Multi-threaded Caching Problem

Haifeng XU

Advisors: Frédéric WAGNER Denis TRYSTRAM Guochuan ZHANG

INPG & Zhejiang University

June 5, 2009

<ロト </p>

• A Practical Problem: Hypercarte

- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms
- Summary

・ロト ・回ト ・ヨト ・ヨト

• A Practical Problem: Hypercarte

- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms
- Summary

- A Practical Problem: Hypercarte
- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms
- Summary

what to talk \ldots

- A Practical Problem: Hypercarte
- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms
- Summary

what to talk \ldots

- A Practical Problem: Hypercarte
- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms

Summary

- A Practical Problem: Hypercarte
- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms

• Summary

• client/server architecture

- parallel machines
- o parallel tasks

Observation: Some tasks may appear many times.

・ロト ・日下・ ・ ヨト・

- client/server architecture
- parallel machines
- o parallel tasks

Observation: Some tasks may appear many times.

・ロト ・日下・ ・ ヨト・

- client/server architecture
- parallel machines
- parallel tasks

Observation: Some tasks may appear many times.

- client/server architecture
- parallel machines
- parallel tasks

Observation: Some tasks may appear many times.

・ロト ・回ト ・ヨト ・

• Requests consist of DAG (Directed Acyclic Graph)

- Some of the requests are same
- m parallel machines
- Objective: C_{max} (Scheduling Problem)
- Store the results of some tasks to improve the performance.

・ロン ・回 と ・ ヨン・

- Requests consist of DAG (Directed Acyclic Graph)
- Some of the requests are same
- m parallel machines
- Objective: C_{max} (Scheduling Problem)
- Store the results of some tasks to improve the performance.

・ロン ・回 と ・ ヨン・

- Requests consist of DAG (Directed Acyclic Graph)
- Some of the requests are same
- m parallel machines
- Objective: C_{max} (Scheduling Problem)
- Store the results of some tasks to improve the performance.

- Requests consist of DAG (Directed Acyclic Graph)
- Some of the requests are same
- m parallel machines
- Objective: C_{max} (Scheduling Problem)
- Store the results of some tasks to improve the performance.

- Requests consist of DAG (Directed Acyclic Graph)
- Some of the requests are same
- m parallel machines
- Objective: C_{max} (Scheduling Problem)
- Store the results of some tasks to improve the performance.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We simplify the Hypercarte problem a little bit \ldots

• DAG • m machines • C_{max} • Cache one chain
 one machine
 C_{max}
 Cache

イロト イヨト イヨト イヨ

Thus, we get a problem: Caching (Paging) Problem.

We simplify the Hypercarte problem a little bit ...

DAG
one chain
m machines
one machine *C_{max} C_{max}*Cache
Cache

Thus, we get a problem: Caching (Paging) Problem.

We simplify the Hypercarte problem a little bit

Thus, we get a problem: Caching (Paging) Problem.

We simplify the Hypercarte problem a little bit

Thus, we get a problem: Caching (Paging) Problem.

- A Practical Problem: Hypercarte
- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms
- Summary

$$S_{task} = \{T_1, T_2, \dots, T_L\}$$
$$\sigma: Z^+ \to \{T_1, \dots, T_L\}$$
$$\sigma_1 \to \sigma_2 \to \sigma_3 \to \sigma_N$$
$$\sum_{T_i \in Cache} S_i \leq K$$

min :
$$\sum_{i=1}^{N} p(\sigma_i) \cdot x(\sigma_i)$$

 $x(\sigma_i) = \begin{cases} 0 & \text{if the task } \sigma_i \text{ is in the cache at the } i_{th} \text{ iteration} \\ 1 & \text{otherwise} \end{cases}$

Haifeng XU (INPG, ZJU)

Multi-threaded Caching

$$S_{task} = \{T_1, T_2, \dots, T_L\}$$

$$\sigma: Z^+ \to \{T_1, \dots, T_L\}$$

$$\sigma_1 \to \sigma_2 \to \sigma_3 \to \sigma_N$$

$$\sum_{T_i \in Cache} S_i \leq K$$

min :
$$\sum_{i=1}^{N} p(\sigma_i) \cdot x(\sigma_i)$$

 $x(\sigma_i) = \begin{cases} 0 & \text{if the task } \sigma_i \text{ is in the cache at the } i_{th} \text{ iteration} \\ 1 & \text{otherwise} \end{cases}$

$$S_{task} = \{T_1, T_2, \dots, T_L\}$$
$$\sigma: Z^+ \to \{T_1, \dots, T_L\}$$
$$\sigma_1 \to \sigma_2 \to \sigma_3 \to \sigma_N$$
$$\sum_{T_i \in Cache} S_i \leq K$$

min :
$$\sum_{i=1}^{N} p(\sigma_i) \cdot x(\sigma_i)$$

 $x(\sigma_i) = \begin{cases} 0 & \text{if the task } \sigma_i \text{ is in the cache at the } i_{th} \text{ iteration} \\ 1 & \text{otherwise} \end{cases}$

Haifeng XU (INPG, ZJU)

Multi-threaded Caching

$$S_{task} = \{T_1, T_2, \dots, T_L\}$$
$$\sigma \colon Z^+ \to \{T_1, \dots, T_L\}$$
$$\sigma_1 \to \sigma_2 \to \sigma_3 \to \sigma_N$$
$$\sum_{T_i \in Cache} S_i \leq K$$

min :
$$\sum_{i=1}^{N} p(\sigma_i) \cdot x(\sigma_i)$$

 $x(\sigma_i) = \begin{cases} 0 & \text{if the task } \sigma_i \text{ is in the cache at the } i_{th} \text{ iteration} \\ 1 & \text{otherwise} \end{cases}$

Haifeng XU (INPG, ZJU)

- A set of tasks for task T_i ,
 - processing time: p_i
 - size of result: s_i
- One request chain: σ
- A cache of capacity K

$$S_{task} = \{T_1, T_2, \dots, T_L\}$$

$$\sigma: Z^+ \to \{T_1, \dots, T_L\}$$

$$(\sigma_1 \to \sigma_2 \to \sigma_3 \to \sigma_N)$$

$$\sum_{T_i \in Cache} S_i \leq K$$

min :
$$\sum_{i=1}^{N} p(\sigma_i) \cdot x(\sigma_i)$$

 $x(\sigma_i) = \begin{cases} 0 & \text{if the task } \sigma_i \text{ is in the cache at the } i_{th} \text{ iteration} \\ 1 & \text{otherwise} \end{cases}$

Haifeng XU (INPG, ZJU)

Multi-threaded Caching

ASTEC 2009 7 / 2

- A set of tasks for task T_i ,
 - processing time: p_i
 - size of result: s_i
- One request chain: σ
- A cache of capacity K

$$S_{task} = \{T_1, T_2, \dots, T_L\}$$

$$\sigma: Z^+ \to \{T_1, \dots, T_L\}$$

$$\underbrace{\sigma_1 \to \sigma_2 \to \sigma_3 \to \sigma_N}$$

$$\underbrace{\sum_{T_i \in Cache} S_i \leq K}$$

min :
$$\sum_{i=1}^{N} p(\sigma_i) \cdot x(\sigma_i)$$

 $x(\sigma_i) = \begin{cases} 0 & \text{if the task } \sigma_i \text{ is in the cache at the } i_{th} \text{ iteration} \\ 1 & \text{otherwise} \end{cases}$

An ExampleTASKSIZETIMEA12B11C21

To Do . . .

Which task should should be removed from the cache if the cache is full.

An Example TASK SIZE TIME Α 1 2 We have a cache В 1 1 of capacity 2 С 2 1 A В В Α

To Do . . .

Which task should should be removed from the cache if the cache is full.

イロン イ部ン イヨン イヨ

An Example TASK SIZE TIME Α 1 2 We have a cache В 1 of capacity 2 1 С 2 1 В Α В Α

To Do . . .

Which task should should be removed from the cache if the cache is full.

(4日) (日) (日) (日) (日)

Previous Results of Caching Problem

Offline

The complexity depends on the size of results and the processing time.

			Complexity
Uniform Model	1	1	Р
Cost Model	1		Р
Fault Model		1	
General Model			NP-hard

 There is a 4-approximation algorithm for the general model (c.f. [Amotz Bar-Noy et al. 1991]).

online

for the general model
 (^K/_{sizemin} + 1) - competitive deterministic online algorithm
 best

Offline

The complexity depends on the size of results and the processing time.

	SIZE	TIME	Complexity
Uniform Model	1	1	Р
Cost Model	1	\mathbb{Z}^+	Р
Fault Model	\mathbb{Z}^+	1	?
General Model	\mathbb{Z}^+	\mathbb{Z}^+	NP-hard

• There is a 4-approximation algorithm for the general model (c.f. [Amotz Bar-Noy et al. 1991]).

online

Offline

The complexity depends on the size of results and the processing time.

	SIZE	TIME	Complexity
Uniform Model	1	1	Р
Cost Model	1	\mathbb{Z}^+	Р
Fault Model	\mathbb{Z}^+	1	?
General Model	\mathbb{Z}^+	\mathbb{Z}^+	NP-hard

• There is a 4-approximation algorithm for the general model (c.f. [Amotz Bar-Noy et al. 1991]).

online

for the general model
 (^K/_{sizemin} + 1) - competitive deterministic online algorithm
 best

We extend caching problem a bit, because it is a little far away from our original model.

• DAG• One chain• Several Chains• m machines• one machine• one machine• C_{max} • C_{max} • C_{max} • Cache• Cache• Cache

Having more than one request chain ...

We extend caching problem a bit, because it is a little far away from our original model.

 • DAG
 • One chain
 • Several Chains

 • m machines
 • one machine
 • one machine

 • C_{max}
 • C_{max}
 • C_{max}

 • Cache
 • Cache
 • Cache

Having more than one request chain ...

We extend caching problem a bit, because it is a little far away from our original model.

DAG
One chain
Several Chains
one machine
one mac

Having more than one request chain ...
We extend caching problem a bit, because it is a little far away from our original model.

DAG
 One chain
 Several Chains
 one machine
 one machine</li

Having more than one request chain ...

イロト イヨト イヨト イヨ

We extend caching problem a bit, because it is a little far away from our original model.

- DAG • One chain m machines • one machine one machine
 - C_{max}
 - Cache

- C_{max}
- Cache

- Several Chains
- C_{max}
- Cache

イロト イヨト イヨト イヨ

Having more than one request chain ...

what to talk ...

- A Practical Problem: Hypercarte
- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms
- Summary

・ロト ・四ト ・ヨト ・ヨ

イロト イヨト イヨト イヨ

To do ...

- Which chain should be served at each iteration?
- Which task should be removed from the cache?

イロト イヨト イヨト イヨ

To do . . .

- Which chain should be served at each iteration?
- Which task should be removed from the cache?

イロト イヨト イヨト イヨ

To do . . .

- Which chain should be served at each iteration?
- Which task should be removed from the cache?

- A set of tasks for task T_i ,
 - processing time: p_i
 - size of result: s_i
- A set of request chains: σⁱ (1 ≤ i ≤ Q)

• A cache of capacity K

イロト イヨト イヨト イヨ

To do ...

- Which chain should be served at each iteration?
- Which task should be removed from the cache?

Input

- A set of tasks for task T_i ,
 - processing time: pi
 - size of result: s_i
- A set of request chains: σⁱ (1 ≤ i ≤ Q)

• A cache of capacity K

 $\sigma^{i} \colon Z^{+} \to \{T_{1}, \dots, T_{L}\}$ $(\sigma_{1}^{1} \to \sigma_{2}^{1} \to \sigma_{3}^{1} \to \sigma_{N_{1}}^{1})$ \dots $(\sigma_{1}^{Q} \to \sigma_{2}^{Q} \to \sigma_{3}^{Q} \to \sigma_{N_{Q}}^{Q})$ $\underbrace{\sum_{T_{i} \in Cache} S_{i} \leq K}$

<ロト </p>

To do . . .

- Which chain should be served at each iteration?
- Which task should be removed from the cache?

Input

- A set of tasks for task T_i ,
 - processing time: pi
 - size of result: s_i
- A set of request chains: σⁱ (1 ≤ i ≤ Q)

• A cache of capacity K

 $\sigma^{i} \colon Z^{+} \to \{T_{1}, \dots, T_{L}\}$ $\overbrace{\sigma_{1}^{1}} \to \overbrace{\sigma_{2}^{2}} \to \overbrace{\sigma_{3}^{1}} \to \overbrace{\sigma_{N_{1}}^{1}}$ \ldots $\overbrace{\sigma_{1}^{Q}} \to \overbrace{\sigma_{2}^{Q}} \to \overbrace{\sigma_{3}^{Q}} \to \overbrace{\sigma_{N_{Q}}^{Q}}$ $\boxed{\sum_{T_{i} \in Cache} S_{i} \leq K}$

<ロト < 回 > < 回 > < 回 > < 回 >

To do ...

- Which chain should be served at each iteration?
- Which task should be removed from the cache?

Input

- A set of tasks for task T_i ,
 - processing time: pi
 - size of result: s_i
- A set of request chains: σⁱ (1 ≤ i ≤ Q)

• A cache of capacity K

 $\sigma^{i} \colon Z^{+} \to \{T_{1}, \dots, T_{L}\}$ $(\sigma_{1}^{1} \to \sigma_{2}^{1} \to \sigma_{3}^{1} \to \sigma_{N_{1}}^{1})$ \dots $(\sigma_{1}^{Q} \to \sigma_{2}^{Q} \to \sigma_{3}^{Q} \to \sigma_{N_{Q}}^{Q})$ $\boxed{\sum_{T_{i} \in Cache} S_{i} \leq K}$

<ロト < 回 > < 回 > < 回 > < 回 >

To do . . .

- Which chain should be served at each iteration?
- Which task should be removed from the cache?

Offline

As far as we know, there is no result about it.

Online

[Feuerstein 1996] showed:

- In the uniform model, for each task t_i
 - size of result: $s_i = 1$
 - processing time: $p_i = 1$
- KQ-competitive deterministic online algorithm
- the universal lower bound is $(K + 1 \frac{1}{Q})$

イロン イ部ン イヨン イヨ

Offline

As far as we know, there is no result about it.

Online

```
[Feuerstein 1996] showed:
```

- In the uniform model, for each task t_i
 - size of result: $s_i = 1$
 - processing time: $p_i = 1$
- KQ-competitive deterministic online algorithm
- the universal lower bound is $(K + 1 \frac{1}{Q})$

イロト イヨト イヨト イ

what to talk ...

- A Practical Problem: Hypercarte
- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms
- Summary

・ロト ・四ト ・ヨト ・ヨ

• ${\sf K}=1,\;Q\in\mathbb{Z}^+,$ uniform model

This special case is NP-hard, we can get a reduction from the *shortest common supersequence* problem.

・ロト ・回ト ・ヨト ・ヨト

Given two sequences $w = w_1 \cdots w_m$ and $x = x_1 \cdots x_n$, we say that w is a supersequence of x, or x is a subsequence of w, if we can get x by deleting some symbols from w.

We say a sequence is perfect if no consecutive symbols are same.

イロト イヨト イヨト イヨト

Given two sequences $w = w_1 \cdots w_m$ and $x = x_1 \cdots x_n$, we say that w is a supersequence of x, or x is a subsequence of w, if we can get x by deleting some symbols from w.

We say a sequence is perfect if no consecutive symbols are same.

イロト イヨト イヨト イヨ

Given two sequences $w = w_1 \cdots w_m$ and $x = x_1 \cdots x_n$, we say that w is a supersequence of x, or x is a subsequence of w, if we can get x by deleting some symbols from w.

We say a sequence is perfect if no consecutive symbols are same.

イロト イヨト イヨト イヨト

Given two sequences $w = w_1 \cdots w_m$ and $x = x_1 \cdots x_n$, we say that w is a supersequence of x, or x is a subsequence of w, if we can get x by deleting some symbols from w.

We say a sequence is **perfect** if no consecutive symbols are same.

Haifeng XU	(INPG, ZJU)
------------	-------------

<ロ> (日) (日) (日) (日) (日)

Input:	Finite alphabet \mathbb{A} , finite set $\mathbb{X} = \{x \colon x \in \mathbb{A}^*\}$
	and a positive integer M .
Output:	A sequence $w \in \mathbb{A}^*$ with $ w \leq M$, such that
	w is a supersequence of x. $\forall x \in \mathbb{X}$.

- SCS is NP-complete problem [Maier 1978]
- SCS(2,3) means each sequence is of length 2, and each symbol appears at most 3 times in the whole sequences.
 - SCS(2,3) is MAX SNP-hard [Timkovskii 1989]
- PTAS for a *MAX SNP-hard* problem \Rightarrow *P* = *NP* [Arora et al.1992]
- Perfect SCS means every sequence in \mathbb{X} is perfect.
 - Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3) [Tao Jiang, Ming Li 1991]

イロン イ部ン イヨン イヨ

Input:	Finite alphabet \mathbb{A} , finite set $\mathbb{X} = \{x \colon x \in \mathbb{A}^*\}$
	and a positive integer <i>M</i> .
Output:	A sequence $w \in \mathbb{A}^*$ with $ w \leq M$, such that
	w is a supersequence of x, $\forall x \in \mathbb{X}$.

• SCS is *NP-complete problem* [Maier 1978]

- SCS(2,3) means each sequence is of length 2, and each symbol appears at most 3 times in the whole sequences.
 - SCS(2,3) is MAX SNP-hard [Timkovskii 1989]
- PTAS for a *MAX SNP-hard* problem \Rightarrow *P* = *NP* [Arora et al.1992]
- Perfect SCS means every sequence in X is perfect.
 - Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3) [Tao Jiang, Ming Li 1991]

イロン イ部ン イヨン イヨ

Input:	Finite alphabet \mathbb{A} , finite set $\mathbb{X} = \{x \colon x \in \mathbb{A}^*\}$
	and a positive integer <i>M</i> .
Output:	A sequence $w \in \mathbb{A}^*$ with $ w \leq M$, such that
	w is a supersequence of x, $\forall x \in \mathbb{X}$.

- SCS is NP-complete problem [Maier 1978]
- SCS(2,3) means each sequence is of length 2, and each symbol appears at most 3 times in the whole sequences.
 - SCS(2,3) is MAX SNP-hard [Timkovskii 1989]
- PTAS for a MAX SNP-hard problem $\Rightarrow P = NP$ [Arora et al.1992]
- Perfect SCS means every sequence in X is perfect.
 - Constant approximation algo. for perfect SCS \Rightarrow PTAS for SCS(2,3) [Tao Jiang, Ming Li 1991]

• • • • • • • • • • • • •

Input:	Finite alphabet \mathbb{A} , finite set $\mathbb{X} = \{x \colon x \in \mathbb{A}^*\}$
	and a positive integer <i>M</i> .
Output:	A sequence $w \in \mathbb{A}^*$ with $ w \leq M$, such that
	w is a supersequence of x, $\forall x \in \mathbb{X}$.

- SCS is NP-complete problem [Maier 1978]
- SCS(2,3) means each sequence is of length 2, and each symbol appears at most 3 times in the whole sequences.
 - SCS(2,3) is MAX SNP-hard [Timkovskii 1989]
- PTAS for a MAX SNP-hard problem $\Rightarrow P = NP$ [Arora et al.1992]
- Perfect SCS means every sequence in X is perfect.
 - a Constant approximation algo. for perfect SCS \Rightarrow PTAS for SCS(2,3) [Tao Jiang, Ming Li 1991]

• • • • • • • • • • • • •

Input:	Finite alphabet \mathbb{A} , finite set $\mathbb{X} = \{x \colon x \in \mathbb{A}^*\}$
	and a positive integer <i>M</i> .
Output:	A sequence $w \in \mathbb{A}^*$ with $ w \leq M$, such that
	w is a supersequence of x, $\forall x \in \mathbb{X}$.

- SCS is NP-complete problem [Maier 1978]
- SCS(2,3) means each sequence is of length 2, and each symbol appears at most 3 times in the whole sequences.
 - SCS(2,3) is MAX SNP-hard [Timkovskii 1989]
- PTAS for a MAX SNP-hard problem $\Rightarrow P = NP$ [Arora et al.1992]
- Perfect SCS means every sequence in X is perfect.

• Constant approximation algo. for perfect SCS \Rightarrow PTAS for SCS(2,3 [Tao Jiang, Ming Li 1991]

Input:	Finite alphabet \mathbb{A} , finite set $\mathbb{X} = \{x \colon x \in \mathbb{A}^*\}$
	and a positive integer <i>M</i> .
Output:	A sequence $w \in \mathbb{A}^*$ with $ w \leq M$, such that
	w is a supersequence of x, $\forall x \in \mathbb{X}$.

- SCS is NP-complete problem [Maier 1978]
- SCS(2,3) means each sequence is of length 2, and each symbol appears at most 3 times in the whole sequences.
 - SCS(2,3) is MAX SNP-hard [Timkovskii 1989]
- PTAS for a *MAX SNP-hard* problem $\Rightarrow P = NP$ [Arora et al.1992]
- Perfect SCS means every sequence in $\mathbb X$ is perfect.

 Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3) [Tao Jiang, Ming Li 1991]

イロン イ部ン イヨン イヨ

Input:	Finite alphabet \mathbb{A} , finite set $\mathbb{X} = \{x \colon x \in \mathbb{A}^*\}$
	and a positive integer <i>M</i> .
Output:	A sequence $w \in \mathbb{A}^*$ with $ w \leq M$, such that
	w is a supersequence of x, $\forall x \in \mathbb{X}$.

- SCS is NP-complete problem [Maier 1978]
- SCS(2,3) means each sequence is of length 2, and each symbol appears at most 3 times in the whole sequences.
 - SCS(2,3) is MAX SNP-hard [Timkovskii 1989]
- PTAS for a *MAX SNP-hard* problem \Rightarrow *P* = *NP* [Arora et al.1992]
- \bullet Perfect SCS means every sequence in $\mathbb X$ is perfect.
 - Constant approximation algo. for perfect SCS \Rightarrow PTAS for SCS(2,3) [Tao Jiang, Ming Li 1991]

(日) (同) (三) (三) (三)

• y_j^i is unique, which means $y_j^i = y_{j'}^{i'} \Leftrightarrow i = i'$ and j = j'• Const. appro. algo. for $\mathbb{X}' \Rightarrow$ PTAS for \mathbb{X}

<ロト </p>

Theorem

Multi-threaded caching problem is NP-hard for the uniform model even if the cache capacity K = 1, and it assumes no constant approximation algorithm unless P = NP.

ReductionPerfect SCSMTC $\mathbb{A}, \mathbb{X} = \{x : x \in \mathbb{A}^*\}$ \rightsquigarrow $S_{task} = \mathbb{A}$, $\sigma = \mathbb{X}$ A common sequence |w| = M \iff A schedule with processing time M

<ロト <回ト < 回ト < 回ト

Proof

Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let $w = w_1 \cdots w_M$ be a common supersequence of \mathbb{X} with |w| = M, then sequence $x^i \in \mathbb{X}$ is a subsequence of w. In other words, we can schedule the request chain σ^i due to the precedence constraint.

Proof

Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let $w = w_1 \cdots w_M$ be a common supersequence of \mathbb{X} with |w| = M, then sequence $x^i \in \mathbb{X}$ is a subsequence of w. In other words, we can schedule the request chain σ^i due to the precedence constraint.

(\Leftarrow) Let w be a feasible schedule of σ with |w| = M, then each chain σ^i is a subsequence of w.

Haifeng XU (INPG, ZJU)

Multi-threaded Caching

Proof

Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let $w = w_1 \cdots w_M$ be a common supersequence of \mathbb{X} with |w| = M, then sequence $x^i \in \mathbb{X}$ is a subsequence of w. In other words, we can schedule the request chain σ^i due to the precedence constraint.

(\Leftarrow) Let w be a feasible schedule of σ with |w| = M, then each chain σ^i is a subsequence of w.

Haifeng XU (INPG, ZJU)

Multi-threaded Caching

Proof

Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let $w = w_1 \cdots w_M$ be a common supersequence of \mathbb{X} with |w| = M, then sequence $x^i \in \mathbb{X}$ is a subsequence of w. In other words, we can schedule the request chain σ^i due to the precedence constraint.

(\Leftarrow) Let w be a feasible schedule of σ with |w| = M, then each chain σ^i is a subsequence of w.

Haifeng XU (INPG, ZJU)

Multi-threaded Caching

Proof

Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let $w = w_1 \cdots w_M$ be a common supersequence of \mathbb{X} with |w| = M, then sequence $x^i \in \mathbb{X}$ is a subsequence of w. In other words, we can schedule the request chain σ^i due to the precedence constraint.

Proof

Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let $w = w_1 \cdots w_M$ be a common supersequence of \mathbb{X} with |w| = M, then sequence $x^i \in \mathbb{X}$ is a subsequence of w. In other words, we can schedule the request chain σ^i due to the precedence constraint.

Proof

Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let $w = w_1 \cdots w_M$ be a common supersequence of \mathbb{X} with |w| = M, then sequence $x^i \in \mathbb{X}$ is a subsequence of w. In other words, we can schedule the request chain σ^i due to the precedence constraint.

what to talk \ldots

- A Practical Problem: Hypercarte
- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms
- Summary

・ロト ・四ト ・ヨト ・ヨ

A straightforward approach for the cost model

Let OPT_i be the minimum processing time for chain *i*, and C_{max} be the minimum processing time for all the chains.

 $OPT_i \leq C_{max} ~(1 \leq i \leq Q)$

イロト イヨト イヨト イヨ
A straightforward approach for the cost model

Let OPT_i be the minimum processing time for chain *i*, and C_{max} be the minimum processing time for all the chains.

$$OPT_i \leq C_{max} \ (1 \leq i \leq Q) \quad \Rightarrow$$

$$\frac{\sum_{i=1}^{Q} OPT_i}{C_{max}} \leq Q$$

イロト イヨト イヨト イ

Dynamic Programming

Obejective function: $f(n_1, \ldots, n_Q \mid cache)$

Haifeng XU (INPG, ZJU)

ASTEC 2009 23 / 27

イロト イヨト イヨト イヨ

Dynamic Programming

Obejective function: $f(n_1, \ldots, n_Q \mid cache)$

イロト イヨト イヨト イヨ

Find C_{max} with running time:

$$O(Q \times L \times N^Q \times \binom{L}{K}) = O(Q \times L \times N^Q \times \binom{L}{L-K})$$

Remarks:

- *K*, *Q* are constant \Rightarrow *P* problem even for general model
- L K, Q are constant $\Rightarrow P$ problem even for general model

・ロト ・回ト ・ヨト ・ヨ

Find C_{max} with running time:

$$O(\mathbf{Q} \times \mathbf{L} \times \mathbf{N}^{\mathbf{Q}} \times \begin{pmatrix} \mathbf{L} \\ \mathbf{K} \end{pmatrix}) = O(\mathbf{Q} \times \mathbf{L} \times \mathbf{N}^{\mathbf{Q}} \times \begin{pmatrix} \mathbf{L} \\ \mathbf{L} - \mathbf{K} \end{pmatrix})$$

Remarks:

- K, Q are constant $\Rightarrow P$ problem even for general model
- L K, Q are constant $\Rightarrow P$ problem even for general model

メロト メタト メヨト メヨ

Find C_{max} with running time:

$$O(Q \times L \times N^Q \times \begin{pmatrix} L \\ K \end{pmatrix}) = O(Q \times L \times N^Q \times \begin{pmatrix} L \\ L - K \end{pmatrix})$$

Remarks:

- *K*, *Q* are constant \Rightarrow *P* problem even for general model
- L K, Q are constant $\Rightarrow P$ problem even for general model

イロト イ団ト イヨト イ

what to talk \ldots

- A Practical Problem: Hypercarte
- Caching Problem
- Multi-threaded Caching Problem
 - Complexity
 - Algorithms

• Summary

イロト イヨト イヨト イヨ

Our contributions

- *Multi-threaded caching* problem is NP-hard for the uniform model even if K = 1
- There is no constant approximation algorithm for it unless P = NP.
- Q-approximation algorithm for the cost model
- If both K (or L K) and Q are constant, it becomes P problem even for the general model

Open problems

- The complexity of fault model when Q = 1
- Algorithm for uniform model when $Q(\geq 2)$ is constant
- A better lower/upper bound for the online case

<ロト </p>

Our contributions

- *Multi-threaded caching* problem is NP-hard for the uniform model even if K = 1
- There is no constant approximation algorithm for it unless P = NP.
- Q-approximation algorithm for the cost model
- If both K (or L K) and Q are constant, it becomes P problem even for the general model

Open problems

- The complexity of fault model when Q = 1
- Algorithm for uniform model when $Q(\geq 2)$ is constant
- A better lower/upper bound for the online case

Thank you!

・ロト ・回ト ・ヨト ・ヨト