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Overview

• EPTAS for the Multiple Knapsack Problem (MKP)

• 3/2 Approximation algorithm for Scheduling with Fixed Jobs
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Multiple Knapsack Problem (MKP)

• Introduction

• Instances with similar capacities

• Instances with few bins

• General instances
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Multiple knapsack problem (MKP)

Given:

• a set A of n items with size(aj), profit(aj) ∈ Z
+,

• a set B of m bins with capacities c(b) ∈ Z
+.

Problem: find a subset A′ ⊂ A of maximum total profit∑
a∈A′ profit(a) such that A′ can be packed into B without

exceeding the capacities.
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Example

• 10 items of size 1/2, 1/3 and 1/6 with profit 1/5, 1/6 and 1/15.

• 4 bins of capacity 1 and 4 bins of capacity 1/2.

1/3 1/3 1/3 1/3 1/3

1/2 1/2

1/21/2

1/3

1/3 1/3

1/3

1/3

1/61/61/61/6 profit(A’) = 4/5+10/6+4/15
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Results

Known Results:

• MKP is strongly NP-hard (contains bin packing as special case)

• there is no FPTAS even for two bins (unless P = NP ) (Chekuri,

Khanna), (Caprara, Kellerer, Pferschy)

• there is a PTAS for MKP (Chekuri, Khanna) with running time

nO(1/ǫ8 log(1/ǫ)).
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Different Types of Approximation Schemes

• Polynomial Time Approximation Scheme (PTAS) with running time

|I|f(1/ǫ) for some function f .

• Efficient Polynomial Time Approximation Scheme (EPTAS) with

running time f(1/ǫ) poly(|I|) for some function f .

• Fully Polynomial Time Approximation Scheme (FPTAS) with

running time poly(1/ǫ, |I|).
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Open Questions for Multiple Knapsack Problem

(1) Is there a PTAS for MKP with an improved running time

f(1/ǫ)poly(n) (Chekuri, Khanna 2000) ?

(2) Admits MKP an fixed parameter tractable (FPT) algorithm or is

MKP W[1]-hard (Fellows 2003) ?

Notice: If the standard parametrization of an optimization problem is

W[1]-hard, then the optimization problem does not have an EPTAS

(unless FPT=W[1]) (Bazgan 1995, Cesati and Trevisan 1997) .
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New Result

Theorem: (Jansen, SODA 2009)

There is an EPTAS for the multiple knapsack problem (MKP) with

running time

2O(1/ǫ5 log(1/ǫ))poly(n).
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Instances with similar capacities

m1 mℓ mt

... ...c1
cℓ

ct

Let c1 < . . . < ct be the different capacities in the instances.

Suppose that there are mℓ ≥ 1/δ3 bins of capacity cℓ for each

ℓ = 1, . . . , t.
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LP-Relaxation

... ...cℓ

C
(ℓ)
j

• a configuration C
(ℓ)
j is a subset A′ ⊂ A of items with∑

a∈A′ size(a) ≤ cℓ.

• use a fractional variable y
(ℓ)
j to denote the length of configuration

C
(ℓ)
j in the solution.
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LP-Relaxation

... ...cℓ

size(a)

• use a variable xi ∈ [0, 1] to indicate a fractional piece of item ai

and allow this piece to be distributed among the t groups.
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LP-Relaxation LP (A, B)

max
∑n

i=1 profit(ai)xi
∑t

ℓ=1

∑
j:ai∈C

(ℓ)
j

y
(ℓ)
j = xi for i = 1, . . . , n,

∑Hℓ

j=1 y
(ℓ)
j ≤ mℓ for ℓ = 1, . . . , t,

y
(ℓ)
j ≥ 0 for j = 1, . . . , Hℓ and ℓ = 1, . . . , t,

xi ∈ [0, 1] for i = 1, . . . , n.
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First Results

1) The linear program LP (A,B) is a relaxation of the multiple

knapsack problem: OPT (LP (A,B)) ≥ OPTMKP (A,B).

2) We can compute an approximate solution (x̃, ỹ) of the LP in time

polynomial in n and 1/α where
∑

j ỹ
(ℓ)
j ≤ mℓ(1 + 2α) and

objective value at least (1 − 3α)OPT (LP (A,B)).
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Rounding the LP-solution

Let z
(ℓ)
i =

∑
j:ai∈C

(ℓ)
j

ỹ
(ℓ)
j be a piece of item ai in group ℓ. Use

rectangles (size(ai), z
(ℓ)
i ) and notice that

∑t
ℓ=1 z

(ℓ)
i = x̃i.

Height1

Heightt

x̃i

size(ai)

Stack 1 Stack t
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Rounding the LP-solution

We can round the solution such that there are at most 1/δ2 items with

values z̄
(ℓ)
i ∈ (0, x̃i) for ℓ = 1, . . . , t.

Height1

Heightt

x̃i

size(ai)

Stack 1 Stack t
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Selecting the items

Remove the items ai with values z̄
(ℓ)
i ∈ (0, x̃i). Then, each

remaining item with x̃i > 0 is assigned to one group ℓ and one part j.

δ2 Heightℓ

Use fractional 1-dimensional knapsack to select items.
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Packing of items into mℓ ≥ 1/δ3 bins

mℓ

cℓ

• Use AFPTAS by Kenyon and Rémila for strip packing and pack

selected and removed items into mℓ(1 + 6α) + 5/δ2 bins.

• Apply shifting technique to select a subset of items with high profit.
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Instances with few bins

1 2 γ

• Consider items with high profit profit(ai) ≥ ρ/γOPT (A,B).

• Round the profit of these items to values k[ǫ′ρ/γ]OPT (A,B)

where k ∈ {1/ǫ′, . . . , γ/ǫ′ρ}.
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Instances with few bins

1 2 γ

Aguess

• Reduce the number of high profit items to O([γ/ǫ2] log[γ/ǫ2]).

• Choose subsets Aguess with at most γ/ρ items and test whether

they fit into the bins.
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Instances with few bins

1 2 γ

4

3

2

1

2

• Use fractional 1-dimensional knapsack to choose the remaining

items with small profit and capacity
∑γ

i=1 c(bi) − size(Aguess).

=⇒ at most γ fractional items
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General Instances

δ−4 binsB1 = first kδ−3 bins
B2 = remaining bins

22



Rounding the bin capacities

δ−4 binsB1 = first kδ−3 bins
B2 = remaining bins

Bsup
1

• Round up the capacity of each bin in the first k groups to the

largest capacity in the group.
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Rounding the bin capacities

B2(B1 \ Groupk)
sup

• Each optimum solution for instance (A,B) can be transformed

into a solution for the rounded instance where the profit loss is

≤ δOPT (A,B).
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Modified instance

B2(B1 \ Groupk)
sup

• We obtain a modified instance (A,B′

1 ∪ B2) where B′

1 consists

of (k − 1) groups of 1/δ3 bins with the same capacity and B2

consists of ≤ 2δ−4 bins.
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Modified instance

(B1 \ Groupk)sup Aguess

B2

1) Guess the high profit items to be placed into B2.

2) Solve a modified linear program relaxation to select the other

items.
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Summary

there is an EPTAS for MKP (Jansen, SODA 2009) with running time

2O(1/ǫ5 log(1/ǫ))poly(n).
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New upcoming results I

1) there is an EPTAS for MKP (Jansen, 2009) with running time

2O(1/ǫ2 log(1/ǫ)4)poly(n)

(improving the SODA result).
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New upcoming results II

2) there is an EPTAS for scheduling on uniform machines (Jansen,

ICALP 2009) with running time

2O(1/ǫ2 log(1/ǫ)3)poly(n)

(improving the classical PTAS by Hochbaum and Shmoys 1988).
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Open question

Is there a lower bound on the running time?

Use the exponential time hypothesis (ETH):

FPT 6= M [1]

or equivalently:

there is no algorithm for 3-SAT (with n variables)

with running time 2o(n)
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Scheduling with Fixed Jobs

study classical non-preemptive scheduling problems

• sequential jobs

• identical parallel machines

• objective to minimize makespan
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Classical scheduling

jobs to schedule

makespan

m1

m2

m3

m4

m5

parallel machines
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Classical scheduling

jobs to schedule

m1

m2

m3

m4

m5

makespan

solution

33



resulting problems can be modeled as

• Pm||Cmax (m constant)

complexity NP-hard

algorithm FPTAS (Sahni 1976)

• P||Cmax (m part of input)

complexity strongly NP-hard

algorithm PTAS (Hochbaum & Shmoys 1988)

algorithm EPTAS (Hochbaum & Shmoys 1988, Alon et al.

1997) – running time doubly exponential in 1/ǫ

algorithm EPTAS (Jansen 2009) – running time singly

exponential in 1/ǫ
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Problems

reality more difficult

• fixed jobs

– high-priority system jobs

– jobs of other users
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Scheduling with fixed jobs

jobs to schedule

makespan

m1

m2

m3

m4

m5

parallel machines with fixed jobs
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Scheduling with fixed jobs

jobs to schedule

m1

m2

m3

m4

m5

makespan

solution
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Problem formally

given

• jobs p1, . . . , pn

• number m of machines

• list (m1, s1), . . . , (mk, sk) fixing first k jobs

objective

• no preemption of jobs

• no overlap of jobs

• makespan Cmax minimized
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Related work

Scharbrodt, Steger & Weisser (SODA 99, J’Sched 99)

for m constant

complexity strongly NP-hard

algorithm PTAS

for m part of input

complexity no ratio better than 3/2 unless P = NP

algorithm ratios of 3 and 2 + ǫ (via a PTAS for P||Cmax)
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New results

for m part of input

algorithm ratio 3/2 + ǫ (Diedrich & Jansen, SODA 2009)

algorithm ratio 3/2 (Diedrich & Jansen, 2009)

matches lower bound from SODA 1999
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Used techniques

• classification of jobs and gaps

• cyclic rounding

• network flow

• (E)PTAS for MSSP (“multiple subset sum problem”)

• list scheduling
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Classification of gaps

m1

m2

m3

m4

m5 small large

small large

small small

small small small

small small

parallel machines with fixed jobs

large gap: at least T/2

small gap: smaller than T/2
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Job classification

small small small medium small small

small medium small small small small

large large medium small

jobs to schedule

large job: more than T/2

medium job: between ǫT and T/2

small job: smaller than ǫT
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Rounding medium jobs

c1 := ⌈1/ǫ2⌉

CM
1 CM

2 CM
3 CM

4
CM

c1+1

. . .

arrange medium jobs in non-increasing order of processing time
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Rounding medium jobs

c1 := ⌈1/ǫ2⌉

CM
1 CM

2 CM
3 CM

4
CM

c1+1

. . .

round up each group to largest size
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Rounding medium jobs

c1 := ⌈1/ǫ2⌉

CM
1 CM

2 CM
3 CM

4
CM

c1+1

. . .

embed each rounded group in previous group, except first group
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Rounding medium jobs

c1 := ⌈1/ǫ2⌉

CM
1 CM

2 CM
3 CM

4
CM

c1+1

. . .

after rounding only first group is lost
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Consequence

• only c1 = ⌈1/ǫ2⌉ sizes for medium jobs

• lose medium jobs of total processing time

P (CM
1 ) ≤

ǫTm

2
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Configurations for gaps

• vector (a1, . . . , ac1) with ai ∈ {0, . . . , ⌊1/ǫ⌋}

• models set of medium jobs which can occur together in a gap

• there are

c2 ≤ (⌊1/ǫ⌋ + 1)c1

different configurations κ(1), . . . , κ(c2)
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Discretization of large jobs

Basic Idea: rounding up large jobs

packed together with a non-empty configuration

large job with configuration
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Cyclic shifting

consider large jobs with

• roughly equal size ∈ (kǫT, (k + 1)ǫT ]

• packed together with a non-empty configuration
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Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

arrange gaps on stack, sorted by sizes of large jobs, create groups
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Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

round up jobs in each group, configurations not shown
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Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

shift down rounded jobs, drop last jobs out of stack
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Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

resulting arrangement
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Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

configurations shown again
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Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

remove configurations in topmost gaps
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Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

move large jobs from below stack in gaps
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Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

possible rounded large jobs packed, few configurations lost

59



Cyclic shifting

c4 := ⌈1/ǫ⌉

ǫT

CG
1

CG
2

CG
c4+1

. . .

q′

1(T , k)

q′

c4+1(T , k)

use q′i(T, k) to denote the rounded sizes of gaps
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let

• GL(T, k) – set of large gaps involved

• I(T, k) – set of jobs lost by cyclic shifting

lose medium jobs of total processing time

P (I(T, k)) ≤
T |GL(T, k)|

2c4
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accumulating loss

over all k yields

P (

c3⋃

k=1

I(T, k)) =

c3∑

k=1

P (I(T, k))

≤ T/(2c4)

c3∑

k=1

|GL(T, k)| ≤
T

2c4

|GL(T )|

≤
Tm

2c4

≤
ǫTm

2
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Note

bad rounded sizes not known a priori

good for each k only c4 + 1 values

q′i(T, k) for i ∈ {1, . . . , c4 + 1}

can hence be found

by enumeration
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Schedule structure so far

• all small and large jobs scheduled

• in each large gap at most 3 objects

– possibly rounded large job

– configuration

– set of small jobs

• ∀ k, i, ℓ ∃ integer c(k, i, ℓ) ≤ m

indicating how often large job from interval k of rounded size

q′i(T, k) packed together with configuration κ(ℓ)

• lost only medium jobs of processing time at most ǫTm
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Main idea & network flow

for a fixed choice of values c(k, i, ℓ)

and rounded sizes q′i(T, k)

• assignment of large jobs and configurations to gaps can be done

via a network flow model

• assignment loses at most one small job per large gap

• total processing time of lost jobs at most 2ǫTm
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final packing done in two steps

• use (E)PTAS for MSSP to fill almost all remaining jobs into [0, T )

lose again at most ǫTm processing time, hence

total processing time lost at most 3ǫTm

• remaining jobs are executed after T via list scheduling
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List scheduling

m1

m2

m3

m4

m5

[0,T ) [T ,T ′) [T ′,T ′′)

m

structure of schedule

Graham-style analysis yields

|[0, T )| + |[T, T ′)| + |[T ′, T ′′)|

≤ C∗

max + 3ǫC∗

max +
1

2
C∗

max = (3/2 + 3ǫ)C∗

max
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Final remark

for ǫ := 1/24,

possible to modify list scheduling

to yield ratio of 3/2
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m1

m2

m3

m4

m5

m6

[0,T ) [T ,T ′) [T ′,T ′′)

[T ,T ′′′)

≤ m/2

≥ m/2

structure of schedule

• let n′′ denote # non-scheduled jobs larger than T/4

• by using ǫ = 1/24, this yields

n′′T/4 ≤ 3ǫTm = Tm/8 ⇒ n′′ ≤ m/2

• |[T, T ′′′)| ≤ T/2, since these jobs have medium sizes
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m1

m2

m3

m4

m5

m6

[0,T ) [T ,T ′) [T ′,T ′′)

[T ,T ′′′)

≤ m/2

≥ m/2

structure of schedule

• area argument:

|[T, T ′)|m/2 ≤ 3ǫTm = Tm/8 ⇒ |[T, T ′)| ≤ T/4

• there are only jobs of size ≤ T/4, hence |[T ′, T ′′)| ≤ T/4
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m1

m2

m3

m4

m5

m6

[0,T ) [T ,T ′) [T ′,T ′′)

[T ,T ′′′)

≤ m/2

≥ m/2

structure of schedule

• in total |[T, T ′)| ≤ T/4, |[T ′, T ′′)| ≤ T/4 (Graham-style)
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Summary

scheduling with fixed jobs

m part of input

complexity no ratio better than 3/2 unless P = NP

algorithm approximation ratio of 3/2
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Open questions

(1) improvement of the running time of our algorithm via linear

programming,

(2) lower bound on the running time of approximation algorithms with

ratio 3/2,

(3) more efficient approximation algorithms with ratio between 3/2

and 2 + ǫ.
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