Approximation Algorithms for

Packing and Scheduling Problems

Klaus Jansen

Universitat Kiel

\ Overview |

e EPTAS for the Multiple Knapsack Problem (MKP)

e 3/2 Approximation algorithm for Scheduling with Fixed Jobs

‘Multiple Knapsack Problem (MKP) I

Introduction
Instances with similar capacities
Instances with few bins

General instances

‘I\/Iultiple knapsack problem (MKP) I

Given:
e aset A of nitems with size(a;), profit(a;) € Z,

e aset BB of m bins with capacities ¢(b) € Z™.

Problem: find a subset A’ C A of maximum total profit
> aca Drofit(a) such that A" can be packed into B without

exceeding the capacities.

‘ Example I

e 10items of size 1/2,1/3 and 1/6 with profit 1 /5, 1/6 and 1/15.

e 4 bins of capacity 1 and 4 bins of capacity 1/2.

1/3| 1/3
1/2| 1/2

1/3| 1/3
1/6| 1/6| 1/6| 1/6 profit(A’) = 4/5+10/6+4/15

1/2| 1/2
1/3| 1/3| 1/3 | 1/3| 1/3| 1/3

\ Results |

Known Results:
e MKRP is strongly NP-hard (contains bin packing as special case)

e there is no FPTAS even for two bins (unless P = N P) (Chekuri,

Khanna), (Caprara, Kellerer, Pferschy)
e there is a PTAS for MKP (Chekuri, Khanna) with running time

01/ log(1/¢))

‘Different Types of Approximation Schemes I

e Polynomial Time Approximation Scheme (PTAS) with running time

|77/ for some function f.

e Efficient Polynomial Time Approximation Scheme (EPTAS) with
running time f(1/€) poly(|I|) for some function f.

e Fully Polynomial Time Approximation Scheme (FPTAS) with
running time poly(1/e, |I]).

‘Open Questions for Multiple Knapsack Problem I

(1) Is there a PTAS for MKP with an improved running time
f(1/€)poly(n) (Chekuri, Khanna 2000) ?

(2) Admits MKP an fixed parameter tractable (FPT) algorithm or is
MKP WI[1]-hard (Fellows 2003) ?

Notice: If the standard parametrization of an optimization problem is
WI[1]-hard, then the optimization problem does not have an EPTAS
(unless FPT=WI1]) (Bazgan 1995, Cesati and Trevisan 1997) .

\ New Result |

Theorem: (Jansen, SODA 2009)

There is an EPTAS for the multiple knapsack problem (MKP) with
running time
2 O(1/€® log(1/€)) pOly()

‘ Instances with similar capacities I

Ce
C1 .,

mi ™My my

Letc; < ... < ¢ be the different capacities in the instances.

Suppose that there are m, > 1/53 bins of capacity ¢, for each
(=1,....1t

10

\ L P-Relaxation |

- Cy

(£)
} C!

e a configuration C’J(.g) is a subset A’ C A of items with

ZaEA’ S?:Z@(a,) S Cy.

. . ¢
e use a fractional variable y(-)

;1o denote the length of configuration

0 . .
C'J(.) in the solution.

\ L P-Relaxation |

1] Hﬂ e | |

— N
DI size(a)

e use avariable x; € |0, 1] to indicate a fractional piece of item a;

and allow this piece to be distributed among the ¢ groups.

LP-Relaxation LP(A, B)

max y ., profit(a;)z;
22:1 Zj:aieCj(-e) yj(_ﬁ)
>y

X

X

AV VAN

M

for e =1,...,n,

for ¢ =1,...,¢,

for j=1,...,Hyand £ =1, ...

for e =1,...,n.

13

T,

\ First Results |

1) The linear program L P (A, B) is a relaxation of the multiple
knapsack problem: OPT(LP (A, B)) > OPTykp(A, B).

2) We can compute an approximate solution (:%, ;&) of the L P in time
polynomial in n and 1/c where » . gg@ < my(1 + 2a) and
objective value at least (1 — 3a)OPT(LP(A, B)).

14

‘Rounding the LP-solution I

(¢ . . .
= Zj:aiecj(.“ y(-) be a piece of item a; in group . Use

rectangles (size(a;), zi(é) i(g) = ;.

()

()

Let 2

) and notice that Y ,_, 2

Heg htl—w ﬁ
\/Hei ghty
|

Stack 1 5

Stackt

15

‘Rounding the LP-solution I

We can round the solution such that there are at most 1/ items with
values 2" € (0,2;) forl =1,... 1.

1

Height
____________ Heighty o

16

‘Selecting the items I

Remove the items a; with values ZZ-(E) € (0,;). Then, each

remaining item with ; > 0 is assigned to one group £ and one part j.

A

6% Height,

Use fractional 1-dimensional knapsack to select items.

‘Packing ofitems into 7, > 1/6° bins I

Cy

A
y

my

e Use AFPTAS by Kenyon and Rémila for strip packing and pack

selected and removed items into m, (1 + 6a)) + 5/67 bins.

e Apply shifting technigue to select a subset of items with high profit.

18

\ Instances with few bins |

1 2 ¥

e Consider items with high profit profit(a;) > p/YOPT(A, B).

e Round the profit of these items to values k|e'p/v|OPT (A, B)
where k € {1/€,...,v/ép}.

19

\ Instances with few bins |

1_2
Y f)/
guess

e Reduce the number of high profit items to O([y/€?] log[vy/€%]).

® Choose subsets Aguess with at most ~y / p items and test whether

they fit into the bins.

20

\ Instances with few bins |

e Use fractional 1-dimensional knapsack to choose the remaining
items with small profit and capacity Y ., ¢(b;) — size(Aguess)-

— at most y fractional items

21

\ General Instances |

By =first k02 bins 0% bins

B> =remaining bins

22

‘Rounding the bin capacities I

By =first k0~ bins 0~ * bins
B> = remaining bins

e Round up the capacity of each bin in the first £ groups to the

largest capacity in the group.

23

‘Rounding the bin capacities I

(Bi \ Group)™~ B,

e Each optimum solution for instance (A, B) can be transformed

Into a solution for the rounded instance where the profit loss is

< 5OPT(A, B).

24

\ Modified instance |

(Bi \ Groupi)™~ B,

e We obtain a modified instance (A, B} U By) where B consists
of (k — 1) groups of 1/6° bins with the same capacity and B
consists of < 204 bins.

25

\ Modified instance |

(B1 \ Groupy)®"P %

Bs

1) Guess the high profit items to be placed into Bs.

2) Solve a modified linear program relaxation to select the other

items.

26

‘Summary I

there is an EPTAS for MKP (Jansen, SODA 2009) with running time

901/ 108(1/)) 1y ().

27

‘New upcoming results | I

1) there is an EPTAS for MKP (Jansen, 2009) with running time

201/ 10g(1/9N) 010 (1)

(improving the SODA result).

28

‘New upcoming results | I

2) there is an EPTAS for scheduling on uniform machines (Jansen,
ICALP 2009) with running time

200/ 108(1/*) 10 ()

(improving the classical PTAS by Hochbaum and Shmoys 1988).

29

‘Open guestion I

Is there a lower bound on the running time?

Use the exponential time hypothesis (ETH):
FPT # M[1]

or equivalently:

there is no algorithm for 3-SAT (with n variables)

with running time 2°(")

30

‘Scheduling with Fixed Jobs I

study classical non-preemptive scheduling problems
e sequential jobs
e identical parallel machines

® objective to minimize makespan

31

‘Classical scheduling I

jobs to schedule

3 3 3 3 3
o A W N =

parallel machines

32

3 3 3 3 3

‘Classical scheduling I

jobs to schedule

1
2
3
4
5

makespan

solution

33

resulting problems can be modeled as

e Pm||C\ax (M constant)
complexity NP-hard
algorithm FPTAS (Sahni 1976)

e P||Chax (m part of input)
complexity strongly NP-hard
algorithm PTAS (Hochbaum & Shmoys 1988)

algorithm EPTAS (Hochbaum & Shmoys 1988, Alon et al.
1997) — running time doubly exponential in 1/6

algorithm EPTAS (Jansen 2009) — running time singly

exponential in 1 /¢

34

\ Problems |

reality more difficult
e fixed jobs
— high-priority system jobs

— Jobs of other users

35

‘Scheduling with fixed jobs I

jobs to schedule

33333

parallel machines with fixed jobs

36

‘Scheduling with fixed jobs I

jobs to schedule

1
2
3
" |
5

makespan

3 3 3 3 3

solution

37

‘ Problem formally I

® jobs p{,....pn

given

e number m of machines

e list (my,s1),-.., (Mg, Sg) fixing first k jobs
objective

® Nno preemption of jobs

® no overlap of jobs

e makespan C\,.x minimized

38

\ Related work |

Scharbrodt, Steger & Weisser (SODA 99, J'Sched 99)

for m constant

complexity strongly NP-hard

algorithm PTAS

for m part of input

complexity no ratio better than 3/2 unless P = NP

algorithm ratios of 3 and 2 + € (via a PTAS for P||Cnax)

39

\ New results |

algorithm ratio 3/2 + € (Diedrich & Jansen, SODA 2009)

for m part of input

algorithm ratio 3/2 (Diedrich & Jansen, 2009)
matches lower bound from SODA 1999

40

‘ Used techniques I

classification of jobs and gaps

cyclic rounding

network flow

(E)PTAS for MSSP (“multiple subset sum problem?”)

list scheduling

41

‘Classification of gaps I

3 3 3 3 3
a A W N =
3
3

parallel machines with fixed jobs

large gap: at leastT'/2

small gap: smaller than 7/2

42

\Job classification |

| large | | large | | medium | | small |

‘ small ‘ ‘ medium ‘ ‘ small ‘ ‘ small ‘ ‘ small ‘ ‘ small ‘

‘ small ‘ ‘ small ‘ ‘ small ‘ ‘ medium ‘ ‘ small ‘ ‘ small ‘

jobs to schedule

large job: more than T"/2
medium job: between €1 and T'/2

small job: smaller than €1’

43

‘Rounding medium jobs I

cr = [1/€2]

— N — Y — N — M

arrange medium jobs in non-increasing order of processing time

a4

‘Rounding medium jobs I

cr = [1/€2]

<—C1M—> <—C2M—> <—C?f\/’—> <—C4M—> «(CM

ca—+1

round up each group to largest size

‘Rounding medium jobs I

cr = [1/€2]

P ——
«— h\l\ \4_ |
-« 4—\ \‘— A—\ \‘_ —
- — - —
— < — < —
- — < —
- — pu -
- -

P -

<—C1M—> <—C2M—> <—C3{V’—> <—C4M—> <—CC’§/’+1—>

embed each rounded group in previous group, except first group

46

cr = [1/€2]

‘Rounding medium jobs I

<—C1M—> <—C2M—> <—C?f\/’—> <—C4M—> <—CC+1—>

after rounding only first group is lost

47

‘Consequence I

e only ¢; = [1/€*] sizes for medium jobs

e |lose medium jobs of total processing time

PO < =

48

‘Configurations for gaps I

e vector (ag,...,aq) witha; € {0,...,[1/€|}
e models set of medium jobs which can occur together in a gap

e there are
ca < ([1/e] + 1)

different configurations 5(1), Cee wle2)

49

‘ Discretization of large jobs I

Basic Idea: rounding up large jobs

packed together with a non-empty configuration

large job with configuration

50

‘Cyclic shifting I

consider large jobs with
e roughly equal size € (keT, (k + 1)eT]]

e packed together with a non-empty configuration

51

‘Cyclic shifting I

cq = [1/€]

,\%—v <—%—>

<—£’LO—> -«
p

arrange gaps on stack, sorted by sizes of large jobs, create groups

52

‘Cyclic shifting I

ey = [1/€]

QD

—>

round up jobs in each group, configurations not shown

53

‘Cyclic shifting I

cy = [1/€]

shift down rounded jobs, drop last jobs out of stack

54

ey = [1/€]

‘Cyclic shifting I

QD

—>

resulting arrangement

55

¢y = [1/€]

‘Cyclic shifting I

,\%—v <—%—>

<—$O—> -«
p

configurations shown again

56

cq = [1/€]

‘Cyclic shifting I

«—c[—>

=
n

,S%—» <—%—>

<—£’LO—> -«
p

remove configurations in topmost gaps

57

‘Cyclic shifting I

«—c[—>

|
|

[

CTG\\\\\

| \

cq = [1/€]

move large jobs from below stack in gaps

58

‘Cyclic shifting I

—c —

,
*

ey = [1/€]

,\%—v <—%—>

<—£’LO—> -«
p

possible rounded large jobs packed, few configurations lost

59

‘Cyclic shifting I

«—c[—>

4 (T) ———
Con

¢y = [1/€]

(T k)—————

—

use ¢;('T, k) to denote the rounded sizes of gaps

60

let
o G (T,k) - setof large gaps involved
o /(T k) - setof jobs lost by cyclic shifting

lose medium jobs of total processing time

P(I(T,k)) < »

61

accumulating loss

over all k yields

<T)2e) S |GL(T k)| < %\Gﬂ)\

Tm el'm
< — <K
204 2

62

\Note |

bad rounded sizes not known a priori

good for each k£ only ¢4 + 1 values
q.(T, k) fori € {1,

can hence be found

by enumeration

...,C4—|—1}

63

\Schedule structure so far |

e all small and large jobs scheduled

e in each large gap at most 3 objects
— possibly rounded large job
— configuration
— set of small jobs

o VK, i (dintegerc(k,i,l) < m

indicating how often large job from interval k£ of rounded size

qg(T, k) packed together with configuration k()

e |ost only medium jobs of processing time at most €1 'm

64

\Main Idea & network flow |

for a fixed choice of values c(k, 7, {)

and rounded sizes ¢.(T', k)

e assignment of large jobs and configurations to gaps can be done

via a network flow model
® assignment loses at most one small job per large gap

e total processing time of lost jobs at most 2¢I'm

65

final packing done in two steps

e use (E)PTAS for MSSP to fill almost all remaining jobs into [0, T")
lose again at most €1'm processing time, hence

total processing time lost at most 3¢/ 'm

e remaining jobs are executed after " via list scheduling

66

‘ List scheduling I

3 3 3 3 3
F £ 4 8§ =

4—[0, T)—» <—[T, T’)—» <—[T’, T”)—»

structure of schedule

Graham-style analysis yields
[0, D)+ [T, 1) + ([T, T")

1
<Cr. +3Cr +=Cr = (3/2+3¢)C

max max 2 max max

67

\ Final remark |

for e :=1/24,
possible to modify list scheduling
to yield ratio of 3/2

68

[0, 7) r— [T T)— «— [T T")—

structure of schedule

e let n” denote # non-scheduled jobs larger than T'/4

e by using € = 1/24, this yields
n"T/4 < 3eTm=Tm/8=n" <m/2

o ||[T,T")| < T/2,since these jobs have medium sizes

69

3 3 3 3 3 3
S & £ a4 S5 =

[0, 7) r— [T T)— «— [T T")—

structure of schedule

® area argument:

[T, T")|m/2 < 3¢Tm = Tm/8 = |[T,T")| < T/4

e there are only jobs of size < T'/4, hence |[T",T")| < T'/4

70

3 3 3 3 3
§F £ a S5 =

[0, 7) r— [T T)— «— [T T")—

structure of schedule

e intotal |[T,T")| < T/4,|[T", T")| < T/4 (Graham-style)

71

‘Summary I

scheduling with fixed jobs

m part of input
complexity no ratio better than 3/2 unless P = NP

algorithm approximation ratio of 3/2

72

‘Open guestions I

(1) improvement of the running time of our algorithm via linear

programming,

(2) lower bound on the running time of approximation algorithms with
ratio 3/2,

(3) more efficient approximation algorithms with ratio between 3 / 2
and 2 + e.

73

