
1/ 35

Allocating Series of Workflows
on Computing Grids

Loris Marchal,

joint work with Matthieu Gallet, Mathias Jacquelin,
and Frédéric Vivien

CNRS
INRIA GRAAL project-team

Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon, France

ASTEC workshop, June 4, 2009.

2/ 35

Introduction

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

T1

T2 T3 T4

T5 T6 T7 T8

T9

Our problem

I A fully heterogeneous platform

I A complex task graph GA to be executed many times

Possible solutions

I Use any heuristic to schedule as if it were a single task graph

I Take advantage of the problem regularity

2/ 35

Introduction

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

T1

T2 T3 T4

T5 T6 T7 T8

T9

Our problem

I A fully heterogeneous platform

I A complex task graph GA to be executed many times

Possible solutions

I Use any heuristic to schedule as if it were a single task graph

I Take advantage of the problem regularity

2/ 35

Introduction

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

T1

T2 T3 T4

T5 T6 T7 T8

T9

Our problem

I A fully heterogeneous platform

I A complex task graph GA to be executed many times

Possible solutions

I Use any heuristic to schedule as if it were a single task graph

I Take advantage of the problem regularity

3/ 35

Outline

Steady-state scheduling
Moving to throughput maximization
Definition of an allocation
Complexity results

Mixed-linear programming solution
Notations
Variables and constraints
Performance evaluation

Mono-allocation heuristic strategies
Greedy mapping strategies
Rounding of the linear program
Delegating computations
Performance evaluation

Practical Implementation

Conclusion

4/ 35

Outline

Steady-state scheduling
Moving to throughput maximization
Definition of an allocation
Complexity results

Mixed-linear programming solution
Notations
Variables and constraints
Performance evaluation

Mono-allocation heuristic strategies
Greedy mapping strategies
Rounding of the linear program
Delegating computations
Performance evaluation

Practical Implementation

Conclusion

5/ 35

Picking an appropriate objective

Makespan minimization

I Minimize the time elapsed between the processing of the first
task and the completion of the overall work

Steady-state scheduling

I Neglect initiation and termination phases

I Focus on the average of the schedule

I Maximize the platform throughput
(Average number of task graphs completed per time unit)

6/ 35

Allocation

An allocation of the application graph to
the platform graph is a function σ asso-
ciating:

I to each task Ti, a processor σ(Ti)
which processes all instances of Ti;

I to each file Fi,j , a set of
communication links σ(Fi,j) which
carries all instances of this file from
processor σ(Ti) to processor σ(Tj).

T1

T2 T5 T6

T3 T4 T7 T8

T9

6/ 35

Allocation

An allocation of the application graph to
the platform graph is a function σ asso-
ciating:

I to each task Ti, a processor σ(Ti)
which processes all instances of Ti;

I to each file Fi,j , a set of
communication links σ(Fi,j) which
carries all instances of this file from
processor σ(Ti) to processor σ(Tj).

P1

P3

P4

P2

T1

T2 T5 T6

T3 T4 T7 T8

T9

7/ 35

Existing steady-state approach

Actual knowledge

Schedule maximizing the throughput known when the
application graph is not too deep.
Scheduling strategies for mixed data and task parallelism on
heterogeneous clusters, O. Beaumont, A. Legrand, L. Marchal,
and Y. Robert, Parallel Processing Letters 13(2), 2003.

Problem

Requires a lot of control as a schedule can use many different
allocations

Question

Can we build simpler but as efficient schedules?

Tool

Single-allocation steady-state schedules

8/ 35

Example of schedules

Any schedule:

T1

T1 T3 T4

T2 T2

T1 T3 T4

T3

T2

T4

T1

T2

T3 T4

Processor 2

Processor 3

Processor 1

T1

T3

T4

T2

Periodic schedule, with only one single allocation:

steady-state phase

τ

T1T1T1T1

T4T4T2 T2 T2 T4

T3T3T3

T2

T3

T4

Processor 1

Processor 2

Processor 3

I Regularity of schedule → optimization much more tractable

I We may lose in performance because of these constraints

9/ 35

Complexity

Problem DAG-Single-Alloc
Given a directed acyclic application graph, a platform graph, and a
bound B, is there an allocation with throughput ρ ≥ B?

Theorem.

DAG-Single-Alloc is NP-complete

10/ 35

Outline

Steady-state scheduling
Moving to throughput maximization
Definition of an allocation
Complexity results

Mixed-linear programming solution
Notations
Variables and constraints
Performance evaluation

Mono-allocation heuristic strategies
Greedy mapping strategies
Rounding of the linear program
Delegating computations
Performance evaluation

Practical Implementation

Conclusion

11/ 35

Notations: platform

I GP = (VP , EP): platform graph

I VP = P0, . . . , Pn−1: processors

I EP = (Pq → Pr): communication links

I Path Pq ; Pr: set of links

I Limited incoming bandwidth Bin
q

I Limited outgoing bandwidth Bout
q

I Limited bandwidth per link bwq,r

I Unrelated processors

I Initially, P0 holds the input files

I All output files must be sent back to P0

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

12/ 35

Notations: application

I GA = (VA, EA): Directed Acyclic Graph

I VA = T0, . . . , Tk−1: tasks to process

I EA = (Fi,j)i,j : files to transmit between
tasks

I Many instances of GA

I Time to transmit a file:
datai,j

bwq,r

I Time to compute a task: wi,q

T1

T2 T3 T4

T5 T6 T7 T8

T9

Objective: maximize the throughput

I Minimize the period τ (time needed to process/transmit one
instance of each task/file transfer)

13/ 35

Integer variables

I yk
q = 1 if task Tk is processed on processor Pq, and yk

q = 0
otherwise

I Each task is processed exactly once:

∀Tk,
∑

Pq
yk

q = 1

I xk,l
q,r = 1 if file Fk,l is transferred using path Pq ; Pr, and

xk,l
q,r = 0 otherwise

I A file transfer must originate from where the file was
produced:

xk,l
q,r ≤ yk

q

13/ 35

Integer variables

I yk
q = 1 if task Tk is processed on processor Pq, and yk

q = 0
otherwise

I Each task is processed exactly once:

∀Tk,
∑

Pq
yk

q = 1

I xk,l
q,r = 1 if file Fk,l is transferred using path Pq ; Pr, and

xk,l
q,r = 0 otherwise

I A file transfer must originate from where the file was
produced:

xk,l
q,r ≤ yk

q

14/ 35

Constraints on computations

I The processor computing a task must hold all necessary input
data, i.e., it either received or computed any required input
data:

yk
r +

∑
Pq;Pr

xk,l
q,r ≥ yl

r

I The computing time of a processor is no larger that τ :∑
Tk

yk
q × wq,k ≤ τ

14/ 35

Constraints on computations

I The processor computing a task must hold all necessary input
data, i.e., it either received or computed any required input
data:

yk
r +

∑
Pq;Pr

xk,l
q,r ≥ yl

r

I The computing time of a processor is no larger that τ :∑
Tk

yk
q × wq,k ≤ τ

15/ 35

Constraints on communications

I The amount of data carried by the link Pq → Pr is:

dq,r =
∑

Ps;Pt with
Pq→Pr∈Ps;Pt

∑
Fk,l

xk,l
s,t × datak,l

I The link bandwidth must not be exceeded:

dq,r

bwq,r
≤ τ

I The output bandwidth of a processor Pq must not be exceeded:∑
Pq→Pr∈EP

dq,r

Bout
q

≤ τ

I The input bandwidth of a processor Pq must not be exceeded:∑
Pq→Pr∈EP

dq,r

Bin
r

≤ τ

15/ 35

Constraints on communications

I The amount of data carried by the link Pq → Pr is:

dq,r =
∑

Ps;Pt with
Pq→Pr∈Ps;Pt

∑
Fk,l

xk,l
s,t × datak,l

I The link bandwidth must not be exceeded:

dq,r

bwq,r
≤ τ

I The output bandwidth of a processor Pq must not be exceeded:∑
Pq→Pr∈EP

dq,r

Bout
q

≤ τ

I The input bandwidth of a processor Pq must not be exceeded:∑
Pq→Pr∈EP

dq,r

Bin
r

≤ τ

15/ 35

Constraints on communications

I The amount of data carried by the link Pq → Pr is:

dq,r =
∑

Ps;Pt with
Pq→Pr∈Ps;Pt

∑
Fk,l

xk,l
s,t × datak,l

I The link bandwidth must not be exceeded:

dq,r

bwq,r
≤ τ

I The output bandwidth of a processor Pq must not be exceeded:∑
Pq→Pr∈EP

dq,r

Bout
q

≤ τ

I The input bandwidth of a processor Pq must not be exceeded:∑
Pq→Pr∈EP

dq,r

Bin
r

≤ τ

15/ 35

Constraints on communications

I The amount of data carried by the link Pq → Pr is:

dq,r =
∑

Ps;Pt with
Pq→Pr∈Ps;Pt

∑
Fk,l

xk,l
s,t × datak,l

I The link bandwidth must not be exceeded:

dq,r

bwq,r
≤ τ

I The output bandwidth of a processor Pq must not be exceeded:∑
Pq→Pr∈EP

dq,r

Bout
q

≤ τ

I The input bandwidth of a processor Pq must not be exceeded:∑
Pq→Pr∈EP

dq,r

Bin
r

≤ τ

16/ 35

Objective

Minimize the maximum time τ spent by all resources

Throughput: 1/τ .

Theorem.

An optimal solution of the above linear program describes an
allocation with maximal throughput

I NP-complete problem

I Mixed-linear programs for small instances

17/ 35

Mono-allocation vs. multi-allocation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100

N
or

m
al

iz
ed

th
ro

u
gh

p
u

t
to

u
p

p
er

b
ou

n
d

Communication-to-computation ratio

MLP

multi-allocation upper bound

Single allocation solutions achieve most of the performance
of multi-allocation solutions

18/ 35

Mono-allocation vs. traditional dynamic approach

0.001 0.01 0.1 1 10

CCR (logarithmic scale)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25
N

or
m

al
iz

ed
th

ro
ug

hp
ut

HEFT
MLP

As soon as communications matter
the steady-state approach is more efficient

19/ 35

Outline

Steady-state scheduling
Moving to throughput maximization
Definition of an allocation
Complexity results

Mixed-linear programming solution
Notations
Variables and constraints
Performance evaluation

Mono-allocation heuristic strategies
Greedy mapping strategies
Rounding of the linear program
Delegating computations
Performance evaluation

Practical Implementation

Conclusion

20/ 35

Greedy mapping strategies

I Simple mapping:
I put the “largest” task on the best processor
I continue with the second “largest” task, put it on the

processor which decreases the least the throughput
I . . .

I Refined greedy:
I take communication times into account when sorting tasks
I when mapping a task, select the processor such that the

maximum occupation time of all resources (processors and
links) is minimized

21/ 35

Rounding of the linear program

1. Solve the linear program over the rationals

2. Based on the rational solution, select an integer variable and
its value:

RLP-max:
I Select the yk

i with maximum value
I Set yk

j to 1

RLP-rand:
I Select a task Tk not yet mapped
I Randomly choose a processor Pi with probability yk

i
I Set yk

j to 1

3. Goto step 1 until all variables are set

22/ 35

Delegating computations

I Start from the solution where all tasks are processed by the
source processor

I Try to move a (connected) subset of tasks to another
processor to increase the throughput

I Repeat this process until no more improvement is found

Several issues to overcome:
I Find interesting groups of tasks to delegate

I for all tasks, we test all possible immediate neighborhoods, and
then try to increase the group along chains

I Hard to find a good evaluation metric: some moves do not
directly decrease throughput, but are still interesting

I for a given mapping, we sort all resource occupation times by
lexicographical order and use the ordered list instead of the
throughput in comparisons

23/ 35

Performance evaluation – methodology

I Reference heuristic: HEFT

I LP and MLP solved with CPLEX 11

I Simulations done using SimGrid

I Platforms: actual Grids, from SimGrid repository
(only a subset of processors is available for computation)

I Applications: random task graphs + one real application
I “Small problems”: 8–12 tasks
I “Large problems”: up to 47 tasks (MLP not used)

I for each application, we compute a CCR =
communications

computations
I we try to cover a large CCR range

24/ 35

Performance evaluation – results on small problems

0.0001 0.001 0.01 0.1 1 10

CCR (logarithmic scale)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Delegate

Refined-Greedy

Simple-Greedy

RLP-rand

RLP-max

HEFT

MLP

24/ 35

Performance evaluation – results on small problems

0.0001 0.001 0.01 0.1 1 10

CCR (logarithmic scale)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Delegate

HEFT

MLP

24/ 35

Performance evaluation – results on small problems

0.0001 0.001 0.01 0.1 1 10

CCR (logarithmic scale)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Delegate

RLP-rand

RLP-max

MLP

24/ 35

Performance evaluation – results on small problems

0.0001 0.001 0.01 0.1 1 10

CCR (logarithmic scale)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Delegate

Refined-Greedy

Simple-Greedy

MLP

25/ 35

Performance evaluation – results on large problems

0.0001 0.001 0.01 0.1 1 10

CCR (logarithmic scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Delegate

Refined-Greedy

HEFT

26/ 35

Performance evaluation – running times

Average running times in seconds to schedule 1000 instances:

small task graphs large task graphs

HEFT ∗ 14.30 83.36
MLP 49.45 n/a

Delegate 16.74 40.49
Simple-Greedy 0.11 0.61
Refined-Greedy 0.12 0.81

RLP-max 166.38 1301.80
RLP-rand 16.78 812.30

∗: HEFT running time grows with the number of instances

27/ 35

Outline

Steady-state scheduling
Moving to throughput maximization
Definition of an allocation
Complexity results

Mixed-linear programming solution
Notations
Variables and constraints
Performance evaluation

Mono-allocation heuristic strategies
Greedy mapping strategies
Rounding of the linear program
Delegating computations
Performance evaluation

Practical Implementation

Conclusion

28/ 35

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

28/ 35

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIBPPE0

M
E

M
O

R
Y

SPE2

SPE6SPE7SPE1SPE0

SPE5 SPE3SPE4

28/ 35

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIBPPE0

M
E

M
O

R
Y

SPE2

SPE6SPE7SPE1SPE0

SPE5 SPE3SPE4

I 1 PPE core
I VMX unit
I L1, L2 cache
I 2 way SMT

28/ 35

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIBPPE0

M
E

M
O

R
Y

SPE2

SPE6SPE7SPE1SPE0

SPE5 SPE3SPE4

I 8 SPEs
I 128-bit SIMD instruction set
I Local store 256KB
I Dedicated Asynchronous DMA engine

28/ 35

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIBPPE0

M
E

M
O

R
Y

SPE2

SPE6SPE7SPE1SPE0

SPE5 SPE3SPE4

28/ 35

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIBPPE0

M
E

M
O

R
Y

SPE2

SPE6SPE7SPE1SPE0

SPE5 SPE3SPE4

I Element Interconnect Bus (EIB)
I 200 GB/s bandwidth

28/ 35

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIBPPE0

M
E

M
O

R
Y

SPE2

SPE6SPE7SPE1SPE0

SPE5 SPE3SPE4

I 25 GB/s bandwidth

29/ 35

Platform modeling

Simple CELL modeling:

I 1 PPE and 8 SPE: 9 processing elements P1, . . . , P9, with
unrelated speed,

I Each processing element access the communication bus with a
(bidirectional) bandwidth b = (25GB/s) ,

I The bus is able to route all concurrent communications
without contention (in a first step),

I Constraints on the number of simultaneous communications,
because of the size of the stack of the DMA engine

I Constraints on the size of the memory on each SPE

30/ 35

Target application: vocoder

Vocoder

StepSource
work=21
I/O: 0->1

*** STATEFUL ***

IntToFloat
work=6

I/O: 1->1

Delay
work=215
I/O: 1->1

*** STATEFUL ***

DUPLICATE(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
work=null

RectangularToPolar
work=9105
I/O: 30->30

WEIGHTED_ROUND_ROBIN(1,1)
work=null

DUPLICATE(1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,1)
work=null

PolarToRectangular
work=5060
I/O: 40->40

FIRSmoothingFilter
work=3300
I/O: 15->15

Identity
work=90

I/O: 15->15

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Deconvolve
work=450

I/O: 30->30

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Duplicator
work=195

I/O: 15->20

LinearInterpolator
work=2010
I/O: 15->60

*** PEEKS 1 AHEAD ***

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Multiplier
work=220

I/O: 40->20

Decimator
work=320

I/O: 60->20

Identity
work=120

I/O: 20->20

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

Duplicator
work=195

I/O: 15->20

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,18,1)
work=null

FloatVoid
work=60

I/O: 20->0

WEIGHTED_ROUND_ROBIN(1,0)
work=null

InvDelay
work=9

I/O: 1->1
*** PEEKS 13 AHEAD ***

Identity
work=6

I/O: 1->1

Doubler
work=252

I/O: 18->18

Identity
work=6

I/O: 1->1

WEIGHTED_ROUND_ROBIN(1,18,1)
work=null

Pre_CollapsedDataParallel_1
work=207

I/O: 20->20

Adder
work=146
I/O: 20->2

Subtractor
work=14
I/O: 2->1

ConstMultiplier
work=8

I/O: 1->1

FloatToShort
work=12
I/O: 1->1

FileWriter
work=0

I/O: 1->0

31/ 35

Preliminary results

0 

50 

100 

150 

200 

250 

300 

350 

400 

Sequen-al  Greedy  Linear Program 

Th
ro
ug
hp

ut
 

I Sequential: uses only the PPE core

I Greedy: greedy allocation of tasks to the processing elements

32/ 35

Still some work to do. . .

I Better communication modeling (no contention)

I Implementation on multiple CELL, clusters. . .

I More heterogeneity: CELL + other processing units (GPU)

I Test the heuristics on this platform

33/ 35

Outline

Steady-state scheduling
Moving to throughput maximization
Definition of an allocation
Complexity results

Mixed-linear programming solution
Notations
Variables and constraints
Performance evaluation

Mono-allocation heuristic strategies
Greedy mapping strategies
Rounding of the linear program
Delegating computations
Performance evaluation

Practical Implementation

Conclusion

34/ 35

Conclusion

I Single-allocation steady-state schedules have performance
close to those of multi-allocations steady-state schedules, as
soon as communications matter.

I Best single-allocation steady-state schedules have better
performance than HEFT, as soon as communications matter.

I Mixed-linear programming approach limited to “small”
problems.

I Design of an efficient heuristic to approach optimal solution
for “large” problems.

35/ 35

Perspectives

I Optimize Delegate running time.

I Simplify MLP to cope with larger problems (?)

I Use task duplication to improve throughput.
(MLP adaptation is straightforward)

I Enhance the model to cope with different architectures

	Steady-state scheduling
	Moving to throughput maximization
	Definition of an allocation
	Complexity results

	Mixed-linear programming solution
	Notations
	Variables and constraints
	Performance evaluation

	Mono-allocation heuristic strategies
	Greedy mapping strategies
	Rounding of the linear program
	Delegating computations
	Performance evaluation

	Practical Implementation
	Conclusion

