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Target Application
¢ Large-Scale Global Computing Systems

¢ Subject Application to Dependability Problems
— Can be addressed in the design

¢ Subject Application to Security Problems

— Requires solutions from the area of survivability, security,
fault-tolerance
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Typical Application [racTivE]

¢ Computation intensive parallel application

— Medical (mammography comparison)
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Global Computing Architecture

¢ Large-scale distributed systems (e.g. Grid, P2P)
— Eg : BOINC [Berkeley Open Infrastructure for Network Computing]

¢ Transparent allocation of resources
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Definitions and Assumptions

¢ Dataflow Graph
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V finite set of vertices v, >
€ set of edges ¢, vertices v, vy EV ;
VS
¢ Two kinds of tasks @

T, Tasks
in the traditional sense

D, Data tasks
inputs and outputs
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Resource allocation

¢ Assumption on the application :
~ large number of operations to perform = W, (sequential work)
— huge degree of parallelism = W, (critical time = parallel work on #procs=0)

~ Global computing application framework : W, << W,

¢ Allocation : Distributed randomized work-stealing schedule [Cilk98] [Athapascan98]
— Local non-preemptive execution of tasks
»  New created tasks are pushed in a local queue.

—  When a resource becomes idle, it randomly selects another one that has ready tasks
(greedy) and steals the oldest ready task

¢ Provable performances (with huge probability) [Bender-Rabin02]

» On-line adaptation to the global computing platform

Execution time < Wi 4 Weo
I_Itot Mave
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Security issues for a global computation

¢ In the Survivability Community our general computing environment 1s
referred to as

Unbounded Environment

— Lack of physical / logical bound
— Lack of global administrative view of the system.

What risks are we subjecting our applications to?
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Assumptions

¢ Anything 1s possible!

» and it will happen!

¢ Malicious act will occur sooner or later

¢ It is hard or impossible to predict the behavior of an attack
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Two kinds of failures (1/2)

1. Node failures

~ “fail stop” model e B
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Two kinds of failures (1/2)

1. Node failures

~  “fail stop” model = T
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Fault Tolerance Approaches

¢ Simplified Taxonomy for Fault Tolerance Protocols

FT Protocol
Duplication Checkpointin g\ Message-Logging
Uncoordinated Coordinated Communication- Pessimistic Optimisitic ~ Causal
induced

¢ Stable memory to store checkpoints (replication, ECC, .. )

¢ Two “extreme” protocols (distributed, asynchronous) are distinguished :

—  Pessimistic : Systematic storage of all events / communications :
» Large overhead but ensures small restart time [MPICH-V1]

—  Optimistic : only events that ensure causality relations are stored [Com. induced]
» Overhead is reduced but more recomputations in case of fault [Satin 05]

¢ Compromises :
~  Non-coordinated : periodic local checkpoint of the tasks queue
~ Coordinated : global checkpoint of the stacks
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Pessimistic [SEL] storage versus
non-coordinated com. induced [TIC]
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Application : Quadratic Assignment Problem with Kaapi : QAP-Nugent 24 [Cungé&al 05]

Page: 11



Two kinds of failures (2/2)

2. Task forgery
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Two kinds of failures (2/2)

2. Task forgery
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Two kinds of failures (2/2)

2. Task forgery
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Fault Models

¢ Simplified Fault Taxonomy

Benign

Fault

— T

Malicious

— T~

Symmetric

Asymmetric

¢ Fault-Behavior and Assumptions

~ Independence of faults

—  Common mode faults -> towards arbitrary faults!

¢ Fault Sources

— Trojan, virus, DOS, etc.

—-  How do faults affect the overall system?
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Attacks and their impact

¢ Attacks
— single nodes, difficult to solve with certification strategies
— solutions: e.g. intrusion detection systems (IDS)

¢ Massive Attacks
— affects large number of nodes
— may spread fast (worm, virus)
— may be coordinated (Trojan)

¢ Impact of Attacks
— attacks are likely to be widespread within neighborhood, e.g. subnet

¢ Our focus: massive attacks
— virus, trojan, DoS, etc.
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Certification Against Attacks

¢ Mainly addressed for independent tasks

¢ Current approaches
— Simple checker [Blum97]
—- Voting [eg BOINC, SETI@home]
— Spot-checking [ Germain-Playez 2003, based on Wald test]
— Blacklisting
—  Credibility-based fault-tolerance [Sarmenta 2003 ]
— Partial execution on reliable resources (partitioning) [ Gao-Malewicz 2004 ]
— Re-execution on reliable resources

¢ Certification of Computation to detect massive attacks
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Global Computing Platform (GCP)

¢ GCP includes workers, checkpoint server and verifiers
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Probabilistic Certification

¢ Monte Carlo certification:

— arandomized algorithm that
1. takes as input £ and an arbitrary g, 0<g <1

2. delivers
m cither CORRECT
m or FAILED, together with a proof that £ has failed

— certification is with error ¢ if the probability of answer CORRECT,
when E has actually failed, is less than or equal to €.

¢ Interest
— ¢ : fixed by the user (tunable certification)

— Number of executions by the verifiers is not to large with respect of the
number of tasks
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Protocols MCT and EMCTs

¢ The Basic Protocol: The Monte Carlo Test (MCT) [SBACO04]

1. Uniformly select one task 7'in G
we know input i(7,E) and output o(T,E) of T from checkpoint server

2. Re-execute T on verifier, using i(7,E) as inputs, to get output o(7,E)
If o(T,E) # 6(T,E) return FAILED

3. Return CORRECT

¢ Results about extended MCT (EMCTs) [EIT-b 2005]

—  Number N of re-execution depends

. log ¢
log(1 - AG )
— where A depends on the graph structure, the ratio of tasks forgeries and of
the protocol
— E.g.: For massive attack and independent tasks: A;=q
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Certification of Independent Tasks

¢ How many independent executions of MCT are necessary to
achieve certification of £ with probability of error < € ?

NZ[ loge ]
log(1-¢)

— Prob. that MCT selects a non-forged tasks is

— N independent applications of MCT results in E< (1 - q)N
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Certification of Independent Tasks

¢ Relationship between certification error and N

N
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250 -

200 -

150 -

100 4

50 4

——q=3%

—a—q=10%
—a—q=13%
—o—q=20%

0

lLE-O1 1.E-02 1.E-03 1E-04 1E-O05 I1E-D6

e (1n log scale)
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*300 checks => €< 5%
*4611 checks => £ <102
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Task dependencies

¢ Algorithm EMCT
1. Uniformly select one task 7'in G

2. Re-execute all T, in G=(T), which have not been verified yet, with input
i((T,E) on a verifier and return FAILED 1f for any 7, we have o(7, E) #
o(T,E)

J

3. Return CORRECT

¢ Behavior
— disadvantage: the entire predecessor graph needs to be re-executed

- however: the cost depends on the graph
»  luckily our application graphs are mainly trees
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Analysis of EMCT

¢ Results of independent tasks still hold,

— but N hides the cost of verification

» independent tasks: C =1
» dependent tasks: C = |G=(7)|
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Reducing the cost of verification

For EMCT the entire predecessor graph had to be verified
To reduce verification cost two approaches are considered next:

1. Verification with fractions of G=(7)
2. Verification with fixed number of tasks in G=(T)
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Results for pathological cases

¢ Number of effective initiators
—  this is the # of initiators as perceived by the algorithm
— e.g. for EMCT an initiator in G=(7) is always found, if it exists

MCT(E)[7] EMCT(E) [7] EMCT,(F) EMCT(1
# of effective initiators [(1'_1#)} Nng ngal'r(ng) orn, ngl'r(ng)
1—d
Feera
Probability of error I 1—gq 1 —qgal'p(ng)orl —gq 1 —qT7(n,
s ., log e log e log e . loge log e
A priori convergence [ 1j§ ] log(1—q) log(1—gal'g(ng)) log(1—q) log(1—¢ql'q(n,
log(1— p— )
[—h—(l_i)
q. a priori — q qalg(n,) or g qU(ng)
((1%3;71
{. TUN-time — q qal'r(n,) or q qUr(ny)
Verification cost (exact) 1 G= (1) [a|G=(T)|]
Max. cost (out-tree) 1 h ah

¢ Efficient massive attack detection in the framework W, << W),

Page: 24



Conclusion

¢ Programming an application on a Global computing platform :
— Designing adaptive algorithm for efficient resource allocation

¢ Managing resource resilience and crash faults :
—  Tuned fault-tolerance protocol to decrease overhead
— Key problem : efficient distributed stable memory [ECC promising]

¢ Managing malicious intrusions :

— Detection of massive attacks
» Efficient probabilistic certification

— Protection against local attacks :
» Redundant computations
»  Self fault-tolerant algorithms [eg Lamport sorting network] [Varrette06]
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Questions?

http://www-id.imag.fr/Laboratoire/Membres/Roch_Jean-Louis/perso_html/publications.html
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