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Architecture of Hypercarte Problem

client/server architecture

parallel machines

parallel tasks

Observation: Some tasks may
appear many times.
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A model of Hypercarte Project: Hypercarte Problem

Requests consist of DAG (Directed Acyclic Graph)

Some of the requests are same

m parallel machines

Objective: Cmax ( Scheduling Problem )

Store the results of some tasks to improve the performance.
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Simplification of the Original Problem

We simplify the Hypercarte problem a little bit . . .

DAG

m machines

Cmax

Cache

one chain

one machine

Cmax

Cache

Thus, we get a problem: Caching (Paging) Problem.
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Description of Off-line Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

One request chain: σ

A cache of capacity K

Stask = {T1,T2, . . . ,TL}

σ : Z+ → {T1, . . . ,TL}

σ1 σ2 σ3 σN

∑
Ti∈Cache Si ≤ K

min :
N∑

i=1

p(σi ) · x(σi )

x(σi ) =

{
0 if the task σi is in the cache at the ith iteration
1 otherwise
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What should we do in the caching problem?

An Example

task size time
A 1 2 We have a cache
B 1 1 of capacity 2
C 2 1

A C B C A C B

To Do . . .
Which task should should be removed from the cache if the cache is full.
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Previous Results of Caching Problem

Offline
The complexity depends on the size of results and the processing time.

size time Complexity
Uniform Model 1 1 P

Cost Model 1 Z+ P
Fault Model Z+ 1 ?

General Model Z+ Z+ NP-hard

There is a 4-approximation algorithm for the general model
(c.f. [Amotz Bar-Noy et al. 1991] ).

online
for the general model

( K
sizemin

+ 1) - competitive deterministic online algorithm

best
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Extend Caching Problem

We extend caching problem a bit, because it is a little far away from our original
model.

DAG

m machines

Cmax

Cache

One chain

one machine

Cmax

Cache

Several Chains

one machine

Cmax

Cache

Having more than one request chain . . .
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Description of Multi-threaded Caching Problem

Input

A set of tasks
for task Ti ,

processing time: pi

size of result: si

A set of request chains:
σi (1 ≤ i ≤ Q)

A cache of capacity K

σi : Z+ → {T1, . . . ,TL}

σ1
1 σ1

2 σ1
3 σ1

N1

. . .

σQ
1 σQ

2 σQ
3

σQ
NQ

∑
Ti∈Cache Si ≤ K

To do . . .
Which chain should be served at each iteration?

Which task should be removed from the cache?
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Previous Results for Multi-threaded Caching Problem

Offline
As far as we know, there is no result about it.

Online

[Feuerstein 1996] showed:

In the uniform model, for each task ti
size of result: si = 1
processing time: pi = 1

KQ-competitive deterministic online algorithm

the universal lower bound is (K + 1− 1
Q )
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Complexity

K = 1, Q ∈ Z+, uniform model
This special case is NP-hard, we can get a reduction from the shortest
common supersequence problem.
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Shortest Common Supersequence

Definition:
Given two sequences w = w1 · · ·wm and x = x1 · · · xn, we say that w is a
supersequence of x , or x is a subsequence of w , if we can get x by deleting some
symbols from w .

A C B C D E B

A B C D E C C E B

We say a sequence is perfect if no consecutive symbols are same.
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Shortest Common Supersequence

Input: Finite alphabet A, finite set X = {x : x ∈ A∗}
and a positive integer M.

Output: A sequence w ∈ A∗ with |w | ≤ M, such that
w is a supersequence of x , ∀x ∈ X.

Previous results

SCS is NP-complete problem [Maier 1978]

SCS(2,3) means each sequence is of length 2, and each symbol appears at
most 3 times in the whole sequences.

SCS(2,3) is MAX SNP-hard [Timkovskii 1989]

PTAS for a MAX SNP-hard problem ⇒ P = NP [Arora et al.1992]

Perfect SCS means every sequence in X is perfect.

Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3)
[Tao Jiang, Ming Li 1991]
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SCS(2,3) means each sequence is of length 2, and each symbol appears at
most 3 times in the whole sequences.

SCS(2,3) is MAX SNP-hard [Timkovskii 1989]

PTAS for a MAX SNP-hard problem ⇒ P = NP [Arora et al.1992]

Perfect SCS means every sequence in X is perfect.

Constant approximation algo. for perfect SCS ⇒ PTAS for SCS(2,3)
[Tao Jiang, Ming Li 1991]
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Non-approximability of perfect SCS

SCS(2,3) perfect SCS

A  A ∪ {y i
j } (1 ≤ i ≤ n, 1 ≤ j ≤ 2)

X = { x1
1 x1

2 , . . . , xn
1 xn

2 }  X′ = { x1
1 y1

1 x1
2 y1

2 , . . . , xn
1 yn

1 xn
2 yn

2 }

y i
j is unique, which means y i

j = y i ′

j′ ⇔ i = i ′ and j = j ′

Const. appro. algo. for X′ ⇒ PTAS for X
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Complexity of MTC

Theorem
Multi-threaded caching problem is NP-hard for the uniform model
even if the cache capacity K = 1, and it assumes no constant
approximation algorithm unless P = NP.

Reduction

Perfect SCS MTC

A,X = {x : x ∈ A∗}  Stask = A , σ = X

A common sequence |w | = M ⇐⇒ A schedule with processing time M
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Complexity of MTC

Perfect SCS

w1 w2 w3 w4 w5 w6 w7 wM

x i
1 x i

2 x i
3 x i

Ni

Multi-threaded Caching

w1 w2 w3 w4 w5 w6 w7 wM

σi
1 σi

2 σi
3 σi

Ni

Proof
Claim: The common supersequence of X is a feasible schedule of σ and vice versa.

(⇒) Let w = w1 · · ·wM be a common supersequence of X with |w | = M, then
sequence x i ∈ X is a subsequence of w . In other words, we can schedule the
request chain σi due to the precedence constraint.

(⇐) Let w be a feasible schedule of σ with |w | = M, then each chain σi is a
subsequence of w .
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A straightforward approach for the cost model

σ1
1 σ1

2 σ1
3 σ1

N1

σi
1 σi

2 σi
3 σi

Ni

σQ
1 σQ

2 σQ
3

σQ
NQ

Let OPTi be the minimum processing time for chain i , and Cmax be the minimum
processing time for all the chains.

OPTi ≤ Cmax (1 ≤ i ≤ Q) ⇒
∑Q

i=1 OPTi

Cmax
≤ Q
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Dynamic Programming

σ1
1 σ1

n1
σ1

N

σi
1 σi

2 σi
n2

σi
N

σQ
1 σQ

2
σQ

nQ
σQ

N

Obejective function: f (n1, . . . , nQ | cache)
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Dynamic Programming

Find Cmax with running time:

O( Q × L× NQ ×
(

L

K

)
) = O( Q × L× NQ ×

(
L

L− K

)
)

Remarks:

K , Q are constant ⇒ P problem even for general model

L− K , Q are constant ⇒ P problem even for general model
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Our contributions
Multi-threaded caching problem is NP-hard for the uniform model even if
K = 1

There is no constant approximation algorithm for it unless P = NP.

Q-approximation algorithm for the cost model

If both K (or L− K ) and Q are constant, it becomes P problem even for the
general model

Open problems

The complexity of fault model when Q = 1

Algorithm for uniform model when Q(≥ 2) is constant

A better lower/upper bound for the online case
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Thank you!
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