

1

Job scheduling in agent-based Grid
middleware

Mehrdad Senobari, Michał Drozdowicz, Maria
Ganzha, Marcin Paprzycki, Ivan Lirkov, Richard

Olejnik, Pavel Telegin

2

Agenda

□ Agents and the Grid
□ Agents in Grid system

◊ Architecture
◊ Assumptions

□ Existing grid schedulers
◊ Traditional
◊ Agent based

□ Which approach best fits our system
□ Conclusion

3

The need for agents in Grid

□ Global Grid collection of heterogeneous nodes →
belonging to “anyone”

◊ Nodes can appear and disappear
◊ Their load can change
◊ The amount of nodes is large
◊ QoS and SLA difficult to enforce

□ ”...current Grid systems are somewhat rigid and
inflexible in terms of their interoperation and their
interactions, while agent systems are typically not
engineered as serious distributed systems that need to
scale, that are robust, and that are secure...”

Ian Foster, Nicholas R. Jennings, Carl Kesselman

4

Goal: to enable Users to sell or/and buy resource(s)

Structure:

□ Every resource is represented by an agent

□ Agents works in teams

□ LMaster – team manager; LMirror – ”back-up man”

◊ Share knowledge about team, jobs, clients...
□ Advertising / Discovery / Registration → Client

Information Center (CIC) infrastructure (CIC Agent)

◊ All teams are registered in the CIC DB
◊ User agent LAgent has to register in the CIC

Software Agents as Resource Brokers in
Grid

5

AML social diagram of the system

6

Two main scenarios

□ User needs (a) resource(s) to complete a task:

1) Describes to LAgent requirements

2) LAgent sends a request to the CIC → receives an
answer (list of appropriate teams Managers –
LMasters)

3) LAgent negotiates conditions of task completion

4) Returns results of the completed task to its User
□ User wants to sell “resource(s)” (e.g. CPU time)

1)-2) the same

3) LAgent negotiates with LMaster conditions of work

4) LAgent “works for a team” (earns money for its User)

7

Assumptions

□ Known from job contract negotiations

◊ requested hardware / software
◊ execution constraints (including time and budget)

□ Known from team joining

◊ hardware / software of each Worker
◊ time-focused contract details

□ Agents are benevolent does not mean omnipotent → →
reliability still important

◊ malevolent agents (spoilers) have to be dealt
with through “trust management” very →
interesting (but for now out of scope)

8

CONDOR

□ High-throughput environment

◊ can manage a large collection of diversely owned
machines

◊ utilizes a centralized scheduler based on the ClassAd
matchmaker, which manages a pool of available
computing resources

◊ allows the matchmaker (and/or the user) to forward
computing request to another matchmaker through
the gateway flocking mechanism

◊ project under constant development; with large
community of users

◊ no economy; no trust/reputation;

NimrodG

□ Utilizes an economy-driven architecture for managing
resources and scheduling jobs

◊ uses existing services provided by the Grid middleware
systems such as Globus, Legion, Condor; as well as
GRACE trading mechanisms

◊ basic scheduling algorithms:
◊ Time Minimization, within time and budget

constraints
◊ Cost Minimization, within time and budget

constraints
◊ None Minimization, within time and budget

constraints
◊ latest version of this middleware (v3.0.1) was released

in October, 2005; work from 2007 (at the WWW site)

10

ARMS (1)

□ Uses agents for resource advertisement and discovery
at the Grid global level

◊ Agents are homogeneous and cooperating and are
organized in a hierarchical structure

◊ based on utilization of performance prediction
capabilities provided by the Performance Analysis
and Characterize Environment (PACE) toolkit

◊ scheduling driven by QoS requirements of job
requests (users have to specify an explicit job
execution deadline)

11

ARMS (2)

□ Agents act as representatives for local Grid resources

◊ for each resource, PACE is used to create a hardware
characterization template

◊ hardware model and services information of each
Grid resource are advertised across the agent
hierarchy

◊ information periodically updated using push and
pull

◊ information utilized to build knowledge-base named
the ACT (Agent Capability Table)

◊ performance model from the ACT and user
requirements used to schedule job execution

□ Project is dead since approximately 2001

JADE extension by Poggi et.al. (1)

□ Two approaches to Grid-Agents integration:

◊ to extend the Grid middleware to support agent
features

◊ to extend agent-based middleware to support
functionalities of the Grid

□ JADE extensions

◊ mechanisms for code distribution, reconfiguration,
goal delegation, load balancing optimization and QoS
definition

◊ new types of agents to support
◊ rule-based creation and composition of tasks
◊ mobility of the code at the task level (i.e., JADE

behaviors or simply rules are exchanged by agents)

13

JADE extension by Poggi et.al. (2)

◊ Drools agent to receive and execute rules coming
from other agents (all use Drools open-source
rule engine)

◊ BeanShell agent to receive and execute behaviors
coming from other agents

● integrates the BeanShell scripting engine into
the systems a wrapper agent→

□ Work originally reported in 2004; since then two papers
produced; no Grid related add-on listed among JADE
add-on software; project seems to be a zombie...

14

Bond

□ Java-based middleware for network computing

◊ developed to create an infrastructure for scheduling
complex tasks and data annotation for data intensive
applications

◊ knowledge and workflow management based on
distributed objects

◊ resource information is stored in language-based
distributed objects

◊ KQML for information exchange
◊ distributed awareness is used to learn about

existence of other agents
□ Publications appeared in the 1999-2003 time frame →

project is dead

15

Agent-based Scheduling Framework
ASF (1)

□ Main idea to reduce the responsibilities of a →
conventional metascheduler

◊ workload of the metascheduler grows with the
number of computing resources grows (degrading
scalability and accuracy of scheduling)

◊ accuracy of scheduling degrades in overloaded
metascheduler (not all information will be processed
in time to make accurate prediction)

◊ framework needed for managing a large number of
heterogeneous computers, in multiple administrative
domains with various operation policies combined in
a Grid as a VO

16

Agent-based Scheduling Framework
ASF (2)

□ Composed of a metascheduler and autonomous agents
attached to each computing resource manager

□ Agents autonomously find jobs; instead of being
assigned a job by a higher-level metascheduler

◊ idea dual to conventional metaschedulers
◊ conventional metaschedulers push jobs to

resources
◊ in ASF agents discover jobsand receives them the

metascheduler (a pull-based approach)
□ ASF prototype implemented replaced CSF in Globus; in

3-node environment 11% improvement of elapsed job
processing time

17

MAGDA (1)

□ Mobile Agent based Grid Architecture (MAGDA) was
designed to address problems:

◊ lack of ability to migrate an application from one
system to another

◊ low level of abstraction of the heterogeneity of the
environment

◊ lack of mature fault tolerance features
◊ existing frameworks do not scale to the Grid level, or

are focused on specific aspects
◊ lack of support of task migration, monitoring and

execution (with adequate checkpointing)

18

MAGDA (2)

□ MAGDA supports

◊ resource discovery
◊ performance monitoring and load balancing
◊ task execution within the Grid

□ Layered architecture following the Layered Grid Model

◊ should be possible to integrate MAGDA components
with other Layered Grid frameworks

□ Service discovery performed using Web Services

□ Application-level load balancing provided by static and
mobile agents

19

Which model can work? (1)

□ Three basic approaches to the problem of resource
management/brokering:

□ ASF approach – LMaster is passive, while Workers are
actively pulling jobs to be executed

◊ PROBLEM: how to deal with complex SLA's
◊ assume that a high priority and high paying job is

contracted; it should be started immediately (and
on the right hardware-software combination

◊ there seems no way to assure that this will happen
– Worker agents are autonomous and they(!) are
active

20

Which model can work? (2)

□ Negotiations LMaster Workers↔
◊ use the same model as for User LMaster ↔

negotiations
◊ LMaster issues a CFP; Workers respond; best

contract is selected
◊ interesting as it moves adaptive economic model

deeper into the system
◊ more complex as it adds one more layer of

negotiations Workers have to keep and mine →
market data; negotiating instead of working...

◊ PROBLEM: how to deal with complex SLA's

21

Which model can work? (3)

□ LMaster as an omnipotent manager

◊ has knowledge about state of the system
◊ Workers can report their state / load in

predefined intervals
◊ knows hardware / software characteristics of all

Workers
◊ knows details of all contracts

□ What about scalability?

◊ Scheduler overload problems have to be addressed
◊ Response system is adaptive each new LMaster → →

should be better than the previous one LMaster →
accepts only as many Workers as it can manage (or
team will be killed by “trust-effect”)

22

Concluding remarks

□ Seems that most “existing” agent-based approaches

◊ do not exist anymore (e.g. ARMS, Poggi, Bond)
◊ are currently focused on other aspects (e.g. MAGDA)
◊ may have problems with complicated SLA's (e.g.

ASF)
□ Our answer – an ecosystem of agents each with its own

function – task provider, scheduler/manager or worker

◊ scheduler agents having full control over its
Workers

◊ size of the team adaptive to the capacity of the
manager

23

Thank you!

□ Questions?

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23

