
Multi-threaded Caching Problem

Haifeng XU

Advisors: Frédéric WAGNER Denis TRYSTRAM Guochuan ZHANG

INPG & Zhejiang University

June 5, 2009

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 1 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 2 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 2 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 2 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 2 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 2 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 2 / 27

Architecture of Hypercarte Problem

client/server architecture

parallel machines

parallel tasks

Observation: Some tasks may
appear many times.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 3 / 27

Architecture of Hypercarte Problem

client/server architecture

parallel machines

parallel tasks

Observation: Some tasks may
appear many times.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 3 / 27

Architecture of Hypercarte Problem

client/server architecture

parallel machines

parallel tasks

Observation: Some tasks may
appear many times.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 3 / 27

Architecture of Hypercarte Problem

client/server architecture

parallel machines

parallel tasks

Observation: Some tasks may
appear many times.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 3 / 27

A model of Hypercarte Project: Hypercarte Problem

Requests consist of DAG (Directed Acyclic Graph)

Some of the requests are same

m parallel machines

Objective: Cmax (Scheduling Problem)

Store the results of some tasks to improve the performance.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 4 / 27

A model of Hypercarte Project: Hypercarte Problem

Requests consist of DAG (Directed Acyclic Graph)

Some of the requests are same

m parallel machines

Objective: Cmax (Scheduling Problem)

Store the results of some tasks to improve the performance.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 4 / 27

A model of Hypercarte Project: Hypercarte Problem

Requests consist of DAG (Directed Acyclic Graph)

Some of the requests are same

m parallel machines

Objective: Cmax (Scheduling Problem)

Store the results of some tasks to improve the performance.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 4 / 27

A model of Hypercarte Project: Hypercarte Problem

Requests consist of DAG (Directed Acyclic Graph)

Some of the requests are same

m parallel machines

Objective: Cmax (Scheduling Problem)

Store the results of some tasks to improve the performance.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 4 / 27

A model of Hypercarte Project: Hypercarte Problem

Requests consist of DAG (Directed Acyclic Graph)

Some of the requests are same

m parallel machines

Objective: Cmax (Scheduling Problem)

Store the results of some tasks to improve the performance.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 4 / 27

Simplification of the Original Problem

We simplify the Hypercarte problem a little bit . . .

DAG

m machines

Cmax

Cache

one chain

one machine

Cmax

Cache

Thus, we get a problem: Caching (Paging) Problem.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 5 / 27

Simplification of the Original Problem

We simplify the Hypercarte problem a little bit . . .

DAG

m machines

Cmax

Cache

one chain

one machine

Cmax

Cache

Thus, we get a problem: Caching (Paging) Problem.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 5 / 27

Simplification of the Original Problem

We simplify the Hypercarte problem a little bit . . .

DAG

m machines

Cmax

Cache

one chain

one machine

Cmax

Cache

Thus, we get a problem: Caching (Paging) Problem.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 5 / 27

Simplification of the Original Problem

We simplify the Hypercarte problem a little bit . . .

DAG

m machines

Cmax

Cache

one chain

one machine

Cmax

Cache

Thus, we get a problem: Caching (Paging) Problem.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 5 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 6 / 27

Description of Off-line Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

One request chain: σ

A cache of capacity K

Stask = {T1,T2, . . . ,TL}

σ : Z+ → {T1, . . . ,TL}

σ1 σ2 σ3 σN

∑
Ti∈Cache Si ≤ K

min :
N∑

i=1

p(σi) · x(σi)

x(σi) =

{
0 if the task σi is in the cache at the ith iteration
1 otherwise

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 7 / 27

Description of Off-line Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

One request chain: σ

A cache of capacity K

Stask = {T1,T2, . . . ,TL}

σ : Z+ → {T1, . . . ,TL}

σ1 σ2 σ3 σN

∑
Ti∈Cache Si ≤ K

min :
N∑

i=1

p(σi) · x(σi)

x(σi) =

{
0 if the task σi is in the cache at the ith iteration
1 otherwise

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 7 / 27

Description of Off-line Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

One request chain: σ

A cache of capacity K

Stask = {T1,T2, . . . ,TL}

σ : Z+ → {T1, . . . ,TL}

σ1 σ2 σ3 σN

∑
Ti∈Cache Si ≤ K

min :
N∑

i=1

p(σi) · x(σi)

x(σi) =

{
0 if the task σi is in the cache at the ith iteration
1 otherwise

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 7 / 27

Description of Off-line Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

One request chain: σ

A cache of capacity K

Stask = {T1,T2, . . . ,TL}

σ : Z+ → {T1, . . . ,TL}

σ1 σ2 σ3 σN

∑
Ti∈Cache Si ≤ K

min :
N∑

i=1

p(σi) · x(σi)

x(σi) =

{
0 if the task σi is in the cache at the ith iteration
1 otherwise

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 7 / 27

Description of Off-line Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

One request chain: σ

A cache of capacity K

Stask = {T1,T2, . . . ,TL}

σ : Z+ → {T1, . . . ,TL}

σ1 σ2 σ3 σN

∑
Ti∈Cache Si ≤ K

min :
N∑

i=1

p(σi) · x(σi)

x(σi) =

{
0 if the task σi is in the cache at the ith iteration
1 otherwise

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 7 / 27

Description of Off-line Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

One request chain: σ

A cache of capacity K

Stask = {T1,T2, . . . ,TL}

σ : Z+ → {T1, . . . ,TL}

σ1 σ2 σ3 σN

∑
Ti∈Cache Si ≤ K

min :
N∑

i=1

p(σi) · x(σi)

x(σi) =

{
0 if the task σi is in the cache at the ith iteration
1 otherwise

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 7 / 27

What should we do in the caching problem?

An Example

task size time
A 1 2 We have a cache
B 1 1 of capacity 2
C 2 1

A C B C A C B

To Do . . .
Which task should should be removed from the cache if the cache is full.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 8 / 27

What should we do in the caching problem?

An Example

task size time
A 1 2 We have a cache
B 1 1 of capacity 2
C 2 1

A C B C A C B

To Do . . .
Which task should should be removed from the cache if the cache is full.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 8 / 27

What should we do in the caching problem?

An Example

task size time
A 1 2 We have a cache
B 1 1 of capacity 2
C 2 1

A C B C A C B

To Do . . .
Which task should should be removed from the cache if the cache is full.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 8 / 27

Previous Results of Caching Problem

Offline
The complexity depends on the size of results and the processing time.

size time Complexity
Uniform Model 1 1 P

Cost Model 1 Z+ P
Fault Model Z+ 1 ?

General Model Z+ Z+ NP-hard

There is a 4-approximation algorithm for the general model
(c.f. [Amotz Bar-Noy et al. 1991]).

online
for the general model

(K
sizemin

+ 1) - competitive deterministic online algorithm

best

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 9 / 27

Previous Results of Caching Problem

Offline
The complexity depends on the size of results and the processing time.

size time Complexity
Uniform Model 1 1 P

Cost Model 1 Z+ P
Fault Model Z+ 1 ?

General Model Z+ Z+ NP-hard

There is a 4-approximation algorithm for the general model
(c.f. [Amotz Bar-Noy et al. 1991]).

online
for the general model

(K
sizemin

+ 1) - competitive deterministic online algorithm

best

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 9 / 27

Previous Results of Caching Problem

Offline
The complexity depends on the size of results and the processing time.

size time Complexity
Uniform Model 1 1 P

Cost Model 1 Z+ P
Fault Model Z+ 1 ?

General Model Z+ Z+ NP-hard

There is a 4-approximation algorithm for the general model
(c.f. [Amotz Bar-Noy et al. 1991]).

online
for the general model

(K
sizemin

+ 1) - competitive deterministic online algorithm

best

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 9 / 27

Extend Caching Problem

We extend caching problem a bit, because it is a little far away from our original
model.

DAG

m machines

Cmax

Cache

One chain

one machine

Cmax

Cache

Several Chains

one machine

Cmax

Cache

Having more than one request chain . . .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 10 / 27

Extend Caching Problem

We extend caching problem a bit, because it is a little far away from our original
model.

DAG

m machines

Cmax

Cache

One chain

one machine

Cmax

Cache

Several Chains

one machine

Cmax

Cache

Having more than one request chain . . .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 10 / 27

Extend Caching Problem

We extend caching problem a bit, because it is a little far away from our original
model.

DAG

m machines

Cmax

Cache

One chain

one machine

Cmax

Cache

Several Chains

one machine

Cmax

Cache

Having more than one request chain . . .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 10 / 27

Extend Caching Problem

We extend caching problem a bit, because it is a little far away from our original
model.

DAG

m machines

Cmax

Cache

One chain

one machine

Cmax

Cache

Several Chains

one machine

Cmax

Cache

Having more than one request chain . . .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 10 / 27

Extend Caching Problem

We extend caching problem a bit, because it is a little far away from our original
model.

DAG

m machines

Cmax

Cache

One chain

one machine

Cmax

Cache

Several Chains

one machine

Cmax

Cache

Having more than one request chain . . .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 10 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 11 / 27

Description of Multi-threaded Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

A set of request chains:
σi (1 ≤ i ≤ Q)

A cache of capacity K

σi : Z+ → {T1, . . . ,TL}

σ1
1 σ1

2 σ1
3 σ1

N1

. . .

σQ
1 σQ

2 σQ
3

σQ
NQ

∑
Ti∈Cache Si ≤ K

To do . . .
Which chain should be served at each iteration?

Which task should be removed from the cache?

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 12 / 27

Description of Multi-threaded Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

A set of request chains:
σi (1 ≤ i ≤ Q)

A cache of capacity K

σi : Z+ → {T1, . . . ,TL}

σ1
1 σ1

2 σ1
3 σ1

N1

. . .

σQ
1 σQ

2 σQ
3

σQ
NQ

∑
Ti∈Cache Si ≤ K

To do . . .
Which chain should be served at each iteration?

Which task should be removed from the cache?

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 12 / 27

Description of Multi-threaded Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

A set of request chains:
σi (1 ≤ i ≤ Q)

A cache of capacity K

σi : Z+ → {T1, . . . ,TL}

σ1
1 σ1

2 σ1
3 σ1

N1

. . .

σQ
1 σQ

2 σQ
3

σQ
NQ

∑
Ti∈Cache Si ≤ K

To do . . .
Which chain should be served at each iteration?

Which task should be removed from the cache?

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 12 / 27

Description of Multi-threaded Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

A set of request chains:
σi (1 ≤ i ≤ Q)

A cache of capacity K

σi : Z+ → {T1, . . . ,TL}

σ1
1 σ1

2 σ1
3 σ1

N1

. . .

σQ
1 σQ

2 σQ
3

σQ
NQ

∑
Ti∈Cache Si ≤ K

To do . . .
Which chain should be served at each iteration?

Which task should be removed from the cache?

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 12 / 27

Description of Multi-threaded Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

A set of request chains:
σi (1 ≤ i ≤ Q)

A cache of capacity K

σi : Z+ → {T1, . . . ,TL}

σ1
1 σ1

2 σ1
3 σ1

N1

. . .

σQ
1 σQ

2 σQ
3

σQ
NQ

∑
Ti∈Cache Si ≤ K

To do . . .
Which chain should be served at each iteration?

Which task should be removed from the cache?

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 12 / 27

Description of Multi-threaded Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

A set of request chains:
σi (1 ≤ i ≤ Q)

A cache of capacity K

σi : Z+ → {T1, . . . ,TL}

σ1
1 σ1

2 σ1
3 σ1

N1

. . .

σQ
1 σQ

2 σQ
3

σQ
NQ

∑
Ti∈Cache Si ≤ K

To do . . .
Which chain should be served at each iteration?

Which task should be removed from the cache?

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 12 / 27

Description of Multi-threaded Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

A set of request chains:
σi (1 ≤ i ≤ Q)

A cache of capacity K

σi : Z+ → {T1, . . . ,TL}

σ1
1 σ1

2 σ1
3 σ1

N1

. . .

σQ
1 σQ

2 σQ
3

σQ
NQ

∑
Ti∈Cache Si ≤ K

To do . . .
Which chain should be served at each iteration?

Which task should be removed from the cache?

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 12 / 27

Previous Results for Multi-threaded Caching Problem

Offline
As far as we know, there is no result about it.

Online

[Feuerstein 1996] showed:

In the uniform model, for each task ti
size of result: si = 1
processing time: pi = 1

KQ-competitive deterministic online algorithm

the universal lower bound is (K + 1− 1
Q)

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 13 / 27

Previous Results for Multi-threaded Caching Problem

Offline
As far as we know, there is no result about it.

Online

[Feuerstein 1996] showed:

In the uniform model, for each task ti
size of result: si = 1
processing time: pi = 1

KQ-competitive deterministic online algorithm

the universal lower bound is (K + 1− 1
Q)

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 13 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 14 / 27

Complexity

K = 1, Q ∈ Z+, uniform model
This special case is NP-hard, we can get a reduction from the shortest
common supersequence problem.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 15 / 27

Shortest Common Supersequence

Definition:
Given two sequences w = w1 · · ·wm and x = x1 · · · xn, we say that w is a
supersequence of x , or x is a subsequence of w , if we can get x by deleting some
symbols from w .

A C B C D E B

A B C D E C C E B

We say a sequence is perfect if no consecutive symbols are same.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 16 / 27

Shortest Common Supersequence

Definition:
Given two sequences w = w1 · · ·wm and x = x1 · · · xn, we say that w is a
supersequence of x , or x is a subsequence of w , if we can get x by deleting some
symbols from w .

A C B C D E B

A B C D E C C E B

We say a sequence is perfect if no consecutive symbols are same.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 16 / 27

Shortest Common Supersequence

Definition:
Given two sequences w = w1 · · ·wm and x = x1 · · · xn, we say that w is a
supersequence of x , or x is a subsequence of w , if we can get x by deleting some
symbols from w .

A C B C D E B

A B C D E C C E B

We say a sequence is perfect if no consecutive symbols are same.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 16 / 27

Shortest Common Supersequence

Definition:
Given two sequences w = w1 · · ·wm and x = x1 · · · xn, we say that w is a
supersequence of x , or x is a subsequence of w , if we can get x by deleting some
symbols from w .

A C B C D E B

A B C D E C C E B

We say a sequence is perfect if no consecutive symbols are same.

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 16 / 27

Shortest Common Supersequence

Input: Finite alphabet A, finite set X = {x : x ∈ A∗}
and a positive integer M.

Output: A sequence w ∈ A∗ with |w | ≤ M, such that
w is a supersequence of x , ∀x ∈ X.

Previous results

SCS is NP-complete problem [Maier 1978]

SCS(2,3) means each sequence is of length 2, and each symbol appears at
most 3 times in the whole sequences.

SCS(2,3) is MAX SNP-hard [Timkovskii 1989]

PTAS for a MAX SNP-hard problem ⇒ P = NP [Arora et al.1992]

Perfect SCS means every sequence in X is perfect.

Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3)
[Tao Jiang, Ming Li 1991]

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 17 / 27

Shortest Common Supersequence

Input: Finite alphabet A, finite set X = {x : x ∈ A∗}
and a positive integer M.

Output: A sequence w ∈ A∗ with |w | ≤ M, such that
w is a supersequence of x , ∀x ∈ X.

Previous results

SCS is NP-complete problem [Maier 1978]

SCS(2,3) means each sequence is of length 2, and each symbol appears at
most 3 times in the whole sequences.

SCS(2,3) is MAX SNP-hard [Timkovskii 1989]

PTAS for a MAX SNP-hard problem ⇒ P = NP [Arora et al.1992]

Perfect SCS means every sequence in X is perfect.

Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3)
[Tao Jiang, Ming Li 1991]

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 17 / 27

Shortest Common Supersequence

Input: Finite alphabet A, finite set X = {x : x ∈ A∗}
and a positive integer M.

Output: A sequence w ∈ A∗ with |w | ≤ M, such that
w is a supersequence of x , ∀x ∈ X.

Previous results

SCS is NP-complete problem [Maier 1978]

SCS(2,3) means each sequence is of length 2, and each symbol appears at
most 3 times in the whole sequences.

SCS(2,3) is MAX SNP-hard [Timkovskii 1989]

PTAS for a MAX SNP-hard problem ⇒ P = NP [Arora et al.1992]

Perfect SCS means every sequence in X is perfect.

Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3)
[Tao Jiang, Ming Li 1991]

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 17 / 27

Shortest Common Supersequence

Input: Finite alphabet A, finite set X = {x : x ∈ A∗}
and a positive integer M.

Output: A sequence w ∈ A∗ with |w | ≤ M, such that
w is a supersequence of x , ∀x ∈ X.

Previous results

SCS is NP-complete problem [Maier 1978]

SCS(2,3) means each sequence is of length 2, and each symbol appears at
most 3 times in the whole sequences.

SCS(2,3) is MAX SNP-hard [Timkovskii 1989]

PTAS for a MAX SNP-hard problem ⇒ P = NP [Arora et al.1992]

Perfect SCS means every sequence in X is perfect.

Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3)
[Tao Jiang, Ming Li 1991]

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 17 / 27

Shortest Common Supersequence

Input: Finite alphabet A, finite set X = {x : x ∈ A∗}
and a positive integer M.

Output: A sequence w ∈ A∗ with |w | ≤ M, such that
w is a supersequence of x , ∀x ∈ X.

Previous results

SCS is NP-complete problem [Maier 1978]

SCS(2,3) means each sequence is of length 2, and each symbol appears at
most 3 times in the whole sequences.

SCS(2,3) is MAX SNP-hard [Timkovskii 1989]

PTAS for a MAX SNP-hard problem ⇒ P = NP [Arora et al.1992]

Perfect SCS means every sequence in X is perfect.

Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3)
[Tao Jiang, Ming Li 1991]

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 17 / 27

Shortest Common Supersequence

Input: Finite alphabet A, finite set X = {x : x ∈ A∗}
and a positive integer M.

Output: A sequence w ∈ A∗ with |w | ≤ M, such that
w is a supersequence of x , ∀x ∈ X.

Previous results

SCS is NP-complete problem [Maier 1978]

SCS(2,3) means each sequence is of length 2, and each symbol appears at
most 3 times in the whole sequences.

SCS(2,3) is MAX SNP-hard [Timkovskii 1989]

PTAS for a MAX SNP-hard problem ⇒ P = NP [Arora et al.1992]

Perfect SCS means every sequence in X is perfect.

Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3)
[Tao Jiang, Ming Li 1991]

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 17 / 27

Shortest Common Supersequence

Input: Finite alphabet A, finite set X = {x : x ∈ A∗}
and a positive integer M.

Output: A sequence w ∈ A∗ with |w | ≤ M, such that
w is a supersequence of x , ∀x ∈ X.

Previous results

SCS is NP-complete problem [Maier 1978]

SCS(2,3) means each sequence is of length 2, and each symbol appears at
most 3 times in the whole sequences.

SCS(2,3) is MAX SNP-hard [Timkovskii 1989]

PTAS for a MAX SNP-hard problem ⇒ P = NP [Arora et al.1992]

Perfect SCS means every sequence in X is perfect.

Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3)
[Tao Jiang, Ming Li 1991]

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 17 / 27

Non-approximability of perfect SCS

SCS(2,3) perfect SCS

A A ∪ {y i
j } (1 ≤ i ≤ n, 1 ≤ j ≤ 2)

X = { x1
1 x1

2 , . . . , xn
1 xn

2 } X′ = { x1
1 y1

1 x1
2 y1

2 , . . . , xn
1 yn

1 xn
2 yn

2 }

y i
j is unique, which means y i

j = y i ′

j′ ⇔ i = i ′ and j = j ′

Const. appro. algo. for X′ ⇒ PTAS for X

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 18 / 27

Complexity of MTC

Theorem
Multi-threaded caching problem is NP-hard for the uniform model
even if the cache capacity K = 1, and it assumes no constant
approximation algorithm unless P = NP.

Reduction

Perfect SCS MTC

A,X = {x : x ∈ A∗} Stask = A , σ = X

A common sequence |w | = M ⇐⇒ A schedule with processing time M

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 19 / 27

Complexity of MTC

Perfect SCS

w1 w2 w3 w4 w5 w6 w7 wM

x i
1 x i

2 x i
3 x i

Ni

Multi-threaded Caching

w1 w2 w3 w4 w5 w6 w7 wM

σi
1 σi

2 σi
3 σi

Ni

Proof
Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let w = w1 · · ·wM be a common supersequence of X with |w | = M, then
sequence x i ∈ X is a subsequence of w . In other words, we can schedule the
request chain σi due to the precedence constraint.

(⇐) Let w be a feasible schedule of σ with |w | = M, then each chain σi is a
subsequence of w .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 20 / 27

Complexity of MTC

Perfect SCS

w1 w2 w3 w4 w5 w6 w7 wM

x i
1 x i

2 x i
3 x i

Ni

Multi-threaded Caching

w1 w2 w3 w4 w5 w6 w7 wM

σi
1 σi

2 σi
3 σi

Ni

Proof
Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let w = w1 · · ·wM be a common supersequence of X with |w | = M, then
sequence x i ∈ X is a subsequence of w . In other words, we can schedule the
request chain σi due to the precedence constraint.

(⇐) Let w be a feasible schedule of σ with |w | = M, then each chain σi is a
subsequence of w .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 20 / 27

Complexity of MTC

Perfect SCS

w1 w2 w3 w4 w5 w6 w7 wM

x i
1 x i

2 x i
3 x i

Ni

Multi-threaded Caching

w1 w2 w3 w4 w5 w6 w7 wM

σi
1 σi

2 σi
3 σi

Ni

Proof
Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let w = w1 · · ·wM be a common supersequence of X with |w | = M, then
sequence x i ∈ X is a subsequence of w . In other words, we can schedule the
request chain σi due to the precedence constraint.

(⇐) Let w be a feasible schedule of σ with |w | = M, then each chain σi is a
subsequence of w .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 20 / 27

Complexity of MTC

Perfect SCS

w1 w2 w3 w4 w5 w6 w7 wM

x i
1 x i

2 x i
3 x i

Ni

Multi-threaded Caching

w1 w2 w3 w4 w5 w6 w7 wM

σi
1 σi

2 σi
3 σi

Ni

Proof
Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let w = w1 · · ·wM be a common supersequence of X with |w | = M, then
sequence x i ∈ X is a subsequence of w . In other words, we can schedule the
request chain σi due to the precedence constraint.

(⇐) Let w be a feasible schedule of σ with |w | = M, then each chain σi is a
subsequence of w .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 20 / 27

Complexity of MTC

Perfect SCS

w1 w2 w3 w4 w5 w6 w7 wM

x i
1 x i

2 x i
3 x i

Ni

Multi-threaded Caching

w1 w2 w3 w4 w5 w6 w7 wM

σi
1 σi

2 σi
3 σi

Ni

Proof
Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let w = w1 · · ·wM be a common supersequence of X with |w | = M, then
sequence x i ∈ X is a subsequence of w . In other words, we can schedule the
request chain σi due to the precedence constraint.

(⇐) Let w be a feasible schedule of σ with |w | = M, then each chain σi is a
subsequence of w .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 20 / 27

Complexity of MTC

Perfect SCS

w1 w2 w3 w4 w5 w6 w7 wM

x i
1 x i

2 x i
3 x i

Ni

Multi-threaded Caching

w1 w2 w3 w4 w5 w6 w7 wM

σi
1 σi

2 σi
3 σi

Ni

Proof
Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let w = w1 · · ·wM be a common supersequence of X with |w | = M, then
sequence x i ∈ X is a subsequence of w . In other words, we can schedule the
request chain σi due to the precedence constraint.

(⇐) Let w be a feasible schedule of σ with |w | = M, then each chain σi is a
subsequence of w .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 20 / 27

Complexity of MTC

Perfect SCS

w1 w2 w3 w4 w5 w6 w7 wM

x i
1 x i

2 x i
3 x i

Ni

Multi-threaded Caching

w1 w2 w3 w4 w5 w6 w7 wM

σi
1 σi

2 σi
3 σi

Ni

Proof
Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let w = w1 · · ·wM be a common supersequence of X with |w | = M, then
sequence x i ∈ X is a subsequence of w . In other words, we can schedule the
request chain σi due to the precedence constraint.

(⇐) Let w be a feasible schedule of σ with |w | = M, then each chain σi is a
subsequence of w .

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 20 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 21 / 27

A straightforward approach for the cost model

σ1
1 σ1

2 σ1
3 σ1

N1

σi
1 σi

2 σi
3 σi

Ni

σQ
1 σQ

2 σQ
3

σQ
NQ

Let OPTi be the minimum processing time for chain i , and Cmax be the minimum
processing time for all the chains.

OPTi ≤ Cmax (1 ≤ i ≤ Q) ⇒
∑Q

i=1 OPTi

Cmax
≤ Q

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 22 / 27

A straightforward approach for the cost model

σ1
1 σ1

2 σ1
3 σ1

N1

σi
1 σi

2 σi
3 σi

Ni

σQ
1 σQ

2 σQ
3

σQ
NQ

Let OPTi be the minimum processing time for chain i , and Cmax be the minimum
processing time for all the chains.

OPTi ≤ Cmax (1 ≤ i ≤ Q) ⇒
∑Q

i=1 OPTi

Cmax
≤ Q

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 22 / 27

Dynamic Programming

σ1
1 σ1

n1
σ1

N

σi
1 σi

2 σi
n2

σi
N

σQ
1 σQ

2
σQ

nQ
σQ

N

Obejective function: f (n1, . . . , nQ | cache)

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 23 / 27

Dynamic Programming

σ1
1 σ1

n1
σ1

N

σi
1 σi

2 σi
n2

σi
N

σQ
1 σQ

2
σQ

nQ
σQ

N

Obejective function: f (n1, . . . , nQ | cache)

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 23 / 27

Dynamic Programming

Find Cmax with running time:

O(Q × L× NQ ×
(

L

K

)
) = O(Q × L× NQ ×

(
L

L− K

)
)

Remarks:

K , Q are constant ⇒ P problem even for general model

L− K , Q are constant ⇒ P problem even for general model

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 24 / 27

Dynamic Programming

Find Cmax with running time:

O(Q × L× NQ ×
(

L

K

)
) = O(Q × L× NQ ×

(
L

L− K

)
)

Remarks:

K , Q are constant ⇒ P problem even for general model

L− K , Q are constant ⇒ P problem even for general model

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 24 / 27

Dynamic Programming

Find Cmax with running time:

O(Q × L× NQ ×
(

L

K

)
) = O(Q × L× NQ ×

(
L

L− K

)
)

Remarks:

K , Q are constant ⇒ P problem even for general model

L− K , Q are constant ⇒ P problem even for general model

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 24 / 27

Outline

what to talk . . .

A Practical Problem: Hypercarte

Caching Problem

Multi-threaded Caching Problem

Complexity
Algorithms

Summary

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 25 / 27

Our contributions
Multi-threaded caching problem is NP-hard for the uniform model even if
K = 1

There is no constant approximation algorithm for it unless P = NP.

Q-approximation algorithm for the cost model

If both K (or L− K) and Q are constant, it becomes P problem even for the
general model

Open problems

The complexity of fault model when Q = 1

Algorithm for uniform model when Q(≥ 2) is constant

A better lower/upper bound for the online case

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 26 / 27

Our contributions
Multi-threaded caching problem is NP-hard for the uniform model even if
K = 1

There is no constant approximation algorithm for it unless P = NP.

Q-approximation algorithm for the cost model

If both K (or L− K) and Q are constant, it becomes P problem even for the
general model

Open problems

The complexity of fault model when Q = 1

Algorithm for uniform model when Q(≥ 2) is constant

A better lower/upper bound for the online case

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 26 / 27

Thank you!

Haifeng XU (INPG, ZJU) Multi-threaded Caching ASTEC 2009 27 / 27

	outline
	Practical Problem: Hypercarte Project
	Caching Problem
	outline
	outline
	Multi-threaded Caching Problem
	To Be Continued

