [50]; it
is a C++ library that implements a programming model similar to the languaglepk&sented in
the previous chapter. Data-dependencies are defined by access to a shareasateorfespond
to procedure calls; parameters can be passed by value or by reference tecadsta. This last
mode defines the precedence. When a task is ready, it can be executed tiktmompith no
synchronization.

Bibliography

[1] A. Aggarwal, A. Chandra, and M. Snir. Communication complexity of PRAMBeoretical
Computer Sciencg1:3-28, 1990.

[2] A. Alexander, M. lonescu, K. Schauser, and C. Scheiman. Incorporating lonspgess
into the LogP model. IrProceedings of the 7th Symposium on Parallel Algorithms and
Architectures ACM Press, 1995.

[3] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hidnaraodel of com-
putation.Algorithmica 1993.

[4] J. Blazewicz, K. Exker, G. Schmidt, and J. WeglaB&cheduling in Computer and Manufac-
turing SystemsSpringer-Verlag, Germany, 1993.

[5] G. E. Blelloch. Programming Parallel Algorithm&ommunications of the ACN39(3):85—
97, 1996.

[6] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient schedulor languages
with fine-grained parallelism. IRroceedings of the 7th Symposium on Parallel Algorithms
and Architecturespages 1-12, Santa-Barbara, California, 1995. ACM Press.

[7] R. D. Blumofe. Executing Multithreaded Programs Efficientl{?hD thesis, Massachussets
Institute of Technology, Boston, 1995.

[8] R. D.Blumofe and C. E. Leiserson. Scheduling multithreaded computations tkstealing.
In Proceedings of the 35th Symposium on Foundations of Computer Sgpeages 356—368,
Santa-Fe, New Mexico, 1994.

[9] J. Briat, I. Ginzburg, M. Pasin, and B. Plateau. Athapascan runtirfiieidficy for irregular
problems. InProceedings of EuroPar'9Q7%Springer-Verlag, Aug. 1997.

[10] D.R. ButenhofProgramming with POSIX threaddddison-Wesley Professional Computing
Series, 1997.

[11] P. Chretienne, E. J. Coffman, J. K. Lenstra, and Z. [Seheduling Theory and its Applica-
tions John Wiley and Sons, England, 1995.

[12] E. Coffman and S. R. A Generalized Bound on LPT SequenciRg§I/RO Informatique
10:17-25, 1976.

53

~ T ot § bt b § Nt N § N4 G ¥ ¥ §

[13] R. Cole and U. Vishkin. Approximate Parallel Scheduling. Part | : The Basahilique
with Applications to Optimal Parallel List Ranking in Logarithmic Tim8IAM Journal on
Computing17(1), 1988.

[14] J. Colin and P. Chretienne. C.P.M. Scheduling with small communicati@mysland task
dupli cation.Operations Researct39:680—684, 1991.

[15] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K.cBaBsser, and T. v. E.
Ramesh Subramonian. LogP: A Practical Model of Parallel Computaiommunications
ACM, 39(11):78-85, 1996.

[16] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K.cBaBsser, and T. v. E.
Ramesh Subramonian. LogP: Towards a realistic model of parallel computatimocked-
ings of the 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 1-12, May 1993.

[17] J. C. de Kergommeaux and P. Codognet. Parallel logic programming sysf&bhd.Com-
puting Survey26(3):295-336, september 1994.

[18] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A Message Passargi&td for MPP
and WorkstationsCommunications ACIMB9(7):84-90, 1996.

[19] B. Dumitrescu, M. Doreille, J.-L. Roch, and D. Trystram. Influence bisitling on actual
high-performance computing applications: sparse cholesky factorization as atody. In
Proceedings of PPAM’97 — 2nd International Conference on Parallel Processing and Applied
MathematicsZakopane, Poland, 1997.

[20] A. Dusseau, D. Culler, K. E. Schauser, and R. Mart in. Fast paratéhg under LogP:
experiences with CM- SEEE Transactions on Parallel and Distributed Syste#(8), 1996.

[21] I. Foster, C. Kesselman, and S. Tuecke. The nexus approach to integratinneading
and communicationEEEE Journal of Parallel and Distributed Computint997.

[22] M. Garey, R. Graham, and D. Johnson. Performance guarantees for schedyoiridpaus.
Operation Researgl?6(1):3-21, Jan. 1978.

[23] M. Garey and D. JohnsonComputers and Intractability : A Guide to the Theory of NP-
CompletenessV.H. Freeman, New York, 1979.

[24] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, W. Manchek, and V. Sunder@eM: A
Users’Guide and Tutorial for Networking Parallel ComputingMIT Press, Cambridge,
Mass., 1994. Available electronically; see ftp://www.netlib.org/pvm3/bookApook.ps.

[25] A. Gerasoulis and T. Yang. A comparison of clustering heuristics for schedDIAG’s on
multiprocessorsJournal of Parallel and Distributed Computin®ec. 1992.

[26] A. Gerasoulis and T. Yang. PYRROS : Static Task Scheduling and Code @endm
Message-Passing Architectures. Technical report, Rutgers UnivésSigy, 1993.

ot § bt b § Nt N § N4 G ¥ ¥ § A

[27] P. Gibbons. A more practical PRAM model. Broceedings of the 1989 ACM Symposium on
Parallel Algorithms and Architecture4989.

[28] M. Goudreau, J. Hill, K. Lang, and B. McColl. A Proposal for the BSP WorldwitenS
dard Library preliminary versioi. Technical report, http://www.bsp-worldwide.org/, Oxford
University, GB, 1997.

[29] R. Graham. Bounds for Certain Multiprocessor AnomaliBsll System Tech,J45:1563—
1581, 1966.

[30] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to Minimizerage Com-
pletion Time: Off-line and On-line Approximation Algorithms. Technical Refdr6/1996,
Technishe Universitat, Berlin, 1996.

[31] R. Halstead. Parallel symbolic computingEE Computerl9 (8):35-43, 1986.

[32] R. Halstead. Parallel computing using multilisp. In J. Kowalik, ediarallel Computation
and Computers for Artificial Intelligen¢pages 21-49. Kluwer Academic Publishers, 1988.

[33] K. Hammond. Parallel functionnal programming: an introduction. In H. Hong, edftcst,
International Symposium on Parallel Symbolic Computation (RBS4), Lecture Notes Se-
ries in Computing, pages 181-194, 1994.

[34] T. Heywood and S. Ranka. A practical hierarchical model of parallel compuatagournal
on Parallel and Distributed Computind6(3), 1992.

[35] D. S.Hochbaum and Shmoys. Using dual approxiamtion algorithms for scheduling problems:
Theoretical and practical result3ournal of the ACM34:144-162, 1987.

[36] J.-J. Hwang, Y.-C. Chow, F. Anger, and C.-Y. Lee. Scheduling precedeapbgin systems
with interprocessor communication time$SIAM Journal on Computingl8(2):244-257,
April 1989.

[37] J. Jaja.An Introduction to Parallel Algorithms Addison-Wesley, Reading, Massachussets,
1992.

[38] C. Joerg.The Cilk system for parallel multithreaded computifthD thesis, Massachussets
Institute of Technology, january 1996.

[39] R. Karp and V. Ramachandran. Parallel algorithms for shared-memotyimeac In J. van
Leuwen, editorAlgorithms and Complexitypages 869-932. Elsevier, 1990.

[40] R. M. Karp, M. Luby, and F. M. auf der Heide. Efficient PRAM Simulation oDiatributed
Memory Machine Algorithmica 16:517-542, 1996.

[41] R. M. Karp, A. Sahay, E. Santos, and K. E. Schauser. Optimal broadcastimmaation in the
LogP model. IrProceedings of the 5th Symposium on Parallel Algorithms and Architectures
ACM Press, 1993.

[42] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient patallgorithms.
Theoretical Computer Sciencél:95-132, 1990.

[43] J.-L. R. Mathias Doreille, Francois Galilée. Athapascan-1bsentation . Technical Report
http://navajo.imag.fr/ath1/, Projet APACHE, Grenoble, France, 1996.

[44] J. McGraw. SISAL: Streams and Iterations in a Sigle-Assignmengluage — Reference
Manual. Technical Report Manual M-146, Lawrence Livermore National Lab., 1985.

[45] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAjpar-
allel machines with restricted granularity of parallel memorfsta Informatica 21, 1994.

[46] R. Namyst and J.-F. Méhaut. Prparallel multithreaded machine: a multithreaded envi-
ronment on top of pvm. liProceedings of EuroPVM’'9%ages 179-184. HERMES (ISBN
2-86601-497-9), 1995.

[47] C. H. Papadimitriou and M. Yannakakis. Towards an architecture-indepeanalysis of
parallel algorithmsSIAM Journal on Computind 9(2):322-328, 1990.

[48] A. G. Ranade. How to emulate shared memoryPioceedings 28th Annual Symposium on
Foundations of Computer Sciengages 185-192. IEEE, 1987.

[49] V. Rayward-Smith. UET scheduling with unit interprocessor communicati@yddDiscrete
Applied Mathematicsl8:55-71, 1987.

[50] M. Rinard.The design, implementation and evaluation of Jade : a portable, implicitly paral-
lel programming languagePhD thesis, Stanford University, september 1994.

[51] W. Schreiner. A Para-Functional Programming Interface for a Pa@teatputer Algebra
PackageJournal of Symbolic Computatip@1:593-614, 1996.

[52] D. B. Shmoys, J. Wein, and P. Williamson. Scheduling parallel machineshen-8IAM
Journal on Computing24(6):1313-1331, 1995.

[53] M. Snir, S. W. Otto, S. Hess-Lederman, D. Walker, and J. J. Dongadvial: The Com-
plete Reference MIT Press, Cambridge, Mass., 1996. Available electronically; see
http://www.netlib.org/utk/papers/mpi-book.html.

[54] L. G. Valiant. A Bridging Model For Parallel Computatiol@ommunications of the ACM
33(8):103-111, 1990.

[55] L. G. Valiant. General purpose parallel architectures. In J. van bayeditor,Algorithms
and Complexitypages 944-971. Elsevier, 1990.

[56] A. S. Wagner and S. T. Chanson. Performance Models for the Processor FaadigPar
IEEE Transactions on Parallel and Distributed SysteB(5):475-489, 1997.

[57] M. Willebeek-Le-Mair and P. Reeves. Strategies for dynamic loadabadg on higly parallel
computerslEEE Transactions on Parallel and Distributed SysteA(9):979-993, 1993.

Contents

1 Parallel efficient algorithms 3
1.1 PRAM,DFGandcostanalysis 4
1.2 Increasinggranularity 13
1.3 Redundancy and cascading divide&conquer oo 18
1.4 Randomization to decrease time or preservework. 23
1.5 Parallel time complexity and NC Classification 26
1.6 Conclusion e 27
2 Programming models and scheduling 33
2.1 Asynchronous distributed architectures 35.
2.2 HowtoscheduleaDFG 39
2.3 On-line scheduling algorithms, 43
24 Conclusion e 50

57

