
4-6-2009

Challenge the future

Delft
University of
Technology

Scheduling on Low-Power Multi- and Many-Cores
Ben Juurlink
Computer Engineering Laboratory, Delft University of Technology

2ASTEC, June 2-5, 2009 | 41

Agenda

• Part I: Leakage-Aware Multiprocessor Scheduling
• Part II: Scheduling issues in a highly scalable parallel

implementation of H.264 decoding

3ASTEC, June 2-5, 2009 | 41

Part I: Leakage-Aware Multiprocessor
Scheduling

• Motivation
• Power/Energy Consumption
• Dynamic Voltage/Frequency Scaling (DVFS)
• Processor Shutdown
• System and application model
• Schedule & Stretch (S&S)
• Leakage-Aware Multiprocessor Scheduling
• LIMIT
• Experimental Results
• Conclusions

4ASTEC, June 2-5, 2009 | 41

Motivation

• Currently, dynamic power
dominates static power

• Static power due to leakage
current is expected to grow
significantly

Source: http://www.actel.com

5ASTEC, June 2-5, 2009 | 41

Power Consumption

Power model of (Jejurikar et al., 2004), 70nm technology

6ASTEC, June 2-5, 2009 | 41

Energy Consumption

• Scaling below critical frequency fcrit (normalized 0.38, actual
1.18GHz) increases energy consumption

7ASTEC, June 2-5, 2009 | 41

Dynamic Voltage/Frequency Scaling (DVFS)

• Dynamic power grows quadratically with supply voltage

• Static power grows “linearly” with supply voltage

•

• Static energy consumption increases when voltage is scaled down

onjbssubnddddeff PIVIVfVCP +•+•+•••= 2α

dynamic power PAC static power PDC

fV •+= 21 ββ

8ASTEC, June 2-5, 2009 | 41

Processor Shutdown

• Processor shutdown reduces both static and dynamic energy
consumption

• Shutdown involves an (energy) penalty due to loss of state
(caches, branch predictors)

• ≈483 μJ (Jejurikar et al., 2004)
• Shutdown saves energy only if idle period sufficiently long

onjbssubnddddeff PIVIVfVCP +•+•+•••= 2α

dynamic power static power

9ASTEC, June 2-5, 2009 | 41

System Model

• Shared memory multi-core
• Application computation bound
• Scaling down clock frequency by factor of k increases execution

time by factor of at most k

10ASTEC, June 2-5, 2009 | 41

Application Model
• Weighted directed acyclic graph G = (V, E, w)
• Graphs taken from Standard Task Graph Set

(http://www.kasahara.elec.waseda.ac.jp/schedule/)
• random TGs
• application TGs

• Deadlines relative to critical path length (CPL)
• Coarse-grain tasks: 1 unit = 1 ms at max frequency (3.1·106 cycles)
• Fine-grain tasks: 1 unit = 10 μs at max frequency (3.1·104 cycles)

11ASTEC, June 2-5, 2009 | 41

Schedule and Stretch
• When dynamic power dominates, optimal strategy is to

• schedule tasks on as many processors as can be used to reduce
makespan (we employ LS+EDF)

• use remaining time at end of schedule (slack) to lower voltage/
frequency as much as possible

• Due to (Zhu et al., 2003) and (Gruian and Kuchcinski, 2001)

12ASTEC, June 2-5, 2009 | 41

Leakage-Aware Multiprocessor Scheduling
• When dynamic power does not dominate, need to find balance between

• number of processors employed
• amount of voltage/frequency scaling

• Our LAMPS () algorithm:
• for each number of processors Nmin … Nmax

• schedule using EDF

• use slack at end of schedule to lower voltage/frequency
• return number of cores with least energy consumption

13ASTEC, June 2-5, 2009 | 41

S&S+PS
• Schedule to minimize makespan
• Compute energy consumption for each voltage/frequency level

• shutdown cores during idle periods if it reduces energy
• Return voltage/frequency level with least energy consumption

14ASTEC, June 2-5, 2009 | 41

LAMPS+PS

• For each number of processors Nmin … Nmax
• Schedule using LS+EDF
• Compute energy consumption for each voltage/frequency level

• shutdown cores during idle periods if it reduces energy

• Return voltage/frequency level with least energy consumption

• LAMPS+PS determines an optimal balance between
• voltage/frequency scaling
• processor shutdown
• number of cores to employ

15ASTEC, June 2-5, 2009 | 41

How close to optimal?

• Known limitations:
• EDF is “just” a heuristic
• In our low-energy scheduling algorithms, all processors run at same

frequency and this frequency is constant throughout the schedule
• Lower bounds:

• Idle cores consume no energy
• Number of cores = number of tasks
• LIMIT-SF: All cores are scaled down to critical frequency, or as much

as possible to meet deadline → no single-frequency schedule can
consume less energy

• LIMIT-MF: All cores are scaled down to critical frequency, possibly
missing deadline → no schedule can consume less energy

16ASTEC, June 2-5, 2009 | 41

Experimental Results (I)

• For coarse-grain tasks and tight deadlines:
• LAMPS performs just little better than S&S (cannot use fewer cores)

• Processor shutdown approaches perform better (sufficient intra-schedule slack) and

almost as good as LIMIT-SF

• LIMIT-MF lower bound probably too tight in this case (misses deadlines)

17ASTEC, June 2-5, 2009 | 41

Experimental Results (II)

• For coarse-grain tasks and loose deadlines:
• LAMPS much better than S&S (can employ fewer cores)

• Processor shutdown approaches perform only slightly better than LAMPS (can use

intra-schedule slack to shutdown cores or to reduce number of cores)

• LAMPS+PS optimal

18ASTEC, June 2-5, 2009 | 41

Experimental Results (III)

• For fine-grain tasks and tight deadlines:
• LAMPS significantly better than S&S only in few cases (when not all cores are needed

to meet deadline)
• S&S+PS worse than LAMPS (insufficient intra-schedule slack)
• Quite a gap between LAMPS+PS and LIMIT-SF/LIMIT-MF (room for improvement or

lower bounds too tight)

19ASTEC, June 2-5, 2009 | 41

Experimental Results (IV)

• For fine-grain tasks and loose deadlines:
• LAMPS much better than S&S and S&S+PS (insufficient intra-schedule slack)

• LAMPS+PS close to optimal

20ASTEC, June 2-5, 2009 | 41

0

0.2

0.4

0.6

0.8

1

1.2

1.5xCPL 8xCPL 1.5xCPL 8xCPL

SS+PS

LAMPS

LAMPS+PS

LIMIT-SF

LIMIT-MF

Conclusions
• When leakage-current is significant, the possibility of reducing

energy by only employing DVFS is limited
• In this case, higher energy savings are obtained by shutting down

cores temporarily or completely
• For coarse-grain tasks, LAMPS+PS attains > 84% of possible

energy saving

coarse-grain fine-grain

av
er

ag
e

en
er

gy
 s

av
in

g

21ASTEC, June 2-5, 2009 | 41

Future Work

• Determine a stronger lower bound (can be formulated as ILP
problem)

• If results show that higher energy savings can be obtained,
develop a scheduling algorithm that maximizes amount of slack

• Incorporate communication
• Other scheduling models
• How to deal w/ incomplete information (worst-case vs. actual

execution time)
• …

22ASTEC, June 2-5, 2009 | 41

Part II: Scheduling Issues in a Highly Scalable
Parallel Implementation of H.264 Decoding

• Motivation
• H.264 decoding

• where’s the parallelism?
• 2D-Wave

• need for dynamic scheduling
• parallel programming model
• 2D-Wave pseudo-code
• user-level scheduling for locality
• scalability

• 3D-Wave
• implementation
• scalability

• Increasing programmability
• ENCORE project

• Conclusions

23ASTEC, June 2-5, 2009 | 41

Motivation

• “Developing parallel applications to harness and effectively use
the massively parallel tera-scale processors is likely to be the key
challenge for tera-scale computing.” (Azimi et al., Intel
Technology Journal, 2007)

• As a case study, we consider H.264 decoding
• State-of-the-art video coding standard
• Challenging to find massive TLP

24ASTEC, June 2-5, 2009 | 41

Overview of H.264

inverse
quantization IDCT

deblocking
filter

intra
prediction

MC
prediction

frame
buffer

uncompressed
videoentropy

decoding

compressed
video

25ASTEC, June 2-5, 2009 | 41

Where is the Data Parallelism?

• Between frames?
• Limited, because of inter-frame dependences

• Between slices?
• No, because there might be only one slice per frame

• Between macroblocks (MBs)?
• Yes

• Between operations?
• Of course. ILP and SIMD (short vectors).

26ASTEC, June 2-5, 2009 | 41

2D-Wave

• Proposed by (Van der Tol et al., 2003)
• Exploits intra-frame MB-level parallelism

27ASTEC, June 2-5, 2009 | 41

The Need for Dynamic Scheduling

0

0.02

0.04

0.06

0.08

0.1

0.12

20
0

50
0

80
0

11
00

14
00

17
00

20
00

23
00

26
00

29
00

32
00

35
00

38
00

41
00

44
00

47
00

50
00

53
00

Cycle Distribution for PicturePrediction() on NXP’s TriMedia

28ASTEC, June 2-5, 2009 | 41

Parallel Programming Model: Task Pool

• Software structure in shared memory
• Contains tasks ready for execution

Cores

Task pool in memory

submit task get task

29ASTEC, June 2-5, 2009 | 41

2D-Wave: Deblocking a Frame
• MB dependencies covered by dependencies

from upper-right MB to current MB and
from left MB to current MB

int deblock_ready[w][h]; // array of reference counts

void deblock_frame()
{
for(x = 1; x <= w; x++)
for(y = 1; y <= h; y++)
deblock_ready[x][y] = initial reference count; // 0, 1, or 2

tp_submit(deblock_mb, 1, 1); // start first task: MB <1,1>

tp_wait();
}

30ASTEC, June 2-5, 2009 | 41

2D-Wave: Deblocking a Macroblock
void deblock_mb(int x, int y)
{

... the actual work ...

if(x >= 2 && y != h)
{

new_value = tp_atomic_decrement(&deblock_ready[x-1][y+1], 1);
if(new_value == 0)

tp_submit(deblock_mb, x - 1, y + 1);
}

if(x != w)
{

new_value = tp_atomic_decrement(&deblock_ready[x+1][y], 1);
if(new_value == 0)

tp_submit(deblock_mb, x + 1, y);
}

}

31ASTEC, June 2-5, 2009 | 41

User-level Scheduling for Locality
void deblock_mb(int x, int y)
{
again:

... the actual work...

ready1 = x >= 2 && y != h &&
tp_atomic_decrement(&deblock_ready[x-1][y+1], 1) == 0;

ready2 = x != w && tp_atomic_decrement(&deblock_ready[x+1][y], 1) == 0;

if(ready1 && ready2) {
tp_submit(deblock_mb, x - 1, y + 1); // submit left-down block
x++; // goto right block
goto again;

}
else if(ready1) {
x--; // goto to left-down block
y++;
goto again;

}
else if(ready2) {
x++; // goto right block
goto again;

}
}

• Reduces task pool overhead
• Improves locality of reference

32ASTEC, June 2-5, 2009 | 41

2D-Wave max scalability

• 32x for ideal conditions (constant MB decoding time)
• 23x for real video (variable MB decoding time)

Frame number

sp
ee

du
p

33ASTEC, June 2-5, 2009 | 41

motion compensation

frame 0 (I) frame 1 (P) frame 2 (P)

3D-Wave

• How to increase scalability?
• 3-Wave: exploit intra-frame and inter-frame MB-level parallelism

• motion vectors typically short

34ASTEC, June 2-5, 2009 | 41

3D-Wave Implementation

• Implementation more complex than 2D-Wave due to complex,
dynamic, inter-frame dependencies

• developed a subscription mechanism where tasks subscribe themselves
to a kick-off list associated with reference MB

Ref MB F1;MB(1,3) NULL

Frame 0 Frame 1

35ASTEC, June 2-5, 2009 | 41

3D-Wave Scalability

• Speedup of >51 (efficiency >80%) for 64 cores
• Start-up and end-down of short sequence (25 frames) limit efficiency
• 64 cores is 16x faster than real-time for FHD
• 3D-Wave more scalable than 2D-Wave because

• exhibits more TLP

• 3D-Wave spawns fewer thread due to excess TLP

Speedups for Rush Hour Full HD

1

10

100

1 2 4 8 16 32 64
Cores

Sp
ee

du
p 2D-Wave

3D-Wave

36ASTEC, June 2-5, 2009 | 41

Increasing Programmability

• Programming is difficult
• Parallel programming is more difficult
• Efficient parallel programming is extremely difficult

• In 2D- and 3D-Wave programmer has to take care of:
• static task dependencies
• dynamic task dependencies
• optimizing data locality
• …

• Can we relieve the programmer from this burden?

37ASTEC, June 2-5, 2009 | 41

ENCORE Project

• Programmer only has to specify the tasks and the inputs and
outputs of those tasks

• Runtime system takes care of
• scheduling
• optimizing for data locality
• …

• Challenges:
• How to specify static task dependencies?
• How to balance the workload?
• How to specify dynamic data dependencies?
• How to specify communication volumes?
• How to make sure that RTS does not become a bottleneck
• …

38ASTEC, June 2-5, 2009 | 41

ENCORE Programming Model
• Based on Open-MP

Sequential application

for (i=0; i<n; i+=16)
for (j=0; j<n; j+=16)

mb_decode(&frame[i][j]);

Annotated application

for (i=0; i<n; i+=16)
for (j=0; j<n; j+=16)

task input (...) output (...)
mb_decode(&frame[i][j]);

user

ENCORE application

for (i=0; i<n; i+=16)
for (j=0; j<n; j+=16)

add_task(&mb_decode, &frame[i][j], ...);

mb_decode(){
get_data(...);
...
put_data(...);

}

ENCORE src2src compiler

39ASTEC, June 2-5, 2009 | 41

Encore Runtime Environment and
Architecture Vision

Control processor

for (i=0; i<n; i+=16)
for (j=0; j<n; j+=16)

add_task(&m, &f, ...);

Task manager

RTS

Worker
processor

Worker
processor

Worker
processor

Worker
processor

Worker
processor

40ASTEC, June 2-5, 2009 | 41

Conclusion

• Many scheduling issues that now have to handled by expert
programmers

• If parallel computing is to become a success, we have to hide
(most of) the complexity

41ASTEC, June 2-5, 2009 | 41

Acknowledgments

• Some slides due to or based on Jan Hoogerbrugge of NXP, Alex
Ramirez and Mauricio Alvarez of BSC, Arnaldo Azevedo and Cor
Meenderinck of TU Delft, . . .

• Work supported in part by Dutch organization for scientific
research (NWO), EU FP6 project SARC, HiPEAC NoE, . . .

