
1

Scheduling on current multi-
core clusters

Emílio Francesquini

emilio@ime.usp.br

Alfredo Goldman
gold@ime.usp.br

University of São Paulo, Brazil

2

Agenda

• Current scenario overview

• Some existing approaches

• Weaknesses of the current approaches

• Some of our ideas to improve the current
solutions

3

Current scenario overview
• Multi-core processors are becoming cheaper

and more common every day

• 9 out of the Top 10 (www.top500.org)
computers use multi-core processors*

– 8 of them have more than 2 cores

• Most of the Top 500 (410/500) computers are
already clusters

http://www.top500.org/

4

Current scenario (cont.)

5

Current scenario (cont.)

• Memory Bottleneck

Source: www.cs.virginia.edu/stream/

6

Some existing approaches

How to efficiently use all that computational power?

• Message passing
● SLURM

● Heavy use of process pinning

● NUMA/DSM
● Memory pinning

● Process pinning

7

SLURM
Simple Linux Utility for Resource Management

• Open source

• Manages resources and controls queues
for exclusively reserved resources

• Allows users to dispatch, to execute and
to monitor jobs

• BlueGene/L at LLNL with 106,496 dual-
core processors

8

SLURM (Cont.)
• Has three levels of hierarchy for each

processing unit in the system

https://computing.llnl.gov/linux/slurm/

9

SLURM

• Works with the concept of process
pinning

• Has low and high level flags to assert
process scheduling to specific cores

• Low-level flags gives more control
whereas high-level flags are much more
user-friendly

10

SLURM
Low-level flags

• Allows process pinning to the cores

• User must be aware of the numeration
scheme for their system

c0 c1

p0 0 4

p1 1 5

p2 2 6

p3 3 7

c0 c1

p0 0 1

p1 2 3

p2 4 5

p3 6 7

Block numeration Cyclic numeration

11

SLURM
Low-level flags

• --cpu-bind=

– mask_cpu

– map_cpu

• Examples

– Block numbering

• srun -n 8 -N 4 -cpu_bind=mask_cpu:0x1,0x4 prog

• srun -n 8 -N 4 -cpu_bind=map_cpu:0,2 prog

12

SLURM
High-level flags

• Created to simplify the usage

• Automatically generates the task masks

– --sockets-per-node=S

– --cores-per-socket=C

– --threads-per-socket=T

– Shortcut: -B S[:C[:T]]

• Example:

– srun -n 8 -N 4 -B 2:1:1 prog

– srun -n 8 -N 4 -B 2-2:1-1:1-1 prog

13

SLURM
Multi-core performance results

 [Balle and Palermo, JSSP'07]

• Linpack on 16 cores

– 4 nodes X 2 sockets X 2 cores

14

SLURM
Multi-core performance results

 [Balle and Palermo, JSSP'07]

• LSDyna – Simulates the nonlinear
dynamic response of three-dimensional
inelastic structures

• Simulation of three cars collision

• Executed on a 16 core machine

– 4 nodes X 2 sockets X 2 cores

15

SLURM – LSDyna
performance results

16

NUMA
Non-Uniform Memory Access

• OpenMP and pthreads

• NUMA support (Linux kernel >= 2.6)

– Memory pinning

– Process pinning

• Manual control over memory and process
pinning

17

NUMA

• Techniques

– First touch initialization/Parallel initialization
→ no guarantees

– Memory/Process pinnning

• sched_setaffinity

• Mbind
– bind/interleave/preferred

18

NUMA performance test architecture
[Pousa, Méhaut et al. , WSCAD'08]

• NUMA factor: 2 → 2.5
• 16 Itanium2 at 1.6 GHz
• 64 GBytes of RAM

• NUMA factor: 1.2 → 1.5
• 8 dual-core Opteron at 2.2
GHz
• 32 Gbytes of RAM

19

NUMA Performance comparison
Ondes 3D

• Application for
seismic wave
propagation simulation

• Regular data access
pattern Itanium Cluster

Opteron cluster

20

NUMA Performance comparison

Itanium

Opteron

 Benchmark NAS

• Simulation of fluid
dynamics

• CG Kernel
• Large memory footprint
• Irregular data access
pattern

21

Weaknesses of the current
approaches

• Lack of portability

• Not suitable (or even usable) for
heterogeneous clusters

• Demands expertise from the developer
and the executor (not always the same
person)

• Scheduling relies too much on the users

22

Some of our ideas...

• Profiling

• Dynamic Scheduling using online
profiling and profiles obtained from
previous runs

• Let the user specify the
architecture/topology of his network. But
also try to discover what is possible
without user intervention

23

Why ?

• To allow the developer to focus on the
problem, and not on architectural details

• Portability

• Deal with node idiosyncrasies seamlessly

• We believe the simplicity pays off the
eventual losses in performance in most
cases

24

Why? (cont.)

• Application behavioral patterns may
change

– During execution

– From inputs

– During its lifecycle

25

Conclusion

• We've presented a current problem

• Future steps

– To propose a theoretical model

• Cache proximity

– To evaluate it

26

Thank you!

27

28

29

A small quotation...

So why should I be so happy about the future that
hardware vendors promise? They think a magic
bullet will come along to make multicores speed
up my kind of work; I think it’s a pipe dream. No!—
that’s the wrong metaphor! "Pipelines" actually
work for me, but threads don’t. Maybe the word I
want is "bubble.“

Donald Knuth

www.informIT.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

