Integrality gap for the bin-packing problem

Gennady Shmonin

Ecole Polytechnique Fédérale de Lausanne, Switzerland

Joint work with

András Sebő

Laboratoire G-SCOP, Grenoble, France

Outline

- Introduction
 - Bin-packing vs. Stock-cutting
- Integer programming formulations
 - Kantorovich' assignment formulation
 - Gilmore–Gomory formulation
 - Polynomial-size formulations
- Integrality gaps

The bin-packing problem

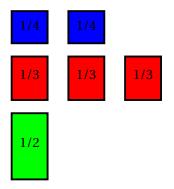
Given *n* items of sizes s_1, s_2, \ldots, s_n

Find min #bins of capacity 1 needed to pack all items

The bin-packing problem

Given *n* items of sizes s_1, s_2, \ldots, s_n

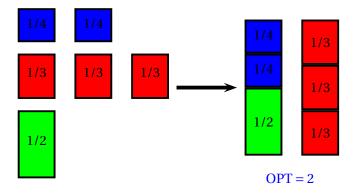
Find min #bins of capacity 1 needed to pack all items



The bin-packing problem

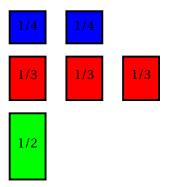
Given *n* items of sizes s_1, s_2, \ldots, s_n

Find min #bins of capacity 1 needed to pack all items

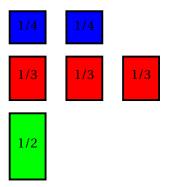


The stock-cutting problem

The stock-cutting problem



The stock-cutting problem

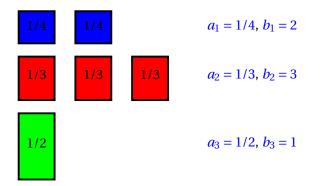


$$a_1 = 1/4, b_1 = 2$$

$$a_2 = 1/3, b_2 = 3$$

 $a_3 = 1/2, b_3 = 1$

The stock-cutting problem



Given a size-vector $a \in [0, 1]^d$ and a multiplicity-vector $b \in \mathbb{Z}_+^d$ **Find** min #bins of capacity 1 needed to pack all items

Cutting stock vs. Bin packing

In principle, the problems are equivalent

Cutting stock vs. Bin packing

In principle, the problems are equivalent

BUT:

- polynomial-time algorithm for the bin-packing problem is not necessarily polynomial-time for the stock-cutting problem!
- polynomial-size formulation for the bin-packing problem is not necessarily polynomial-size for the stock-cutting problem!

Cutting stock vs. Bin packing

In principle, the problems are equivalent

BUT:

- polynomial-time algorithm for the bin-packing problem is not necessarily polynomial-time for the stock-cutting problem!
- polynomial-size formulation for the bin-packing problem is not necessarily polynomial-size for the stock-cutting problem!

Reason:

 Size of the input for the stock-cutting problem is exponentially small compared to the input for the bin-packing problem

Items: $s_1, s_2, ..., s_n$ Bins: $B_1, B_2, ..., B_n$

Variables

- ► $y_j \in \{0, 1\}$: bin B_j is open
- ► $x_{ij} \in \{0, 1\}$: item s_i assigned to bin B_j

Objective

• minimize $\sum_{j} y_{j}$ (open as few bins as possible)

- $x_{ij} \le y_j$: put items only to open bins
- $\sum_{i} x_{ij} = 1$: each item is assigned to exactly one bin
- $\sum_{i} s_i x_{ij} \leq 1$: capacity constraints

Vectors: $a = [a_1, a_2, ..., a_d]$ and $b = [b_1, b_2, ..., b_d]$ Bins: $B_1, B_2, ..., B_n$

Variables

- ► $y_j \in \{0, 1\}$: bin B_j is open
- ► $x_{ij} \in \{0, 1, \dots, b_i\}$: # items of type *i* assigned to bin B_j

Objective

• minimize $\sum_{j} y_{j}$ (open as few bins as possible)

- $x_{ij} \le b_i y_j$: put items only to open bins
- $\sum_{i} x_{ij} = b_i$: exactly b_i items of type *i* are assigned to bins
- $\sum_{i} s_i x_{ij} \leq 1$: capacity constraints

Vectors: $a = [a_1, a_2, ..., a_d]$ and $b = [b_1, b_2, ..., b_d]$ Bins: $B_1, B_2, ..., B_n$ $(n = \sum_i b_i)$

Variables

- ▶ $y_j \in \{0, 1\}$: bin B_j is open
- ► $x_{ij} \in \{0, 1, \dots, b_i\}$: # items of type *i* assigned to bin B_i

Objective

• minimize $\sum_{j} y_{j}$ (open as few bins as possible)

- $x_{ij} \le b_i y_j$: put items only to open bins
- $\sum_{i} x_{ij} = b_i$: exactly b_i items of type *i* are assigned to bins
- $\sum_{i} s_i x_{ij} \leq 1$: capacity constraints

Advantages:

looks quite natural, easy to come up with

Advantages:

looks quite natural, easy to come up with

Disadvantages:

exponential-size for stock-cutting

Advantages:

looks quite natural, easy to come up with

Disadvantages:

- exponential-size for stock-cutting
- moreover, even the optimum solution itself for stock-cutting has exponentially many nonzero components

Advantages:

looks quite natural, easy to come up with

Disadvantages:

- exponential-size for stock-cutting
- moreover, even the optimum solution itself for stock-cutting has exponentially many nonzero components
- very bad LP relaxation:

(opt) – (opt of LP relaxation) can be $\approx n/2$

 \implies absolutely impractical

Size-vectors: $a = [a_1, a_2, \dots, a_d]$ Multiplicity-vector: $b = [b_1, b_2, \dots, b_d]$

Size-vectors: $a = [a_1, a_2, \dots, a_d]$ Multiplicity-vector: $b = [b_1, b_2, \dots, b_d]$

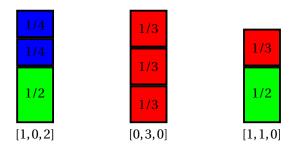
Pattern : "a way to pack a bin"

vector $v \in \mathbb{Z}^d_+$ such that $\sum_i a_i v_i \leq 1$

Size-vectors: $a = [a_1, a_2, \dots, a_d]$ Multiplicity-vector: $b = [b_1, b_2, \dots, b_d]$

Pattern : "a way to pack a bin"

vector $v \in \mathbb{Z}^d_+$ such that $\sum_i a_i v_i \leq 1$



Size-vectors: $a = [a_1, a_2, ..., a_d]$ Multiplicity-vector: $b = [b_1, b_2, ..., b_d]$ All possible patterns: $v_1, v_2, ..., v_k$

Variables

► $\lambda_j \in \mathbb{Z}_+$: # pattern v_j to be used in the packing

Objective

• minimize $\sum_{j} \lambda_j$: total # patterns = total # bins

Constraints

• $\sum_{i} \lambda_{i} v_{ii} = b_{i}$: all items of type *i* are packed

equiv. $\sum_{j} \lambda_{j} v_{j} = b$

Gilmore–Gomory formulation

$$\begin{array}{ll} \min & \sum_{j} \lambda_{j} \\ & \sum_{j} \lambda_{j} v_{j} = b \\ & \lambda_{j} \ge 0 \text{ integer} \end{array}$$

Disadvantages:

 exponential-size for both bin-packing and stock-cutting (in fact, much larger than that of Kantorovich)

$$\begin{array}{ll} \min & \sum_{j} \lambda_{j} \\ & \sum_{j} \lambda_{j} v_{j} = b \\ & \lambda_{j} \ge 0 \text{ integer} \end{array}$$

Disadvantages:

 exponential-size for both bin-packing and stock-cutting (in fact, much larger than that of Kantorovich)

Advantages:

there is an optimum solution with polynomially many nonzero components (Eisenbrand & S. 2006)

$$\begin{array}{ll} \min & \sum_{j} \lambda_{j} \\ & \sum_{j} \lambda_{j} v_{j} = b \\ & \lambda_{j} \ge 0 \text{ integer} \end{array}$$

Disadvantages:

 exponential-size for both bin-packing and stock-cutting (in fact, much larger than that of Kantorovich)

Advantages:

- there is an optimum solution with polynomially many nonzero components (Eisenbrand & S. 2006)
- very strong LP relaxation

$$\begin{array}{ll} \min & \sum_{j} \lambda_{j} \\ & \sum_{j} \lambda_{j} v_{j} = b \\ & \lambda_{j} \ge 0 \text{ integer} \end{array}$$

Disadvantages:

 exponential-size for both bin-packing and stock-cutting (in fact, much larger than that of Kantorovich)

Advantages:

- there is an optimum solution with polynomially many nonzero components (Eisenbrand & S. 2006)
- very strong LP relaxation
- column-generation methods help to deal with "exponential size issue"

$$\begin{array}{ll} \min & \sum_{j} \lambda_{j} \\ & \sum_{j} \lambda_{j} v_{j} = b \\ & \lambda_{j} \ge 0 \text{ integer} \end{array}$$

Disadvantages:

 exponential-size for both bin-packing and stock-cutting (in fact, much larger than that of Kantorovich)

Advantages:

- there is an optimum solution with polynomially many nonzero components (Eisenbrand & S. 2006)
- very strong LP relaxation ???
- column-generation methods help to deal with "exponential size issue"

Subpattern formulation

(Belov & Weismantel 2004)

Size-vectors: $a = [a_1, a_2, \dots, a_d]$ Multiplicity-vector: $b = [b_1, b_2, \dots, b_d]$

Subpattern : $u_{ik} = 2^k e_i$

- polynomially many subpatterns
- each pattern v can be expressed as

$$v = \sum_{i,k} \mu_{ik} u_{ik} \text{ with } \mu_{ik} \in \{0,1\}$$

Idea: rewrite Gilmore-Gomory formulation in terms of subpatterns

$$b = \sum_{j} \lambda_{j} v_{j} \longrightarrow b = \sum_{i,j,k} \lambda_{j} \mu_{jik} u_{ik} = \sum_{i,j,k} \eta_{jik} u_{ik}$$

Subpattern formulation

(Belov & Weismantel 2004)

Size-vectors: $a = [a_1, a_2, ..., a_d]$ Multiplicity-vector: $b = [b_1, b_2, ..., b_d]$ Subpatterns: $u_{ik} = 2^k e_i$

 v_1, v_2, \dots, v_t : patterns to be used in a solution (unknowns!)

Variables

- ► $\lambda_i \in \mathbb{Z}_+$: # patterns v_i to be used in the packing
- ▶ $\mu_{jik} \in \{0, 1\}$: coefficients to express pattern v_j
- ► $\eta_{jik} \in \mathbb{Z}_+$: ("switch") $\eta_{jik} = \lambda_j$ if $\mu_{jik} = 1$; $\eta_{jik} = 0$ otherwise

Objective

• minimize $\sum_{j=1}^{t} \lambda_j$

Subpattern formulation

(Belov & Weismantel 2004)

Size-vectors: $a = [a_1, a_2, ..., a_d]$ Multiplicity-vector: $b = [b_1, b_2, ..., b_d]$ Subpatterns: $u_{ik} = 2^k e_i$

 v_1, v_2, \dots, v_t : patterns to be used in a solution (unknowns!)

- $\sum_{i,j,k} \eta_{jik} u_{ij} = b$: all items are packed
- $\sum_{i,k} \mu_{jik} a^{\mathrm{T}} u_{ij} \leq 1$: capacity constraint
- $\lambda_j \ge \eta_{jik}$
- ► $\eta_{jik} \leq M \cdot \mu_{jik}$ (for *M* sufficiently large)

Another polynomial-size formulation

$$\begin{array}{ll} \min & \sum_{j} \lambda_{j} \\ & \sum_{j} \lambda_{j} v_{j} = b \\ & \lambda_{j} \ge 0 \text{ integer} \end{array}$$

Let $\lambda_1, \lambda_2, ..., \lambda_t$ be optimum solution, $b = \sum_j \lambda_j v_j$

Only polynomially many (say *m* nonzeros) \implies for some pattern v_j the coefficient $\lambda_j \ge OPT/m$ $\implies b = \frac{OPT}{m}v + b'$ (where *v* is unknown)

Inductively, we obtain

$$b = \sum_j \lambda_j^* \nu_j,$$

where $v_j \in \mathbb{Z}_+^d$'s are unknown patterns and λ_i^* are numbers

Size-vectors: $a = [a_1, a_2, ..., a_d]$ Multiplicity-vector: $b = [b_1, b_2, ..., b_d]$ All possible patterns: $v_1, v_2, ..., v_k$

Gilmore–Gomory formulation

min
$$\sum_{j} \lambda_{j}$$

 $\sum_{j}^{j} \lambda_{j} v_{j} = b$
 $\lambda_{j} \ge 0$ integer

OPT(*a*, *b*) : optimum value LIN(*a*, *b*) : optimum value of LP relaxation SIZE(*a*, *b*) = $a^{T}b$: total size

Size-vectors: $a = [a_1, a_2, ..., a_d]$ Multiplicity-vector: $b = [b_1, b_2, ..., b_d]$ All possible patterns: $v_1, v_2, ..., v_k$

$$\begin{array}{ll} \min & \sum_{j} \lambda_{j} \\ & \sum_{j} \lambda_{j} v_{j} = b \\ & \lambda_{j} \ge 0 \text{ integer} \end{array}$$

vast majority of the instances have "integer round-up property"

OPT(a, b) = [LIN(a, b)]

no instance is known to violate "modified integer round-up property"

 $\operatorname{OPT}(a,b) \leq \lceil \operatorname{LIN}(a,b) \rceil + 1$

Conjecture [Scheithauer & Terno 1996]

For all $a \in [0, 1]^d$ and $b \in \mathbb{Z}_+^d$,

 $\operatorname{OPT}(a,b) \leq \lceil \operatorname{LIN}(a,b) \rceil + 1$

Conjecture [Scheithauer & Terno 1996]

For all $a \in [0, 1]^d$ and $b \in \mathbb{Z}_+^d$,

 $\operatorname{OPT}(a,b) \leq \lceil \operatorname{LIN}(a,b) \rceil + 1$

Theorem [Scheithauer & Terno 1996]

```
For all a \in [0, 1]^6 and b \in \mathbb{Z}_+^6,
```

 $OPT(a, b) \leq [LIN(a, b)] + 1$

Integrality gap

Conjecture [Scheithauer & Terno 1996]

For all $a \in [0, 1]^d$ and $b \in \mathbb{Z}^d_+$,

 $\operatorname{OPT}(a,b) \leq \lceil \operatorname{LIN}(a,b) \rceil + 1$

Theorem [Scheithauer & Terno 1996]

```
For all a \in [0, 1]^6 and b \in \mathbb{Z}_+^6,
```

```
OPT(a, b) \leq [LIN(a, b)] + 1
```

Theorem [Karmarkar & Karp 1982]

```
For all a \in [0, 1]^d and b \in \mathbb{Z}_+^d,
```

 $OPT(a, b) \leq [LIN(a, b)] + O(\log^2 d)$

Integrality gap

Theorem

For all $a \in [0, 1]^7$ and $b \in \mathbb{Z}_+^7$,

 $\operatorname{OPT}(a,b) \leq \lceil \operatorname{LIN}(a,b) \rceil + 1$

Residual instances

There is an optimum solution of LP relaxation with at most *d* nonzero components:

$$\operatorname{LIN}(a, b) = \sum_{i=1}^{d} \lambda_i$$
 and $b = \sum_{i=1}^{d} \lambda_i v_i$

Residual instance : defined *a* and $b' = \sum_{i=1}^{a} \{\lambda_i\} v_i$

 $OPT(a, b) \le OPT(a, b') + \sum_{i=1}^{d} \lfloor \lambda_i \rfloor$ $LIN(a, b) = LIN(a, b') + \sum_{i=1}^{d} \lfloor \lambda_i \rfloor$

 $\Rightarrow \quad \operatorname{OPT}(a, b') - [\operatorname{LIN}(a, b')] \ge \operatorname{OPT}(a, b) - [\operatorname{LIN}(a, b)]$

Gennady Shmonin

Small items

Suppose $a_1 < \frac{1}{\text{SIZE}(a,b)}$

Consider instance given by size-vector $a' = [a_2, a_3, ..., a_d]$ multiplicity-vector $b' = [b_2, b_3, ..., b_d]$

Algorithm

- (1) Find OPT(a', b')
- (2) Pack items of type 1 greedily

 $\implies \text{ either } \mathsf{OPT}(a,b) - [\mathsf{LIN}(a,b)] \leq \mathsf{OPT}(a',b') - [\mathsf{LIN}(a',b')]$

or $OPT(a, b) - [LIN(a, b)] \le 1$

Corollary

For all $a \in [0, 1]^d$ and $b \in \mathbb{Z}^d_+$,

if $1/a_i \in \mathbb{Z}$ (*i* = 1, 2, ..., *d*), then

 $\operatorname{OPT}(a,b) \leq \lceil \operatorname{LIN}(a,b) \rceil + 1$

Corollary

For all $a \in [0, 1]^d$ and $b \in \mathbb{Z}^d_+$, if $1/a_i \in \mathbb{Z}$ (i = 1, 2, ..., d), then OPT $(a, b) \leq [LIN(a, b)] + 1$

Explore the minimal counter-example:

- w.l.o.g., residual instance \implies OPT $(a, b) \le d$
- ► w.l.o.g., no small items $\implies a_i > \frac{1}{\text{SIZE}(a,b)} \ge \frac{1}{\text{OPT}(a,b)} \ge \frac{1}{d}$

Corollary

For all $a \in [0, 1]^d$ and $b \in \mathbb{Z}^d_+$, if $1/a_i \in \mathbb{Z}$ (i = 1, 2, ..., d), then OPT $(a, b) \leq [LIN(a, b)] + 1$

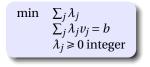
Explore the minimal counter-example:

- w.l.o.g., residual instance \implies OPT $(a, b) \le d$
- ► w.l.o.g., no small items $\implies a_i > \frac{1}{\text{SIZE}(a,b)} \ge \frac{1}{\text{OPT}(a,b)} \ge \frac{1}{d}$

$$1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{d}$$
... oops

Duality

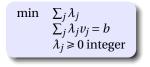
Size-vectors: $a = [a_1, a_2, ..., a_d]$ Multiplicity-vector: $b = [b_1, b_2, ..., b_d]$ All possible patterns: $v_1, v_2, ..., v_k$



Optimum solution: $b = u_1 + u_2 + \ldots + u_{m+1}$

Duality

Size-vectors: $a = [a_1, a_2, ..., a_d]$ Multiplicity-vector: $b = [b_1, b_2, ..., b_d]$ All possible patterns: $v_1, v_2, ..., v_k$



Optimum solution: $b = u_1 + u_2 + \ldots + u_{m+1}$

Assign weights w_1, w_2, \ldots, w_d

• $w^{\mathrm{T}}v \leq 1$ whenever $a^{\mathrm{T}}v \leq 1$

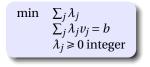
 \implies "patterns remain patterns"

 \implies LIN $(w, b) \ge$ LIN(a, b)

• $w^{\mathrm{T}}b > m-1$

Duality

Size-vectors: $a = [a_1, a_2, ..., a_d]$ Multiplicity-vector: $b = [b_1, b_2, ..., b_d]$ All possible patterns: $v_1, v_2, ..., v_k$



Optimum solution: $b = u_1 + u_2 + \ldots + u_{m+1}$

Assign weights w_1, w_2, \ldots, w_d

• $w^{\mathrm{T}}v \leq 1$ whenever $a^{\mathrm{T}}v \leq 1$

 \implies "patterns remain patterns"

 \implies LIN $(w, b) \ge$ LIN(a, b)

•
$$w^{\mathrm{T}}b > m-1$$
 \implies not a counter-example!

Gennady Shmonin

Sketch of the proof

Case *d* ≤ 7

Sketch of the proof

Case $d \leq 7$

By **Residual instances**: need to check [LIN(*a*, *b*)] = 1, 2, 3, 4, 5, 6, 7

Gennady Shmonin

Case $d \leq 7$

By **Residual instances**: need to check [LIN(a, b)] = 1, 2, 3, 4, 5, 6, 7

Suppose LIN(a, b) = 4

Case $d \leq 7$

By **Residual instances**: need to check [LIN(a, b)] = 1, 2, 3, 4, 5, 6, 7

Suppose LIN(a, b) = 4

By Small items: all items are bigger than 1/3

Case $d \leq 7$

By **Residual instances**: need to check [LIN(*a*, *b*)] = 1, 2, 3, 4, 5, 6, 7

Suppose LIN(a, b) = 4

By Small items: all items are bigger than 1/3

Optimum packing: $b = u_1 + u_2 + u_3 + u_4 + R$

- either $||u_i||_1 = 1$ or $||u_i||_1 = 2$
- $||R||_1 = 3$ and *R* contains the smallest item

Case $d \leq 7$

By **Residual instances**: need to check [LIN(*a*, *b*)] = 1, 2, 3, 4, 5, 6, 7

Suppose LIN(a, b) = 4

By Small items: all items are bigger than 1/3

Optimum packing: $b = u_1 + u_2 + u_3 + u_4 + R$

- either $||u_i||_1 = 1$ or $||u_i||_1 = 2$
- $||R||_1 = 3$ and *R* contains the smallest item

Weights:

- 1 for items in 1-bins
- 1/2 for items in 2-bins and largest item in *R*

Open problems

- **Polynomial-time algorithm** when *d* is fixed
 - d = 2: McCormick, Smallwood, Spieksma (2001)
 - ► *d* = 3 : **open**
- **Integrality gap** for $d \ge 8$?
- Approximation "+1"-algorithm?

 $\mathcal{A}(a,b) \leq \mathrm{OPT}(a,b) + 1$

Thank You for Your attention!