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Agenda

• Current scenario overview

• Some existing approaches

• Weaknesses of the current approaches 

• Some of our ideas to improve the current 
solutions
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Current scenario overview
• Multi-core processors are becoming cheaper 

and more common every day

• 9 out of the Top 10 (www.top500.org) 
computers use multi-core processors*

–  8 of them have more than 2 cores

• Most of the Top 500 (410/500) computers are 
already clusters

http://www.top500.org/
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Current scenario (cont.)



5

Current scenario (cont.)

• Memory Bottleneck

Source: www.cs.virginia.edu/stream/
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Some existing approaches
 

How to efficiently use all that computational power?

• Message passing
● SLURM

● Heavy use of process pinning

● NUMA/DSM
● Memory pinning

● Process pinning
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SLURM
Simple Linux Utility for Resource Management

• Open source

• Manages resources and controls queues 
for exclusively reserved resources

• Allows users to dispatch, to execute and 
to monitor jobs 

• BlueGene/L at LLNL with 106,496 dual-
core processors
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SLURM (Cont.)
• Has three levels of hierarchy for each 

processing unit in the system

https://computing.llnl.gov/linux/slurm/
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SLURM

• Works with the concept of process 
pinning 

• Has low and high level flags to assert 
process scheduling to specific cores

• Low-level flags gives more control 
whereas high-level flags are much more 
user-friendly
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SLURM
Low-level flags

• Allows process pinning to the cores

• User must be aware of the numeration 
scheme for their system

c0 c1

p0 0 4

p1 1 5

p2 2 6

p3 3 7

c0 c1

p0 0 1

p1 2 3

p2 4 5

p3 6 7

Block numeration Cyclic numeration
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SLURM
Low-level flags

• --cpu-bind=

– mask_cpu

– map_cpu

• Examples 

– Block numbering

• srun -n 8 -N 4 -cpu_bind=mask_cpu:0x1,0x4 prog

• srun -n 8 -N 4 -cpu_bind=map_cpu:0,2 prog
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SLURM
High-level flags

• Created to simplify the usage

• Automatically generates the task masks

– --sockets-per-node=S

– --cores-per-socket=C

– --threads-per-socket=T

– Shortcut: -B S[:C[:T]] 

• Example:

– srun -n 8 -N 4 -B 2:1:1 prog

– srun -n 8 -N 4 -B 2-2:1-1:1-1 prog
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SLURM 
Multi-core performance results

 [Balle and Palermo, JSSP'07]

• Linpack on 16 cores 

– 4 nodes X 2 sockets X 2 cores



14

SLURM 
Multi-core performance results

 [Balle and Palermo, JSSP'07]

• LSDyna – Simulates the nonlinear 
dynamic response of three-dimensional 
inelastic structures

• Simulation of three cars collision

• Executed on a 16 core machine

– 4 nodes X 2 sockets X 2 cores
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SLURM – LSDyna 
performance results
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NUMA
Non-Uniform Memory Access

• OpenMP and pthreads

• NUMA support (Linux kernel >= 2.6) 

– Memory pinning

– Process pinning

• Manual control over memory and process 
pinning
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NUMA

• Techniques

– First touch initialization/Parallel initialization 
→ no guarantees

– Memory/Process pinnning

• sched_setaffinity

• Mbind
– bind/interleave/preferred
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NUMA performance test architecture
[Pousa, Méhaut et al. , WSCAD'08]

• NUMA factor: 2 → 2.5
• 16 Itanium2 at 1.6 GHz 
• 64 GBytes of RAM 

• NUMA factor: 1.2 → 1.5
• 8 dual-core Opteron at 2.2 
GHz 
• 32 Gbytes of RAM
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NUMA Performance comparison
Ondes 3D

• Application for 
seismic wave 
propagation simulation

• Regular data access 
pattern Itanium Cluster

Opteron cluster
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NUMA Performance comparison

Itanium

Opteron

 Benchmark NAS

•  Simulation of fluid 
dynamics

• CG Kernel
• Large memory footprint
• Irregular data access 
pattern
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Weaknesses of the current 
approaches

• Lack of portability

• Not suitable (or even usable) for 
heterogeneous clusters

• Demands expertise from the developer 
and the executor (not always the same 
person)

• Scheduling relies too much on the users



22

Some of our ideas...

• Profiling

• Dynamic Scheduling using online 
profiling and profiles obtained from 
previous runs

• Let the user specify the 
architecture/topology of his network. But 
also try to discover what is possible 
without user intervention
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Why ?

• To allow the developer to focus on the 
problem, and not on architectural details

• Portability

• Deal with node idiosyncrasies seamlessly

• We believe the simplicity pays off the 
eventual losses in performance in most 
cases
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Why? (cont.)

• Application behavioral patterns may 
change

– During execution

– From inputs

– During its lifecycle
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Conclusion

• We've presented a current problem

• Future steps

– To propose a theoretical model

• Cache proximity

– To evaluate it
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Thank you!
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A small quotation...

So why should I be so happy about the future that 
hardware vendors promise? They think a magic 
bullet will come along to make multicores speed 
up my kind of work; I think it’s a pipe dream. No!—
that’s the wrong metaphor! "Pipelines" actually 
work for me, but threads don’t. Maybe the word I 
want is "bubble.“

Donald Knuth

www.informIT.com
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