Energy-aware scheduling of flow applications on master-worker platforms

Jean-François PINEAU Yves ROBERT and Frédéric VIVIEN

Laboratoire d'Informatique, de Robotique, et de MicroÉlectronique de Montpellier

Jean-Francois.Pineau@ens-lyon.org

http://www.lirmm.fr/~pineau

ASTEC, June, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Framework

- Application and platform
- Energy
- Objective function
- 2 At the processor level
 - Minimizing the power consumption
 - Maximizing the throughput

3 At the system level

- Ideal model
- Model with start-up overheads

4 Conclusion

Framework

At the processor level At the system level Conclusion Application and platform Energy Objective function

Applications and platform

<ロ> <同> <同> < 同> < 同>

Application and platform Energy Objective function

Applications and platform

Image: A math a math

æ

Application and platform Energy Objective function

Applications and platform

Image: A mathematical states and a mathem

Application and platform Energy Objective function

Applications and platform

(日)

Application and platform Energy Objective function

Applications and platform

< □ > < 同 > < 三 >

Application and platform Energy Objective function

Applications and platform

▲ 🗇 🕨 🔺 🗎 🕨

Application and platform Energy Objective function

Applications and platform

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application and platform Energy Objective function

Applications and platform

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Framework

At the processor level At the system level Conclusion Application and platform Energy Objective function

Outline

1 Framework

- Application and platform
- Energy
- Objective function
- At the processor level
 Minimizing the power consumption
 Maximizing the throughput
- 3 At the system level
 - Ideal model
 - Model with start-up overheads

4 Conclusion

- ● ● ●

Application and platform Energy Objective function

Energy model

• Most common power consumption formula:

$$P_d = s^{\alpha}$$
, where $\alpha > 1$.

• Our hypothesis:

Power consumption is a super-linear function.

• Power consumption of P_u at mode $s_{u,i}$ (fully used): $\mathfrak{P}_{u,i}$

(日) (同) (三) (三)

Application and platform Energy Objective function

Energy model

• Most common power consumption formula:

$$P_d = s^{\alpha}$$
, where $\alpha > 1$.

• Our hypothesis:

Power consumption is a super-linear function.

• Power consumption of P_u at mode $s_{u,i}$ (fully used): $\mathfrak{P}_{u,i}$

(日) (同) (三) (三)

Application and platform Energy Objective function

Energy model

• Most common power consumption formula:

$$P_d = s^{\alpha}$$
, where $\alpha > 1$.

• Our hypothesis:

Power consumption is a super-linear function.

• Power consumption of P_u at mode $s_{u,i}$ (fully used): $\mathfrak{P}_{u,i}$

< □ > < 同 > < 三 >

Application and platform Energy Objective function

Between modes

Fluid model:

switching among the modes does not cost any penalty.

Idle:

- an idle processor does not consume any power
- once a processor is on, it will always be above s_{u.1}

Overhead:

- time overhead
- power overhead
 - when turning on the worker
 - when turning it off
 - for each transition of mode

(日) (同) (三) (三)

э

Application and platform Energy Objective function

Between modes

Fluid model:

switching among the modes does not cost any penalty.

Idle:

- an idle processor does not consume any power
- once a processor is on, it will always be above $s_{u,1}$

Overhead:

- time overhead
- power overhead
 - when turning on the worker
 - when turning it off
 - for each transition of mode

Image: A = A

Application and platform Energy Objective function

Between modes

Fluid model:

switching among the modes does not cost any penalty.

Idle:

- an idle processor does not consume any power
- once a processor is on, it will always be above $s_{u,1}$

Overhead:

- time overhead
- power overhead
 - when turning on the worker
 - when turning it off
 - for each transition of mode

Image: A = A

Application and platform Energy Objective function

Between modes

Fluid model:

switching among the modes does not cost any penalty.

Idle:

- an idle processor does not consume any power
- once a processor is on, it will always be above $s_{u,1}$

Overhead:

- time overhead
- power overhead
 - when turning on the worker
 - when turning it off
 - for each transition of mode

▲ 同 ▶ → 三 ▶

Application and platform Energy Objective function

Between modes

Fluid model:

switching among the modes does not cost any penalty.

Idle:

- an idle processor does not consume any power
- once a processor is on, it will always be above $s_{u,1}$

Overhead:

- time overhead
- power overhead
 - when turning on the worker
 - when turning it off
 - for each transition of mode

< □ > < □ >

Application and platform Energy Objective function

Between modes

Fluid model:

switching among the modes does not cost any penalty.

Idle:

- an idle processor does not consume any power
- once a processor is on, it will always be above $s_{u,1}$

Overhead:

- time overhead
- power overhead
 - when turning on the worker
 - when turning it off
 - for each transition of mode

- ● ● ●

Application and platform Energy Objective function

Between modes

Fluid model:

switching among the modes does not cost any penalty.

Idle:

- an idle processor does not consume any power
- once a processor is on, it will always be above $s_{u,1}$

Overhead:

- time overhead
- power overhead
 - when turning on the worker
 - when turning it off
 - for each transition of mode

▲ 同 ▶ ▲ 三

Application and platform Energy Objective function

Models

• Ideal model:

- an idle processor does not consume any power
- switching among the modes does not cost any penalty

Model with start-up overheads

- once a processor is on, it will always be above $s_{u,1}$
- power consumption depends on the length of the interval

$$\mathfrak{P}_{u,i}(t) = \mathfrak{P}_{u,i}^{(1)} \cdot t + \mathfrak{P}_u^{(2)}$$

(日) (同) (三) (三)

Application and platform Energy Objective function

Models

- Ideal model:
 - an idle processor does not consume any power
 - switching among the modes does not cost any penalty

Model with start-up overheads

- once a processor is on, it will always be above $s_{u,1}$
- power consumption depends on the length of the interval

$$\mathfrak{P}_{u,i}(t) = \mathfrak{P}_{u,i}^{(1)} \cdot t + \mathfrak{P}_u^{(2)}$$

▲□ ► ▲ □ ►

Application and platform Energy Objective function

Outline

1 Framework

- Application and platform
- Energy
- Objective function
- At the processor leve
 - Minimizing the power consumption
 - Maximizing the throughput

3 At the system level

- Ideal model
- Model with start-up overheads

4 Conclusion

- ● ● ●

Application and platform Energy Objective function

Steady-state

Motivations

- Assume the number of tasks is huge
- Concentrate on throughput (fluid framework)
- Assume the workers can run at different speed
- Concentrate on *energy minimization*

Bi-criteria problem

Image: A image: A

Application and platform Energy Objective function

Steady-state

Motivations

- Assume the number of tasks is huge
- Concentrate on throughput (fluid framework)
- Assume the workers can run at different speed
- Concentrate on energy minimization

Bi-criteria problem

< 4 ₽ > < 3

Application and platform Energy Objective function

Steady-state

Motivations

- Assume the number of tasks is huge
- Concentrate on throughput (fluid framework)
- Assume the workers can run at different speed
- Concentrate on energy minimization

Bi-criteria problem

Application and platform Energy Objective function

Laptop or server ?

Laptop problem:

"What is the best schedule achievable using a particular energy budget, before battery becomes critically low?"

MaxThroughput (\mathfrak{P} **)**: maximizing the throughput while not exceeding the power consumption \mathfrak{P}

Server problem: "What is the least energy required to achieve a desired level of performance?"

MinPower (ρ): minimizing the power consumption while achieving a throughput ρ

(日) (同) (三) (三)

Application and platform Energy Objective function

Laptop or server ?

Laptop problem:

"What is the best schedule achievable using a particular energy budget, before battery becomes critically low?"

MaxThroughput (\mathfrak{P} **)**: maximizing the throughput while not exceeding the power consumption \mathfrak{P}

Server problem:

"What is the least energy required to achieve a desired level of performance?"

MinPower (ρ): minimizing the power consumption while achieving a throughput ρ

(日) (同) (三) (三)

Minimizing the power consumption Maximizing the throughput

Outline

Framework

- Application and platform
- Energy
- Objective function

2 At the processor level

- Minimizing the power consumption
- Maximizing the throughput

3 At the system level

- Ideal model
- Model with start-up overheads

4 Conclusion

-

Minimizing the power consumption Maximizing the throughput

Problem

Goal: Minimization of the power consumption of P_u .

Constraints:

- P_u has to ensure a given throughput,
- the processing capacity of $P_{u,i}$ cannot be exceeded, and the different modes are exclusive.

< □ > < 同 > < 三 >

Minimizing the power consumption Maximizing the throughput

Problem

Goal: Minimization of the power consumption of P_u .

Constraints:

- P_u has to ensure a given throughput,
- the processing capacity of $P_{u,i}$ cannot be exceeded, and the different modes are exclusive.

Image: A math a math

Minimizing the power consumption Maximizing the throughput

Optimal scheduling

processor's speed

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minimizing the power consumption Maximizing the throughput

Optimal scheduling

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minimizing the power consumption Maximizing the throughput

Optimal scheduling

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minimizing the power consumption Maximizing the throughput

Optimal scheduling

(日)

- ₹ 🖬 🕨
Minimizing the power consumption Maximizing the throughput

Optimal scheduling

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minimizing the power consumption Maximizing the throughput

Optimal scheduling

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Minimizing the power consumption Maximizing the throughput

Theorem 1

Theorem

This scheduling is optimal to minimize the power consumption while achieving a throughput of ρ .

The power consumption is then:

$$\mathfrak{P}_u(
ho) = (\omega
ho - s_{u,i_0}) rac{\mathfrak{P}_{u,i_0+1} - \mathfrak{P}_{u,i_0}}{s_{u,i_0+1} - s_{u,i_0}} + \mathfrak{P}_{u,i_0}$$

▲□ ► ▲ □ ►

Minimizing the power consumption Maximizing the throughput

Theorem 1

Theorem

This scheduling is optimal to minimize the power consumption while achieving a throughput of ρ .

The power consumption is then:

$$\mathfrak{P}_u(
ho) = (\omega
ho-s_{u,i_0})rac{\mathfrak{P}_{u,i_0+1}-\mathfrak{P}_{u,i_0}}{s_{u,i_0+1}-s_{u,i_0}}+\mathfrak{P}_{u,i_0}$$

Minimizing the power consumption Maximizing the throughput

Theorem 1

Theorem

2

This scheduling is optimal to minimize the power consumption while achieving a throughput of ρ .

The power consumption is then:

$$\begin{split} \mathfrak{B}_{u}(\rho) &= (\omega\rho - s_{u,i_0}) \frac{\mathfrak{P}_{u,i_0+1} - \mathfrak{P}_{u,i_0}}{s_{u,i_0+1} - s_{u,i_0}} + \mathfrak{P}_{u,i_0} \\ &= \max_{0 \leq i < m_u} \left\{ (\omega\rho - s_{u,i}) \frac{\mathfrak{P}_{u,i+1} - \mathfrak{P}_{u,i}}{s_{u,i+1} - s_{u,i}} + \mathfrak{P}_{u,i} \right\}. \end{split}$$

because \mathfrak{P} is super-linear.

A (1) < (1)</p>

Minimizing the power consumption Maximizing the throughput

Theorem 2

The maximum achievable throughput according to the power consumption limit ${\mathfrak P}$ is

$$\rho_{u}(\mathfrak{P}) = \min \left\{ \begin{array}{c} \frac{s_{u,m_{u}}}{\omega} \\ \max_{1 \leq i \leq m_{u}} \left\{ \frac{\mathfrak{P}(s_{u,i+1} - s_{u,i}) + s_{u,i}\mathfrak{P}_{u,i+1} - s_{u,i+1}\mathfrak{P}_{u,i}}{\omega(\mathfrak{P}_{u,i+1} - \mathfrak{P}_{u,i})} \right\} \right.$$

< □ > < 同 > < 三 >

ъ

э

deal model Model with start-up overheads

Outline

Framework

- Application and platform
- Energy
- Objective function
- At the processor level
 Minimizing the power consumption
 Maximizing the throughput

3 At the system level

- Ideal model
- Model with start-up overheads

4 Conclusion

Ideal model Model with start-up overheads

Simplifying the problem

Constraint of the system: ρ

 $rac{3W}{\delta} \geq
ho$, or the system as no solution.

< □ > < 同 > < 三 >

Ideal model Model with start-up overheads

Simplifying the problem

Constraint of the system: ρ

 $\frac{\mathsf{BW}}{\delta} \geq \rho, \text{ or the system as no solution}.$

Image: A mathematical states and a mathem

Ideal model Model with start-up overheads

Simplifying the problem

Constraint of the system: ρ

 $\frac{\mathsf{BW}}{\delta} \geq \rho, \text{ or the system as no solution}.$

- ● ● ●

Ideal model Model with start-up overheads

Simplifying the problem

Constraint of the system: ρ

 $\frac{\mathsf{BW}}{\delta} \geq \rho \text{, or the system as no solution.}$

Ideal model Model with start-up overheads

Simplifying the problem

Constraint of the system: ρ

 $\frac{\mathsf{BW}}{\delta} \geq \rho, \text{ or the system as no solution}.$

< 17 ▶

Ideal model Model with start-up overheads

Simplifying the problem

Constraint of the system: ρ

 $\frac{\mathsf{BW}}{\delta} \geq \rho, \text{ or the system as no solution.}$

Ideal model Model with start-up overheads

Algorithm

æ

<ロ> <同> <同> < 同> < 同>

Ideal model Model with start-up overheads

Algorithm

æ

 $P_{1,1}$

<ロ> <同> <同> < 同> < 同>

Ideal model Model with start-up overheads

Algorithm

イロト イヨト イヨト イヨト

Ideal model Model with start-up overheads

Algorithm

イロト イヨト イヨト イヨト

Ideal model Model with start-up overheads

Algorithm

・ロト ・回ト ・ヨト ・ヨト

Ideal model Model with start-up overheads

Algorithm

<ロ> <同> <同> < 同> < 同>

Ideal model Model with start-up overheads

Algorithm

<ロ> <同> <同> < 同> < 同>

Ideal model Model with start-up overheads

Algorithm

<ロ> <同> <同> < 同> < 同>

Ideal model Model with start-up overheads

Algorithm

Throughput of the system : $\Phi = -\frac{s_{1,1}}{\omega}$

<ロ> <同> <同> < 同> < 同>

Ideal model Model with start-up overheads

Algorithm

Throughput of the system : $\Phi = -\Phi + \frac{s_{u,1}}{\omega}$

イロト イヨト イヨト イヨト

Ideal model Model with start-up overheads

Algorithm

 ${\rm Throughput \ of \ the \ system:} \ \Phi = \quad \Phi - \frac{s_{1,1}}{\omega} + \frac{s_{1,2}}{\omega}$

イロト イヨト イヨト イヨト

Ideal model Model with start-up overheads

Algorithm

18/31

Throughput of the system : $\Phi = - \Phi - \frac{s_{k,j-1}}{\omega} + \frac{s_{k,j}}{\omega}$

<ロ> <同> <同> < 同> < 同>

Ideal model Model with start-up overheads

Algorithm

Throughput of the system : $\Phi = - \Phi - \frac{s_{u,i-1}}{\omega} + \frac{s_{u,i}}{\omega}$

イロト イヨト イヨト イヨト

Ideal model Model with start-up overheads

Algorithm

Throughput of the system : $\Phi = -\frac{\delta_{u,i}}{\omega} + \frac{b_u}{\delta}$

イロト イヨト イヨト イヨト

Ideal model Model with start-up overheads

Algorithm

<ロ> <同> <同> < 同> < 同>

Ideal model Model with start-up overheads

Algorithm

Throughput of the system : $\Phi = -\rho$

<ロ> <同> <同> < 同> < 同>

Ideal model Model with start-up overheads

Proof of the algorithm

Theorem

Our algorithm optimally solves problem MINPOWER (ρ).

• $\tilde{\mathcal{S}} = \{\tilde{\rho}_u\}$: throughput of each processor given by our algorithm

• $S = \{\rho_u\}$: another optimal solution

Ideal model Model with start-up overheads

Proof of the algorithm

Theorem

Our algorithm optimally solves problem MINPOWER (ρ).

- $\tilde{\mathcal{S}} = \{\tilde{\rho}_u\}$: throughput of each processor given by our algorithm
- $S = \{\rho_u\}$: another optimal solution

(日) (同) (三) (三)

Ideal model Model with start-up overheads

Proof (1/2)

	$ ilde{\mathcal{S}}$	${\mathcal S}$	
P_1	$\tilde{ ho}_1$	ρ_1	
$P_{\prime\prime}$	$\tilde{ ho}_{\mu}$	ρ_{μ}	
u	, -	, u	
P_p	$\tilde{ ho}_{p}$	$ ho_{p}$	

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ideal model Model with start-up overheads

Proof (1/2)

	$ ilde{\mathcal{S}}$	${\mathcal S}$	
P_1	$\tilde{ ho}_1$	ρ_1	
	$ ilde{ ho}_{min}$ >	$ ho_{min}$	
P _u	$\tilde{ ho}_u$	$ ho_u$	
P_p	$\tilde{ ho}_{p}$	ρ_{p}	

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ideal model Model with start-up overheads

Proof (1/2)

	$ ilde{\mathcal{S}}$	${\mathcal S}$	
P_1	$\tilde{ ho}_1$	ρ_1	
P_{\min}	$ ilde{ ho}_{min}$ >	$ ho_{min}$	
P _u	$ ilde{ ho}_u$	$ ho_u$	
P _p	$ ilde{ ho}_{P}$	$ ho_{p}$	

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ideal model Model with start-up overheads

Proof (1/2)

	$ ilde{\mathcal{S}}$	S	
P_1	$\tilde{ ho}_1$	ρ ₁	
P_{\min}	$ ilde{ ho}_{min}$ >	$ ho_{min}$	
P _u	$\tilde{ ho}_u$	ρμ	
	$\tilde{ ho}_{MAX}$ <	ρμαχ	
Pp	$\tilde{ ho}_{P}$	ρ_p	

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ideal model Model with start-up overheads

Proof (1/2)

	$ ilde{\mathcal{S}}$		${\mathcal S}$	
P_1	$\tilde{ ho}_1$		ρ_1	
P_{\min}	$ ilde{ ho}_{min}$	>	$ ho_{min}$	
P _u	$\tilde{ ho}_u$		$ ho_u$	
P_{MAX}	$ ilde ho_{MAX}$	<	$ ho_{MAX}$	
P _p	$\tilde{ ho}_{p}$		ρ_p	

・ロン ・部 と ・ ヨ と ・ ヨ と …
Ideal model Model with start-up overheads

Proof (1/2)

	$ ilde{\mathcal{S}}$	\mathcal{S}	
P_1	$\tilde{ ho}_1$	ρ_1	
P_{\min}	$ ilde{ ho}_{min}$ >	$ ho_{min}$	
P _u	$\tilde{ ho}_u$	ρ _u	
P _{MAX}	$ ilde{ ho}_{MAX}$ <	ρμαχ	
P_p	$\tilde{ ho}_{p}$	ρ_{p}	

$$\epsilon = \min\{\tilde{\rho}_{\min} - \rho_{\min}; \rho_{MAX} - \tilde{\rho}_{MAX}\}.$$

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ideal model Model with start-up overheads

Proof (1/2)

	$ ilde{\mathcal{S}}$	S	\mathcal{S}'
P_1	$\tilde{ ho}_1$	ρ_1	ρ_1
P _{min}	$ ilde{ ho}_{min}$ >	$ ho_{min}$	$ ho_{min} + \epsilon$
P _u	$\tilde{ ho}_u$	$ ho_u$	$ ho_u$
P _{MAX}	$ ilde{ ho}_{MAX}$ <	ζ ρ _{ΜΑΧ}	$ ho_{MAX}$ - ϵ
P_p	$\tilde{ ho}_{p}$	$ ho_{p}$	$ ho_{p}$

 $\epsilon = \min\{\tilde{\rho}_{\min} - \rho_{\min}; \rho_{\text{MAX}} - \tilde{\rho}_{\text{MAX}}\}.$

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ideal model Model with start-up overheads

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ideal model Model with start-up overheads

 \mathcal{S}' consumes no more power than \mathcal{S}

Proof (2/2)

イロト イヨト イヨト イヨト

Ideal model Model with start-up overheads

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ideal model Model with start-up overheads

Ideal model Model with start-up overheads

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ideal model Model with start-up overheads

Ideal model Model with start-up overheads

Maximizing the throughput

- Same principle
- Simple change of objective function:

$$\mathcal{T}[u_k] \leftarrow \min \begin{cases} \mathfrak{P}_{u_k, i_k} \\ \left(\omega \frac{b_{u_k}}{\delta} - s_{u_k, i_k} \right) \frac{\mathfrak{P}_{u_k, i_k+1} - \mathfrak{P}_{u_k, i_k}}{s_{u_k, i_k+1} - s_{u_k, i_k}} + \mathfrak{P}_{u_k, i_k} \\ \mathfrak{P}' + (\mathfrak{P} - \Psi) \end{cases}$$

(Ψ is the current power consumption)

▲ □ ► ▲ □ ►

ldeal model Model with start-up overheads

Outline

Framework

- Application and platform
- Energy
- Objective function
- At the processor level
 Minimizing the power consumption
 Maximizing the throughput

3 At the system level

- Ideal model
- Model with start-up overheads

4 Conclusion

ldeal model Model with start-up overheads

Property

Theorem

There exists an optimal schedule in which all processors, except possibly one, are used at a maximum throughput, i.e., either the throughput dictated by their bandwidth, or the throughput achieved by one of their execution modes.

▲ 🗇 🕨 🔺 🖻

ldeal model Model with start-up overheads

Proof

$\boldsymbol{\mathcal{S}}$, optimal schedule, during t time-units:

Image: A mathematical states and a mathem

э

ldeal model Model with start-up overheads

Proof

$\boldsymbol{\mathcal{S}}$, optimal schedule, during t time-units:

< □ > < 同 > < 三 >

э

ldeal model Model with start-up overheads

Proof

 \mathcal{S}' :

・ロン ・四 と ・ ヨ と ・ ヨ と …

ldeal model Model with start-up overheads

\mathcal{S}' optimal

If $\boldsymbol{\mathcal{S}'}$ does not have the desired property:

• P_{\min} , P_{MAX} : not running at a maximum throughput.

•
$$\rho'_{\min} \leftarrow P_{\min, i_{\min}}, P_{\min, i_{\min}+1}$$

•
$$\rho'_{\mathsf{MAX}} \leftarrow P_{\mathsf{MAX},i_{\mathsf{MAX}}}$$
, $P_{\mathsf{MAX},i_{\mathsf{MAX}}+1}$

$$\frac{\mathfrak{P}_{\mathsf{min},i_{\mathsf{min}}+1}(t) - \mathfrak{P}_{\mathsf{min},i_{\mathsf{min}}}(t)}{s_{\mathsf{min},i_{\mathsf{min}}+1} - s_{\mathsf{min},i_{\mathsf{min}}}} \leq \frac{\mathfrak{P}_{\mathsf{MAX},i_{\mathsf{MAX}+1}}(t) - \mathfrak{P}_{\mathsf{MAX},i_{\mathsf{MAX}}}(t)}{s_{\mathsf{MAX},i_{\mathsf{MAX}+1}} - s_{\mathsf{MAX},i_{\mathsf{MAX}}}}$$

(日)

ldeal model Model with start-up overheads

\mathcal{S}' optimal

If ${\boldsymbol{\mathcal{S}}}'$ does not have the desired property:

• P_{\min} , P_{MAX} : not running at a maximum throughput.

•
$$\rho'_{\min} \leftarrow P_{\min, i_{\min}}, P_{\min, i_{\min}+1}$$

•
$$\rho'_{\mathsf{MAX}} \leftarrow P_{\mathsf{MAX},i_{\mathsf{MAX}}}$$
, $P_{\mathsf{MAX},i_{\mathsf{MAX}}+1}$

$$\frac{\mathfrak{P}_{\mathsf{min},i_{\mathsf{min}}+1}(t) - \mathfrak{P}_{\mathsf{min},i_{\mathsf{min}}}(t)}{s_{\mathsf{min},i_{\mathsf{min}}+1} - s_{\mathsf{min},i_{\mathsf{min}}}} \leq \frac{\mathfrak{P}_{\mathsf{MAX},i_{\mathsf{MAX}+1}}(t) - \mathfrak{P}_{\mathsf{MAX},i_{\mathsf{MAX}}}(t)}{s_{\mathsf{MAX},i_{\mathsf{MAX}+1}} - s_{\mathsf{MAX},i_{\mathsf{MAX}}}}$$

(日) (同) (三) (1)

ldeal model Model with start-up overheads

\mathcal{S}' optimal

If ${\boldsymbol{\mathcal{S}}}'$ does not have the desired property:

• P_{\min} , P_{MAX} : not running at a maximum throughput.

•
$$\rho'_{\min} \leftarrow P_{\min, i_{\min}}, P_{\min, i_{\min}+1}$$

• $\rho'_{MAX} \leftarrow P_{MAX, i_{MAX}}, P_{MAX, i_{MAX}+1}$

$$\frac{\mathfrak{P}_{\min,i_{\min}+1}(t) - \mathfrak{P}_{\min,i_{\min}}(t)}{s_{\min,i_{\min}+1} - s_{\min,i_{\min}}} \leq \frac{\mathfrak{P}_{\mathsf{MAX},i_{\mathsf{MAX}+1}}(t) - \mathfrak{P}_{\mathsf{MAX},i_{\mathsf{MAX}}}(t)}{s_{\mathsf{MAX},i_{\mathsf{MAX}+1}} - s_{\mathsf{MAX},i_{\mathsf{MAX}}}}$$

(日) (同) (三) (1)

ldeal model Model with start-up overheads

\mathcal{S}' optimal

If ${\boldsymbol{\mathcal{S}}}'$ does not have the desired property:

• P_{\min} , P_{MAX} : not running at a maximum throughput.

•
$$\rho'_{\min} \leftarrow P_{\min, i_{\min}}, P_{\min, i_{\min}+1}$$

• $\rho'_{MAX} \leftarrow P_{MAX, i_{MAX}}, P_{MAX, i_{MAX}+1}$

$$rac{\mathfrak{P}_{\mathsf{min},i_{\mathsf{min}}+1}(t)-\mathfrak{P}_{\mathsf{min},i_{\mathsf{min}}}(t)}{s_{\mathsf{min},i_{\mathsf{min}}+1}-s_{\mathsf{min},i_{\mathsf{min}}}} \leq rac{\mathfrak{P}_{\mathsf{MAX},i_{\mathsf{MAX}+1}}(t)-\mathfrak{P}_{\mathsf{MAX},i_{\mathsf{MAX}}}(t)}{s_{\mathsf{MAX},i_{\mathsf{MAX}+1}}-s_{\mathsf{MAX},i_{\mathsf{MAX}}}}$$

(日) (同) (三) (1)

ldeal model Model with start-up overheads

New schedule

$$\mathcal{S}'': \begin{cases} \rho_{\min}'' = \rho_{\min}' + \epsilon \\ \rho_{\mathsf{MAX}}'' = \rho_{\mathsf{MAX}}' - \epsilon \\ \rho_{u}'' = \rho_{u}' \text{ otherwise} \\ \epsilon = \min\left\{\frac{b_{u}}{\delta} - \rho_{\min}'; \frac{s_{\min, i_{\min}+1}}{\omega} - \rho_{\min}'; \rho_{\mathsf{MAX}}' - \frac{s_{\mathsf{MAX}, i_{\mathsf{MAX}}}}{\omega}\right\} \end{cases}$$

S''

- \bullet achieves the same throughput than \mathcal{S}'
- ullet does not consume more power than ${\mathcal S}$
- has less processor not at a maximum throughput than in S'

<ロ> <同> <同> < 同> < 同>

э

ldeal model Model with start-up overheads

New schedule

$$\mathcal{S}'': \begin{cases} \rho_{\min}'' = \rho_{\min}' + \epsilon \\ \rho_{MAX}'' = \rho_{MAX}' - \epsilon \\ \rho_{u}'' = \rho_{u}' \text{ otherwise} \\ \epsilon = \min\left\{\frac{b_{u}}{\delta} - \rho_{\min}'; \frac{s_{\min,i_{\min}+1}}{\omega} - \rho_{\min}'; \rho_{MAX}' - \frac{s_{MAX,i_{MAX}}}{\omega}\right\} \end{cases}$$

 \mathcal{S}''

- $\bullet\,$ achieves the same throughput than \mathcal{S}'
- ullet does not consume more power than ${\mathcal S}$
- has less processor not at a maximum throughput than in S⁴

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ldeal model Model with start-up overheads

New schedule

$$\mathcal{S}'': \begin{cases} \rho_{\min}'' = \rho_{\min}' + \epsilon \\ \rho_{MAX}'' = \rho_{MAX}' - \epsilon \\ \rho_{u}'' = \rho_{u}' \text{ otherwise} \\ \epsilon = \min\left\{\frac{b_{u}}{\delta} - \rho_{\min}'; \frac{s_{\min,i_{\min}+1}}{\omega} - \rho_{\min}'; \rho_{MAX}' - \frac{s_{MAX,i_{MAX}}}{\omega}\right\} \end{cases}$$

 \mathcal{S}''

- $\bullet\,$ achieves the same throughput than \mathcal{S}'
- \bullet does not consume more power than \mathcal{S}'
- has less processor not at a maximum throughput than in \mathcal{S}'

(日) (同) (三) (三)

ldeal model Model with start-up overheads

New schedule

$$\mathcal{S}'': \begin{cases} \rho_{\min}'' = \rho_{\min}' + \epsilon \\ \rho_{MAX}'' = \rho_{MAX}' - \epsilon \\ \rho_{u}'' = \rho_{u}' \text{ otherwise} \\ \epsilon = \min\left\{\frac{b_{u}}{\delta} - \rho_{\min}'; \frac{s_{\min,i_{\min}+1}}{\omega} - \rho_{\min}'; \rho_{MAX}' - \frac{s_{MAX,i_{MAX}}}{\omega}\right\} \end{cases}$$

 \mathcal{S}''

- $\bullet\,$ achieves the same throughput than \mathcal{S}'
- \bullet does not consume more power than \mathcal{S}'
- \bullet has less processor not at a maximum throughput than in \mathcal{S}'

(日) (同) (三) (三)

Ideal model Model with start-up overheads

- Algorithm look at the energy consumed during *d* time-units (*d* defined later)
- \mathcal{A} is composed of \mathcal{B} tasks
- optimal scheduling time: $T = \frac{B}{\rho}$, where ρ is the throughput bound.
- \mathfrak{P}_{opt} : the optimal power consumption that would be obtained in the ideal model
- \mathfrak{P}^* : the optimal power consumption that can be achieve under the model with start-up overheads
- \mathfrak{P} the power consumption given by our algorithm.
- $\mathfrak{P}_{opt} \leq \mathfrak{P}^* \leq \mathfrak{P}.$
- during *t* time-units:

ldeal model Model with start-up overheads

- Algorithm look at the energy consumed during *d* time-units (*d* defined later)
- \mathcal{A} is composed of \mathcal{B} tasks
- optimal scheduling time: $T = \frac{B}{\rho}$, where ρ is the throughput bound.
- \mathfrak{P}_{opt} : the optimal power consumption that would be obtained in the ideal model
- \mathfrak{P}^* : the optimal power consumption that can be achieve under the model with start-up overheads
- \mathfrak{P} the power consumption given by our algorithm.
- $\mathfrak{P}_{opt} \leq \mathfrak{P}^* \leq \mathfrak{P}$.
- during t time-units:

- Algorithm look at the energy consumed during *d* time-units (*d* defined later)
- \mathcal{A} is composed of \mathcal{B} tasks
- optimal scheduling time: $T = \frac{B}{\rho}$, where ρ is the throughput bound.
- \mathfrak{P}_{opt} : the optimal power consumption that would be obtained in the ideal model
- \mathfrak{P}^* : the optimal power consumption that can be achieve under the model with start-up overheads
- \mathfrak{P} the power consumption given by our algorithm.
- $\mathfrak{P}_{opt} \leq \mathfrak{P}^* \leq \mathfrak{P}$.
- during *t* time-units:

- Algorithm look at the energy consumed during *d* time-units (*d* defined later)
- \mathcal{A} is composed of \mathcal{B} tasks
- optimal scheduling time: $T = \frac{B}{\rho}$, where ρ is the throughput bound.
- $\mathfrak{P}_{\textit{opt}}$: the optimal power consumption that would be obtained in the ideal model
- \mathfrak{P}^* : the optimal power consumption that can be achieve under the model with start-up overheads
- \mathfrak{P} the power consumption given by our algorithm.
- $\mathfrak{P}_{opt} \leq \mathfrak{P}^* \leq \mathfrak{P}$.
- during *t* time-units:

- Algorithm look at the energy consumed during *d* time-units (*d* defined later)
- \mathcal{A} is composed of \mathcal{B} tasks
- optimal scheduling time: $T = \frac{B}{\rho}$, where ρ is the throughput bound.
- \mathfrak{P}_{opt} : the optimal power consumption that would be obtained in the ideal model
- \mathfrak{P}^* : the optimal power consumption that can be achieve under the model with start-up overheads
- \mathfrak{P} the power consumption given by our algorithm.
- $\mathfrak{P}_{opt} \leq \mathfrak{P}^* \leq \mathfrak{P}$.
- during *t* time-units:

Asympotic optimality (1/2)

- Algorithm look at the energy consumed during *d* time-units (*d* defined later)
- \mathcal{A} is composed of \mathcal{B} tasks
- optimal scheduling time: $T = \frac{B}{\rho}$, where ρ is the throughput bound.
- \mathfrak{P}_{opt} : the optimal power consumption that would be obtained in the ideal model

 $\mathfrak{P}(t) \leq \mathfrak{P}_{opt} \cdot t + \left\lceil \frac{t}{d} \right\rceil \sum_{u}^{r} \mathfrak{P}_{u}^{(2)}$

- \mathfrak{P}^* : the optimal power consumption that can be achieve under the model with start-up overheads
- \mathfrak{P} the power consumption given by our algorithm.
- $\mathfrak{P}_{opt} \leq \mathfrak{P}^* \leq \mathfrak{P}$.
- during *t* time-units:

Asympotic optimality (1/2)

- Algorithm look at the energy consumed during *d* time-units (*d* defined later)
- \mathcal{A} is composed of \mathcal{B} tasks
- optimal scheduling time: $T = \frac{B}{\rho}$, where ρ is the throughput bound.
- \mathfrak{P}_{opt} : the optimal power consumption that would be obtained in the ideal model

 $\mathfrak{P}(t) \leq \mathfrak{P}_{opt} \cdot t + \left\lceil \frac{t}{d} \right\rceil \sum_{u}^{r} \mathfrak{P}_{u}^{(2)}$

- \mathfrak{P}^* : the optimal power consumption that can be achieve under the model with start-up overheads
- \mathfrak{P} the power consumption given by our algorithm.
- $\mathfrak{P}_{opt} \leq \mathfrak{P}^* \leq \mathfrak{P}$.
- during *t* time-units:

- Algorithm look at the energy consumed during *d* time-units (*d* defined later)
- \mathcal{A} is composed of \mathcal{B} tasks
- optimal scheduling time: $T = \frac{B}{\rho}$, where ρ is the throughput bound.
- \mathfrak{P}_{opt} : the optimal power consumption that would be obtained in the ideal model
- \mathfrak{P}^* : the optimal power consumption that can be achieve under the model with start-up overheads
- \mathfrak{P} the power consumption given by our algorithm.
- $\mathfrak{P}_{opt} \leq \mathfrak{P}^* \leq \mathfrak{P}$.
- during t time-units:

$$\mathfrak{P}(t) \leq \mathfrak{P}_{opt} \cdot t + \left\lceil \frac{t}{d} \right\rceil \sum_{u=1}^{p} \mathfrak{P}_{u}^{(2)}$$

ldeal model Model with start-up overheads

Asympotic optimality (2/2)

If we fix $d = \sqrt{T}$, we have

$$\mathfrak{P}(\mathcal{T}) \leq \mathfrak{P}^* \cdot \mathcal{T} + \left(1 + \sqrt{\mathcal{T}}
ight) \cdot p \cdot \max_{u=1}^p \left\{ \mathfrak{P}_u^{(2)}
ight\}.$$

Then, when comparing \mathfrak{P} and \mathfrak{P}^* during the scheduling of the \mathcal{B} tasks of application \mathcal{A} , we obtain:

$$egin{aligned} & \mathfrak{P}(\mathcal{T}) \ \mathfrak{P}^*(\mathcal{T}) \ & \leq & 1 + \left(rac{1}{\mathcal{T}} + rac{1}{\sqrt{\mathcal{T}}}
ight) rac{p \cdot \max_{u=1}^p \left\{\mathfrak{P}_u^{(2)}
ight\}}{\mathfrak{P}^*} \ & \leq & 1 + \mathcal{O}\left(rac{1}{\sqrt{\mathcal{T}}}
ight). \end{aligned}$$

Outline

Framework

- Application and platform
- Energy
- Objective function

2 At the processor level

- Minimizing the power consumption
- Maximizing the throughput

3 At the system level

- Ideal model
- Model with start-up overheads

4 Conclusion

Conclusion

Contributions:

- scheduling a single application with power consumption constraints
- new closed-form relations between the throughput and the power consumption at the processor level
- optimal bi-criteria algorithm under the ideal power consumption model.
- asymptotically optimal algorithm under the model with start-up overheads

- add memory constraints
- more realistic model with time overhead when turning on the worker.

Conclusion

Contributions:

- scheduling a single application with power consumption constraints
- new closed-form relations between the throughput and the power consumption at the processor level
- optimal bi-criteria algorithm under the ideal power consumption model.
- asymptotically optimal algorithm under the model with start-up overheads

- add memory constraints
- more realistic model with time overhead when turning on the worker.

Conclusion

Contributions:

- scheduling a single application with power consumption constraints
- new closed-form relations between the throughput and the power consumption at the processor level
- optimal bi-criteria algorithm under the ideal power consumption model.
- asymptotically optimal algorithm under the model with start-up overheads

- add memory constraints
- more realistic model with time overhead when turning on the worker.

Conclusion

Contributions:

- scheduling a single application with power consumption constraints
- new closed-form relations between the throughput and the power consumption at the processor level
- optimal bi-criteria algorithm under the ideal power consumption model.
- asymptotically optimal algorithm under the model with start-up overheads

- add memory constraints
- more realistic model with time overhead when turning on the worker.
Framework At the processor level At the system level Conclusion

Conclusion

Contributions:

- scheduling a single application with power consumption constraints
- new closed-form relations between the throughput and the power consumption at the processor level
- optimal bi-criteria algorithm under the ideal power consumption model.
- asymptotically optimal algorithm under the model with start-up overheads

Perspectives:

- add memory constraints
- more realistic model with time overhead when turning on the worker.

Framework At the processor level At the system level Conclusion

Conclusion

Contributions:

- scheduling a single application with power consumption constraints
- new closed-form relations between the throughput and the power consumption at the processor level
- optimal bi-criteria algorithm under the ideal power consumption model.
- asymptotically optimal algorithm under the model with start-up overheads

Perspectives:

- add memory constraints
- more realistic model with time overhead when turning on the worker.