Calculs securises adaptatifs sur
infrastructure de calcul global

Thierry Gautier, Samir Jafar, Franck Leprévost+,
Jean-Louis Roch, Sébastien Varrette+
and Axel Krings*

Projet MOAIS (CNRS,INPG,INRIA,UJF) LIG - IMAG, Grenoble, France
http://moais.imag.fr

+ Université¢ du Luxembourg, Luxembourg
* Idaho University, Moscow, Idaho

Cryptologie, Sécurité des systemes

21/03/2006 & Espionnage industriel

Target Application
¢ Large-Scale Global Computing Systems

¢ Subject Application to Dependability Problems
— Can be addressed in the design

¢ Subject Application to Security Problems

— Requires solutions from the area of survivability, security,
fault-tolerance

Page: 2

Typical Application [racTivE]

¢ Computation intensive parallel application

— Medical (mammography comparison)

Storage grid |
— —) — — — —) - [To stock
DB1 DB2 DB3 '
‘ — ‘ . | store image
D1 ‘
' . _
To analyse [
7‘ Y Computing grid |

= - (J 01 01 G

{ e) |

Java Card

-
D2

Page: 3

Global Computing Architecture

¢ Large-scale distributed systems (e.g. Grid, P2P)
— Eg : BOINC [Berkeley Open Infrastructure for Network Computing]

¢ Transparent allocation of resources

User

Internet

=I—||I||||—|=I—||I||||—|=I—||I|||

RN

I

Page: 4

'l

Definitions and Assumptions

¢ Dataflow Graph

o (:} ::(C\)az;)
N i
V finite set of vertices v, >
€ set of edges ¢, vertices v, vy EV ;
VS
¢ Two kinds of tasks @

T, Tasks
in the traditional sense

D, Data tasks
inputs and outputs

sl s2

Page: 5

Resource allocation

¢ Assumption on the application :
~ large number of operations to perform = W, (sequential work)
— huge degree of parallelism = W, (critical time = parallel work on #procs=0)

~ Global computing application framework : W, << W,

¢ Allocation : Distributed randomized work-stealing schedule [Cilk98] [Athapascan98]
— Local non-preemptive execution of tasks
» New created tasks are pushed in a local queue.

— When a resource becomes idle, it randomly selects another one that has ready tasks
(greedy) and steals the oldest ready task

¢ Provable performances (with huge probability) [Bender-Rabin02]

» On-line adaptation to the global computing platform

Execution time < Wi 4 Weo
I_Itot Mave

Page: 6

Security issues for a global computation

¢ In the Survivability Community our general computing environment 1s
referred to as

Unbounded Environment

— Lack of physical / logical bound
— Lack of global administrative view of the system.

What risks are we subjecting our applications to?

Page: 7

Assumptions

¢ Anything 1s possible!

» and it will happen!

¢ Malicious act will occur sooner or later

¢ It is hard or impossible to predict the behavior of an attack

Page: 8

Two kinds of failures (1/2)

1. Node failures

~ “fail stop” model e B

User

Internet

=I—||I||||—|=I—||I||||—|=I—||I|||

RN

I

'l

Page: 9

Two kinds of failures (1/2)

1. Node failures

~ “fail stop” model = T

User

Internet

=I—||I||||—|=I—||I|||

i
'l

RN

"l

Fault Tolerance Approaches

¢ Simplified Taxonomy for Fault Tolerance Protocols

FT Protocol
Duplication Checkpointin g\ Message-Logging
Uncoordinated Coordinated Communication- Pessimistic Optimisitic ~ Causal
induced

¢ Stable memory to store checkpoints (replication, ECC, ..)

¢ Two “extreme” protocols (distributed, asynchronous) are distinguished :

— Pessimistic : Systematic storage of all events / communications :
» Large overhead but ensures small restart time [MPICH-V1]

— Optimistic : only events that ensure causality relations are stored [Com. induced]
» Overhead is reduced but more recomputations in case of fault [Satin 05]

¢ Compromises :
~ Non-coordinated : periodic local checkpoint of the tasks queue
~ Coordinated : global checkpoint of the stacks

Page: 10

Pessimistic [SEL] storage versus
non-coordinated com. induced [TIC]

25% 11 Without checkpoints 23370

200, | SEL 18.79
_I TIC(period=1s) 17.6%

15% - B TIC(period=20s)

(p*Tp -Ts)/Ts
=
o\o

) I :l_.
o = l
20 # processors =P

120

Application : Quadratic Assignment Problem with Kaapi : QAP-Nugent 24 [Cungé&al 05]

Page: 11

Two kinds of failures (2/2)

2. Task forgery

17 : 9 == 11 == (111l

B massive attaCkS = [== 11111111
= |1 == (111l

== |11 = (1111l

== |1 = [11I1II

= |1 = (1111l

== |1 == (111l

== |1 == |11l

User

Internet

=I—||I||||—|=I—||I||||—|=I—||I|||

ﬁj 2
= =T T

Two kinds of failures (2/2)

2. Task forgery

c . ’ = [l T
- massive attacks = [l =‘§mmm
= [l T

2l
T
I\
=]

Two kinds of failures (2/2)

2. Task forgery

=1 — el
=1 3
=1
=1
=1
=1
=1

— “massive attacks”

i
'l

RN

"l

Fault Models

¢ Simplified Fault Taxonomy

Benign

Fault

— T

Malicious

— T~

Symmetric

Asymmetric

¢ Fault-Behavior and Assumptions

~ Independence of faults

— Common mode faults -> towards arbitrary faults!

¢ Fault Sources

— Trojan, virus, DOS, etc.

—- How do faults affect the overall system?

Page: 13

Attacks and their impact

¢ Attacks
— single nodes, difficult to solve with certification strategies
— solutions: e.g. intrusion detection systems (IDS)

¢ Massive Attacks
— affects large number of nodes
— may spread fast (worm, virus)
— may be coordinated (Trojan)

¢ Impact of Attacks
— attacks are likely to be widespread within neighborhood, e.g. subnet

¢ Our focus: massive attacks
— virus, trojan, DoS, etc.

Page: 14

Certification Against Attacks

¢ Mainly addressed for independent tasks

¢ Current approaches
— Simple checker [Blum97]
—- Voting [eg BOINC, SETI@home]
— Spot-checking [Germain-Playez 2003, based on Wald test]
— Blacklisting
— Credibility-based fault-tolerance [Sarmenta 2003]
— Partial execution on reliable resources (partitioning) [Gao-Malewicz 2004]
— Re-execution on reliable resources

¢ Certification of Computation to detect massive attacks

Page: 15

Global Computing Platform (GCP)

¢ GCP includes workers, checkpoint server and verifiers

Workers user
.

\ ChSeckpoint Verifiers
Internet ™\ erver

S —
“u ¥ - = 1

‘ . ~,‘ _ o |
‘ v O[] T
i AP '
| ¢ B
—

Page: 16

Probabilistic Certification

¢ Monte Carlo certification:

— arandomized algorithm that
1. takes as input £ and an arbitrary g, 0<g <1

2. delivers
m cither CORRECT
m or FAILED, together with a proof that £ has failed

— certification is with error ¢ if the probability of answer CORRECT,
when E has actually failed, is less than or equal to €.

¢ Interest
— ¢ : fixed by the user (tunable certification)

— Number of executions by the verifiers is not to large with respect of the
number of tasks

Page: 17

Protocols MCT and EMCTs

¢ The Basic Protocol: The Monte Carlo Test (MCT) [SBACO04]

1. Uniformly select one task 7'in G
we know input i(7,E) and output o(T,E) of T from checkpoint server

2. Re-execute T on verifier, using i(7,E) as inputs, to get output o(7,E)
If o(T,E) # 6(T,E) return FAILED

3. Return CORRECT

¢ Results about extended MCT (EMCTs) [EIT-b 2005]

— Number N of re-execution depends

. log ¢
log(1 - AG)
— where A depends on the graph structure, the ratio of tasks forgeries and of
the protocol
— E.g.: For massive attack and independent tasks: A;=q

Page: 18

Certification of Independent Tasks

¢ How many independent executions of MCT are necessary to
achieve certification of £ with probability of error < € ?

NZ[loge]
log(1-¢)

— Prob. that MCT selects a non-forged tasks is

— N independent applications of MCT results in E< (1 - q)N

Page: 19

Certification of Independent Tasks

¢ Relationship between certification error and N

N

350

300 -

250 -

200 -

150 -

100 4

50 4

——q=3%

—a—q=10%
—a—q=13%
—o—q=20%

0

lLE-O1 1.E-02 1.E-03 1E-04 1E-O05 I1E-D6

e (1n log scale)

Page: 20

1.E-07

Forq=1%:

*300 checks => €< 5%
*4611 checks => £ <102
*24000 checks => ¢ < 10"

Task dependencies

¢ Algorithm EMCT
1. Uniformly select one task 7'in G

2. Re-execute all T, in G=(T), which have not been verified yet, with input
i((T,E) on a verifier and return FAILED 1f for any 7, we have o(7, E) #
o(T,E)

J

3. Return CORRECT

¢ Behavior
— disadvantage: the entire predecessor graph needs to be re-executed

- however: the cost depends on the graph
» luckily our application graphs are mainly trees

Page: 21

Analysis of EMCT

¢ Results of independent tasks still hold,

— but N hides the cost of verification

» independent tasks: C =1
» dependent tasks: C = |G=(7)|

350 - N
300 - ——q=5%
——c=0.001 300 4
250 4 —a—e=0.0001
——e=0.00001 250 -
20H) 1 —a—e=(.000001
200 4
C N
N 150 150
1001 100 -
S0 1 30 A
D T T T T T 1 {) T T T T T T 1
0.03 0.1 0.15 0.2 0.25 0.3 1.LE-01 1.E-02 1E-03 1E-04 1E-05 1E-06 1E-07
q g (In log scale)

Page: 22

Reducing the cost of verification

For EMCT the entire predecessor graph had to be verified
To reduce verification cost two approaches are considered next:

1. Verification with fractions of G=(7)
2. Verification with fixed number of tasks in G=(T)

Page: 23

Results for pathological cases

¢ Number of effective initiators
— this is the # of initiators as perceived by the algorithm
— e.g. for EMCT an initiator in G=(7) is always found, if it exists

MCT(E)[7] EMCT(E) [7] EMCT,(F) EMCT(1
of effective initiators [(1'_1#)} Nng ngal'r(ng) orn, ngl'r(ng)
1—d
Feera
Probability of error I 1—gq 1 —qgal'p(ng)orl —gq 1 —qT7(n,
s ., log e log e log e . loge log e
A priori convergence [1j§] log(1—q) log(1—gal'g(ng)) log(1—q) log(1—¢ql'q(n,
log(1— p—)
[—h—(l_i)
q. a priori — q qalg(n,) or g qU(ng)
((1%3;71
{. TUN-time — q qal'r(n,) or q qUr(ny)
Verification cost (exact) 1 G= (1) [a|G=(T)|]
Max. cost (out-tree) 1 h ah

¢ Efficient massive attack detection in the framework W, << W),

Page: 24

Conclusion

¢ Programming an application on a Global computing platform :
— Designing adaptive algorithm for efficient resource allocation

¢ Managing resource resilience and crash faults :
— Tuned fault-tolerance protocol to decrease overhead
— Key problem : efficient distributed stable memory [ECC promising]

¢ Managing malicious intrusions :

— Detection of massive attacks
» Efficient probabilistic certification

— Protection against local attacks :
» Redundant computations
» Self fault-tolerant algorithms [eg Lamport sorting network] [Varrette06]

Page: 25

Questions?

http://www-id.imag.fr/Laboratoire/Membres/Roch_Jean-Louis/perso_html/publications.html

[89] Samir Jafar, Varrette Sébastien, and Jean-Louis Roch. Using data-flow analysis for resilience and
result checking in peer-to-peer computations. In IEEE DEXA'2004, Zaragoza, August 2004.

[92] Sébastien Varrette, Jean-Louis Roch, and Franck Leprévost. Flowcert: Probabilistic certification
for peer-to-peer computations. IEEE SBAC-PAD 2004, pages 108-115, Foz do Iguacu, Brazil, October 2004.

[97] Axel W. Krings, Jean-Louis Roch, and Samir Jafar. Certification of large distributed computations
with task dependencies in hostile environments. IEEE EIT 2005, Lincoln, May 2005.

[99] Samir Jafar, Thierry Gautier, Axel W. Krings, and Jean-Louis Roch. A checkpoint/recovery model
for heterogeneous dataflow computations using work-stealing. EUROPAR'2005, Lisbonne, August 2005.

[104] J.L Roch & AHA Team. Adaptive algorithms : theory and application. STAM Parallel Processing
2006, San Francisc, February 2006

Page: 26

