
Approximation Algorithms for

Packing and Scheduling Problems

Klaus Jansen

Universität Kiel

1

Overview

• EPTAS for the Multiple Knapsack Problem (MKP)

• 3/2 Approximation algorithm for Scheduling with Fixed Jobs

2

Multiple Knapsack Problem (MKP)

• Introduction

• Instances with similar capacities

• Instances with few bins

• General instances

3

Multiple knapsack problem (MKP)

Given:

• a set A of n items with size(aj), profit(aj) ∈ Z
+,

• a set B of m bins with capacities c(b) ∈ Z
+.

Problem: find a subset A′ ⊂ A of maximum total profit∑
a∈A′ profit(a) such that A′ can be packed into B without

exceeding the capacities.

4

Example

• 10 items of size 1/2, 1/3 and 1/6 with profit 1/5, 1/6 and 1/15.

• 4 bins of capacity 1 and 4 bins of capacity 1/2.

1/3 1/3 1/3 1/3 1/3

1/2 1/2

1/21/2

1/3

1/3 1/3

1/3

1/3

1/61/61/61/6 profit(A’) = 4/5+10/6+4/15

5

Results

Known Results:

• MKP is strongly NP-hard (contains bin packing as special case)

• there is no FPTAS even for two bins (unless P = NP) (Chekuri,

Khanna), (Caprara, Kellerer, Pferschy)

• there is a PTAS for MKP (Chekuri, Khanna) with running time

nO(1/ǫ8 log(1/ǫ)).

6

Different Types of Approximation Schemes

• Polynomial Time Approximation Scheme (PTAS) with running time

|I|f(1/ǫ) for some function f .

• Efficient Polynomial Time Approximation Scheme (EPTAS) with

running time f(1/ǫ) poly(|I|) for some function f .

• Fully Polynomial Time Approximation Scheme (FPTAS) with

running time poly(1/ǫ, |I|).

7

Open Questions for Multiple Knapsack Problem

(1) Is there a PTAS for MKP with an improved running time

f(1/ǫ)poly(n) (Chekuri, Khanna 2000) ?

(2) Admits MKP an fixed parameter tractable (FPT) algorithm or is

MKP W[1]-hard (Fellows 2003) ?

Notice: If the standard parametrization of an optimization problem is

W[1]-hard, then the optimization problem does not have an EPTAS

(unless FPT=W[1]) (Bazgan 1995, Cesati and Trevisan 1997) .

8

New Result

Theorem: (Jansen, SODA 2009)

There is an EPTAS for the multiple knapsack problem (MKP) with

running time

2O(1/ǫ5 log(1/ǫ))poly(n).

9

Instances with similar capacities

m1 mℓ mt

... ...c1
cℓ

ct

Let c1 < . . . < ct be the different capacities in the instances.

Suppose that there are mℓ ≥ 1/δ3 bins of capacity cℓ for each

ℓ = 1, . . . , t.

10

LP-Relaxation

... ...cℓ

C
(ℓ)
j

• a configuration C
(ℓ)
j is a subset A′ ⊂ A of items with∑

a∈A′ size(a) ≤ cℓ.

• use a fractional variable y
(ℓ)
j to denote the length of configuration

C
(ℓ)
j in the solution.

11

LP-Relaxation

... ...cℓ

size(a)

• use a variable xi ∈ [0, 1] to indicate a fractional piece of item ai

and allow this piece to be distributed among the t groups.

12

LP-Relaxation LP (A, B)

max
∑n

i=1 profit(ai)xi
∑t

ℓ=1

∑
j:ai∈C

(ℓ)
j

y
(ℓ)
j = xi for i = 1, . . . , n,

∑Hℓ

j=1 y
(ℓ)
j ≤ mℓ for ℓ = 1, . . . , t,

y
(ℓ)
j ≥ 0 for j = 1, . . . , Hℓ and ℓ = 1, . . . , t,

xi ∈ [0, 1] for i = 1, . . . , n.

13

First Results

1) The linear program LP (A,B) is a relaxation of the multiple

knapsack problem: OPT (LP (A,B)) ≥ OPTMKP (A,B).

2) We can compute an approximate solution (x̃, ỹ) of the LP in time

polynomial in n and 1/α where
∑

j ỹ
(ℓ)
j ≤ mℓ(1 + 2α) and

objective value at least (1 − 3α)OPT (LP (A,B)).

14

Rounding the LP-solution

Let z
(ℓ)
i =

∑
j:ai∈C

(ℓ)
j

ỹ
(ℓ)
j be a piece of item ai in group ℓ. Use

rectangles (size(ai), z
(ℓ)
i) and notice that

∑t
ℓ=1 z

(ℓ)
i = x̃i.

Height1

Heightt

x̃i

size(ai)

Stack 1 Stack t

15

Rounding the LP-solution

We can round the solution such that there are at most 1/δ2 items with

values z̄
(ℓ)
i ∈ (0, x̃i) for ℓ = 1, . . . , t.

Height1

Heightt

x̃i

size(ai)

Stack 1 Stack t

16

Selecting the items

Remove the items ai with values z̄
(ℓ)
i ∈ (0, x̃i). Then, each

remaining item with x̃i > 0 is assigned to one group ℓ and one part j.

δ2 Heightℓ

Use fractional 1-dimensional knapsack to select items.

17

Packing of items into mℓ ≥ 1/δ3 bins

mℓ

cℓ

• Use AFPTAS by Kenyon and Rémila for strip packing and pack

selected and removed items into mℓ(1 + 6α) + 5/δ2 bins.

• Apply shifting technique to select a subset of items with high profit.

18

Instances with few bins

1 2 γ

• Consider items with high profit profit(ai) ≥ ρ/γOPT (A,B).

• Round the profit of these items to values k[ǫ′ρ/γ]OPT (A,B)

where k ∈ {1/ǫ′, . . . , γ/ǫ′ρ}.

19

Instances with few bins

1 2 γ

Aguess

• Reduce the number of high profit items to O([γ/ǫ2] log[γ/ǫ2]).

• Choose subsets Aguess with at most γ/ρ items and test whether

they fit into the bins.

20

Instances with few bins

1 2 γ

4

3

2

1

2

• Use fractional 1-dimensional knapsack to choose the remaining

items with small profit and capacity
∑γ

i=1 c(bi) − size(Aguess).

=⇒ at most γ fractional items

21

General Instances

δ−4 binsB1 = first kδ−3 bins
B2 = remaining bins

22

Rounding the bin capacities

δ−4 binsB1 = first kδ−3 bins
B2 = remaining bins

Bsup
1

• Round up the capacity of each bin in the first k groups to the

largest capacity in the group.

23

Rounding the bin capacities

B2(B1 \ Groupk)
sup

• Each optimum solution for instance (A,B) can be transformed

into a solution for the rounded instance where the profit loss is

≤ δOPT (A,B).

24

Modified instance

B2(B1 \ Groupk)
sup

• We obtain a modified instance (A,B′

1 ∪ B2) where B′

1 consists

of (k − 1) groups of 1/δ3 bins with the same capacity and B2

consists of ≤ 2δ−4 bins.

25

Modified instance

(B1 \ Groupk)sup Aguess

B2

1) Guess the high profit items to be placed into B2.

2) Solve a modified linear program relaxation to select the other

items.

26

Summary

there is an EPTAS for MKP (Jansen, SODA 2009) with running time

2O(1/ǫ5 log(1/ǫ))poly(n).

27

New upcoming results I

1) there is an EPTAS for MKP (Jansen, 2009) with running time

2O(1/ǫ2 log(1/ǫ)4)poly(n)

(improving the SODA result).

28

New upcoming results II

2) there is an EPTAS for scheduling on uniform machines (Jansen,

ICALP 2009) with running time

2O(1/ǫ2 log(1/ǫ)3)poly(n)

(improving the classical PTAS by Hochbaum and Shmoys 1988).

29

Open question

Is there a lower bound on the running time?

Use the exponential time hypothesis (ETH):

FPT 6= M [1]

or equivalently:

there is no algorithm for 3-SAT (with n variables)

with running time 2o(n)

30

Scheduling with Fixed Jobs

study classical non-preemptive scheduling problems

• sequential jobs

• identical parallel machines

• objective to minimize makespan

31

Classical scheduling

jobs to schedule

makespan

m1

m2

m3

m4

m5

parallel machines

32

Classical scheduling

jobs to schedule

m1

m2

m3

m4

m5

makespan

solution

33

resulting problems can be modeled as

• Pm||Cmax (m constant)

complexity NP-hard

algorithm FPTAS (Sahni 1976)

• P||Cmax (m part of input)

complexity strongly NP-hard

algorithm PTAS (Hochbaum & Shmoys 1988)

algorithm EPTAS (Hochbaum & Shmoys 1988, Alon et al.

1997) – running time doubly exponential in 1/ǫ

algorithm EPTAS (Jansen 2009) – running time singly

exponential in 1/ǫ

34

Problems

reality more difficult

• fixed jobs

– high-priority system jobs

– jobs of other users

35

Scheduling with fixed jobs

jobs to schedule

makespan

m1

m2

m3

m4

m5

parallel machines with fixed jobs

36

Scheduling with fixed jobs

jobs to schedule

m1

m2

m3

m4

m5

makespan

solution

37

Problem formally

given

• jobs p1, . . . , pn

• number m of machines

• list (m1, s1), . . . , (mk, sk) fixing first k jobs

objective

• no preemption of jobs

• no overlap of jobs

• makespan Cmax minimized

38

Related work

Scharbrodt, Steger & Weisser (SODA 99, J’Sched 99)

for m constant

complexity strongly NP-hard

algorithm PTAS

for m part of input

complexity no ratio better than 3/2 unless P = NP

algorithm ratios of 3 and 2 + ǫ (via a PTAS for P||Cmax)

39

New results

for m part of input

algorithm ratio 3/2 + ǫ (Diedrich & Jansen, SODA 2009)

algorithm ratio 3/2 (Diedrich & Jansen, 2009)

matches lower bound from SODA 1999

40

Used techniques

• classification of jobs and gaps

• cyclic rounding

• network flow

• (E)PTAS for MSSP (“multiple subset sum problem”)

• list scheduling

41

Classification of gaps

m1

m2

m3

m4

m5 small large

small large

small small

small small small

small small

parallel machines with fixed jobs

large gap: at least T/2

small gap: smaller than T/2

42

Job classification

small small small medium small small

small medium small small small small

large large medium small

jobs to schedule

large job: more than T/2

medium job: between ǫT and T/2

small job: smaller than ǫT

43

Rounding medium jobs

c1 := ⌈1/ǫ2⌉

CM
1 CM

2 CM
3 CM

4
CM

c1+1

. . .

arrange medium jobs in non-increasing order of processing time

44

Rounding medium jobs

c1 := ⌈1/ǫ2⌉

CM
1 CM

2 CM
3 CM

4
CM

c1+1

. . .

round up each group to largest size

45

Rounding medium jobs

c1 := ⌈1/ǫ2⌉

CM
1 CM

2 CM
3 CM

4
CM

c1+1

. . .

embed each rounded group in previous group, except first group

46

Rounding medium jobs

c1 := ⌈1/ǫ2⌉

CM
1 CM

2 CM
3 CM

4
CM

c1+1

. . .

after rounding only first group is lost

47

Consequence

• only c1 = ⌈1/ǫ2⌉ sizes for medium jobs

• lose medium jobs of total processing time

P (CM
1) ≤

ǫTm

2

48

Configurations for gaps

• vector (a1, . . . , ac1) with ai ∈ {0, . . . , ⌊1/ǫ⌋}

• models set of medium jobs which can occur together in a gap

• there are

c2 ≤ (⌊1/ǫ⌋ + 1)c1

different configurations κ(1), . . . , κ(c2)

49

Discretization of large jobs

Basic Idea: rounding up large jobs

packed together with a non-empty configuration

large job with configuration

50

Cyclic shifting

consider large jobs with

• roughly equal size ∈ (kǫT, (k + 1)ǫT]

• packed together with a non-empty configuration

51

Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

arrange gaps on stack, sorted by sizes of large jobs, create groups

52

Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

round up jobs in each group, configurations not shown

53

Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

shift down rounded jobs, drop last jobs out of stack

54

Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

resulting arrangement

55

Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

configurations shown again

56

Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

remove configurations in topmost gaps

57

Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

move large jobs from below stack in gaps

58

Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

possible rounded large jobs packed, few configurations lost

59

Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

q′

1(T , k)

q′

c4+1(T , k)

use q′i(T, k) to denote the rounded sizes of gaps

60

let

• GL(T, k) – set of large gaps involved

• I(T, k) – set of jobs lost by cyclic shifting

lose medium jobs of total processing time

P (I(T, k)) ≤
T |GL(T, k)|

2c4

61

accumulating loss

over all k yields

P (

c3⋃

k=1

I(T, k)) =

c3∑

k=1

P (I(T, k))

≤ T/(2c4)

c3∑

k=1

|GL(T, k)| ≤
T

2c4

|GL(T)|

≤
Tm

2c4

≤
ǫTm

2

62

Note

bad rounded sizes not known a priori

good for each k only c4 + 1 values

q′i(T, k) for i ∈ {1, . . . , c4 + 1}

can hence be found

by enumeration

63

Schedule structure so far

• all small and large jobs scheduled

• in each large gap at most 3 objects

– possibly rounded large job

– configuration

– set of small jobs

• ∀ k, i, ℓ ∃ integer c(k, i, ℓ) ≤ m

indicating how often large job from interval k of rounded size

q′i(T, k) packed together with configuration κ(ℓ)

• lost only medium jobs of processing time at most ǫTm

64

Main idea & network flow

for a fixed choice of values c(k, i, ℓ)

and rounded sizes q′i(T, k)

• assignment of large jobs and configurations to gaps can be done

via a network flow model

• assignment loses at most one small job per large gap

• total processing time of lost jobs at most 2ǫTm

65

final packing done in two steps

• use (E)PTAS for MSSP to fill almost all remaining jobs into [0, T)

lose again at most ǫTm processing time, hence

total processing time lost at most 3ǫTm

• remaining jobs are executed after T via list scheduling

66

List scheduling

m1

m2

m3

m4

m5

[0,T) [T ,T ′) [T ′,T ′′)

m

structure of schedule

Graham-style analysis yields

|[0, T)| + |[T, T ′)| + |[T ′, T ′′)|

≤ C∗

max + 3ǫC∗

max +
1

2
C∗

max = (3/2 + 3ǫ)C∗

max

67

Final remark

for ǫ := 1/24,

possible to modify list scheduling

to yield ratio of 3/2

68

m1

m2

m3

m4

m5

m6

[0,T) [T ,T ′) [T ′,T ′′)

[T ,T ′′′)

≤ m/2

≥ m/2

structure of schedule

• let n′′ denote # non-scheduled jobs larger than T/4

• by using ǫ = 1/24, this yields

n′′T/4 ≤ 3ǫTm = Tm/8 ⇒ n′′ ≤ m/2

• |[T, T ′′′)| ≤ T/2, since these jobs have medium sizes

69

m1

m2

m3

m4

m5

m6

[0,T) [T ,T ′) [T ′,T ′′)

[T ,T ′′′)

≤ m/2

≥ m/2

structure of schedule

• area argument:

|[T, T ′)|m/2 ≤ 3ǫTm = Tm/8 ⇒ |[T, T ′)| ≤ T/4

• there are only jobs of size ≤ T/4, hence |[T ′, T ′′)| ≤ T/4

70

m1

m2

m3

m4

m5

m6

[0,T) [T ,T ′) [T ′,T ′′)

[T ,T ′′′)

≤ m/2

≥ m/2

structure of schedule

• in total |[T, T ′)| ≤ T/4, |[T ′, T ′′)| ≤ T/4 (Graham-style)

71

Summary

scheduling with fixed jobs

m part of input

complexity no ratio better than 3/2 unless P = NP

algorithm approximation ratio of 3/2

72

Open questions

(1) improvement of the running time of our algorithm via linear

programming,

(2) lower bound on the running time of approximation algorithms with

ratio 3/2,

(3) more efficient approximation algorithms with ratio between 3/2

and 2 + ǫ.

73

